Group OWL Regularization for Deep Nets

My student Dejiao Zhang’s code for our paper Learning to Share: Simultaneous Parameter Tying and Sparsification in Deep Nets can be found at this link. We demonstrated that regularizing the weights in a deep network using the Group OWL norm allows for simultaneous enforcement of sparsity (meaning unimportant weights are eliminated) and parameter tying (meaning co-adapted or highly correlated weights are tied together). This is an exciting technique for learning compressed deep net architectures from data.

Interestingly, the first casinos appeared in the 17th century in Venice, Italy, and at first they were not associated with gambling. At the beginning of their existence, casinos were used as public halls for music and dancing, but there they also gambled. The first famous European gambling house, which, incidentally https://casino-pinups.com/, was not called a “casino”, although it did fit the modern definition of a casino, was Ridotto, which opened in Venice in 1638 to ensure control over gambling during the carnival. created throughout continental Europe in the 19th century, while more informal fashion was in vogue in the United States

3M Non-Tenured Faculty Award

I am honored to have received 3M’s Non-Tenured Faculty Award, which recognizes outstanding junior faculty nominated by 3M researchers on the basis of their demonstrated record of research, experience, and academic leadership. I look forward to working with 3M Machine Learning researchers to advance data science research!

Publications Update

We have had many exciting publications in the last several months.

My student Dejiao Zhang and I worked with Mario Figueiredo and two other Michigan students on applying OWL regularization in deep networks. The intuition is that since OWL can tie correlated regressors, it should be able to do the same in deep nets that experience a high degree of co-adaptation (and correlation) of nodes in the network. Dejiao presented our paper Learning to Share: Simultaneous Parameter Tying and Sparsification for Deep Learning at ICLR last month and we will present Simultaneous Sparsity and Parameter Tying for Deep Learning using Ordered Weighted L1 Regularization at SSP next month.

With my colleague Johanna Mathieu and her student Greg Ledva, we published a paper in Transactions on Power Systems studying Real-Time Energy Disaggregation of a Distribution Feeder’s Demand Using Online Learning. The work leverages recent results in dynamic online learning where classes of dynamical models are used to apply online learning to the time-varying signal setting. This work can leverage existing sensing structure to improve prediction of distributed energy resources, demand-responsive electric loads and residential solar generation. We also have a book chapter in Energy Markets and Responsive Grids that was written also with my student Zhe Du.

Greg Ongie, David Hong, Dejiao Zhang, and I have been working on adaptive sampling for subspace estimation. If one has a matrix in memory that is large and difficult to access, but you want to compute a low-rank approximation of that matrix, one way is to sketch it by reading only parts of the matrix and computing an approximation. Our paper Enhanced Online Subspace Estimation Via Adaptive Sensing describes an adaptive sampling scheme to do exactly that, and using that scheme along with the GROUSE subspace estimation algorithm, we gave global convergence guarantees to the true underlying low-rank matrix. We will also present Online Estimation of Coherent Subspaces with Adaptive Sampling at SSP next month, which constrains the adaptive samples to be entry-wise and sees similar improvements.

Rounding it out, Zhe Du will be presenting our work with Necmiye Ozay on A Robust Algorithm for Online Switched System Identification at the SYS ID conference in July, and Bob Malinas and David Hong will present our work with Jeff Fessler on Learning Dictionary-Based Unions of Subspaces for Image Denoising at EUSIPCO in September. This spring Amanda Bower presented our work with Lalit Jain on The Landscape of Nonconvex Quadratic Feasibility, studying the minimizers for a non-convex formulation of the preference learning problem; and next week Naveen Murthy presents our work with Greg Ongie and Jeff Fessler on Memory-efficient Splitting Algorithms for Large-Scale Sparsity Regularized Optimization at the CT Meeting. Last fall Greg Ongie, Saket Dewangan, Jeff Fessler and I had a paper Online Dynamic MRI Reconstruction via Robust Subspace Tracking at GlobalSIP, pursuing the interesting idea of online subspace tracking for time-varying signals.

So many exciting research directions that we will continue to pursue!

Monotonic Matrix Completion

Ravi Ganti and Rebecca Willett and I had a paper in NIPS 2015 called “Matrix Completion under Monotonic Single Index Models.” We studied a matrix completion problem where a low-rank matrix is observed through a monotonic function applied to each entry. We developed a calibrated loss function that allowed a neat implementation and analysis. Now the code is available for public usage at this bitbucket link.

