Congratulations Dr. Gilman and Dr. Du!

Last fall and winter, SPADA PhD students Kyle Gilman and Zhe Du graduated. Kyle’s thesis was titled “Scalable Algorithms Using Optimization on Orthogonal Matrix Manifolds,” and he continues to make fundamental contributions to interesting modern optimization problems. He is currently an Applied AI/ML Senior Associate at JPMorgan Chase. Zhe’s thesis was titled “Learning, Control, and Reduction for Markov Jump Systems,” with lots of interesting work at the intersection of machine learning and control. He is currently a Postdoctoral researcher working with Samet Oymak and Fabio Pasqualetti. I am excited to follow their work into the future as they make an impact in optimization, machine learning, and control!

MLK Spirit Award

I am honored to have received an MLK Spirit Award from the Michigan College of Engineering. These awards are given to university members who exemplify the leadership and vision of Reverend Dr. Martin Luther King, Jr. through their commitment to social justice, diversity, equity, and inclusion. That commitment is a very high priority for me, so I am grateful that others have felt the impact of my actions. https://ece.engin.umich.edu/stories/laura-balzano-receives-2023-mlk-spirit-award

K-Subspaces Algorithm Results at ICML

I’m excited that our results for the K-Subspaces algorithm were accepted to ICML. My postdoc Peng Wang will be presenting his excellent work; you may read the paper here or attend his session if you are interested. K-Subspaces (KSS) is a natural generalization of K-Means to higher dimensional centers, originally proposed by Bradley and Mangasarian in 2000. Peng not only showed that KSS converges locally, but that a simple spectral initialization guarantees a close-enough initialization in the case of data drawn randomly from arbitrary subspaces. This makes a giant step in a line of questioning that has been open for more than 20 years. Great work Peng!

DoE funding for sketching algorithms and theory

Hessam Mahdavifar and I have been awarded funds from the Department of Energy to study sketching in the context of non-real-valued data. Randomized sketching and subsampling algorithms are revolutionizing the data processing pipeline by allowing significant compression of redundant information. However, current research assumes input data are real-valued, when many sensing, storage, and computation modalities in scientific and technological applications are best modeled mathematically as other types of data, including discrete-valued data and ordinal or categorical data, among others. You can read about the project here and read a Q&A here that was highlighted on the DoE office of science website. We are excited about the opportunity to expand in this new direction!

HePPCAT in TSP

Our work on heteroscedastic PCA continues with our article “HePPCAT: Probabilistic PCA for Data with Heteroscedastic Noise,” published in IEEE Transactions on Signal Processing. In this paper we developed novel ascent algorithms to maximize the heteroscedastic PCA likelihood, simultaneously estimating the principal components and the heteroscedastic noise variances. We show a compelling application to air quality data, where it is common to have data both