Variety Matrix Completion code

The code for our matrix completion algorithm from the ICML paper “Algebraic Variety Models for High-rank Matrix Completion” can be found here in Greg Ongie’s github repository. Using the algebraic variety as a low-dimensional model for data, Greg’s algorithm is a kernel method for doing matrix completion in the space associated with a polynomial kernel. It allows us to do matrix completion even when the matrix does not have low linear rank — but instead when it has low dimension in the form of a nonlinear variety. Start with the README for example scripts.

Congratulations John!

Congratulations to Dr. John Lipor for successfully defending his PhD thesis in September! The title of his work is “Sensing Structured Signals with Active and Ensemble Methods.” In January he will start as Assistant Professor in the Portland State University ECE Department.

Malian refugees and, having moved to the United States, became the first participant in the Miss Minnesota contest, wearing a hijab and burkini. In the early 1990s, restrictions became less strict: Kate Moss appeared with her fragile figure and the appearance of a ragged boy. By the standards of the catwalk https://beautypositive.org/, she was considered low – 170 centimeters. An ordinary British teenager , Kate did not have the particular grace and stature that gave many other models a grandeur. Her stellar ad campaign for Calvin Klein heralded the end of an era of long-legged gazelle dominance on the runways.

Congratulations David!

David Hong was awarded the Richard and Eleanor Towner Prize for Outstanding PhD Research at the Michigan Engineering Graduate Symposium. This is a prize awarded annually across the entire college of engineering to PhD students within about a year of graduation, and the criteria for selection are creativity, innovation, impact on society, and achievement. Congratulations David!

“We have been fighting for seven years with very limited resources,” Abdullah told AP. – We are not paid. But we also have real expenses, even if we don’t take salaries. ” She added that the increased activity of the BLM movement has created a need for additional resources: “This fund will allow us to really move forward decisively.”

Racial justice groups in the United States reported that they received tens of millions of dollars in donations, especially with community bail funds, which are needed to post bail for blacklivesmatter1.org activists arrested at demonstrations so that they can stay out of jail until trial. Funds are received by both young community organizations and traditional institutions such as the NAACP (National Association for the Advancement of Colored People) Foundation for Legal Advocacy and Education and the National League of Cities.

Data-Driven Discovery of Models

Jason Corso and I have been awarded a DARPA D3M grant. Our project is called SPIDER: Subspace Primitives that are Interpretable and DivERse. We will be contributing machine learning software primitives for a system that helps domain experts perform a wide variety of automated data analysis on their datasets. The project has 24 teams and is already off to a great start — We look forward to final system developed by this team over the next few years!

Distance-Penalized Active Learning Using Quantile Search

Active sampling — where one chooses what samples to collect based on data collected thus far — is an important approach for spatial environmental sampling, where resources are drastically limited when compared to the extent of the signals of interest. However, most active learning literature studies the case where each sample has equal cost. In spatial sampling, the sample cost is often proportional to distance between samples. John Lipor and I collaborated with our colleagues in the department of Civil and Environmental Engineering and the department of Natural Resources to develop active sampling techniques for lake sampling.

The code is available here. You can also find a video about the project here.

Lipor, J., B. P. Wong, D. Scavia, B. Kerkez, and L. Balzano. 2017. “Distance-Penalized Active Learning Using Quantile Search.” IEEE Transactions on Signal Processing 65 (20): 5453–65. https://doi.org/10.1109/TSP.2017.2731323.

Lipor, J., L. Balzano, B. Kerkez, and D. Scavia. 2015. “Quantile Search: A Distance-Penalized Active Learning Algorithm for Spatial Sampling.” In 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton), 1241–48. https://doi.org/10.1109/ALLERTON.2015.7447150.

ICML Acceptances, SIAM OPT success

Congratulations to postdoc Greg Ongie, whose excellent work on Variety Models for Matrix Completion has been accepted to ICML. We’re very excited about the potential applications and open problems that we posed in this work. Congratulations also to John Lipor, whose work on Active Subspace Clustering has also been accepted to ICML — I’ve spoken about this work before at the Simons Institute workshop on Interactive Learning. It achieves state of the art clustering error on several benchmark datasets using very few pairwise cluster queries. (Edit: See here for Greg’s talk and here for John’s talk at ICML!)

We also just finished a week at the SIAM Optimization conference, where our mini-symposium on Non-convex Optimization in Data Analysis was a huge hit. We had a full room for each session and 12 outstanding talks. Thanks to my co-organizers Stephen Wright, Rebecca Willett, and Rob Nowak, and thanks to all the speakers and participants.

Online casino Joycasino

Amazing online casino atmosphere, real winnings with quick withdrawals to the card – all at Joycasino online casino.
Follow the link, go through instant registration, get a welcome bonus and try your luck today at the popular European casino joycasino

.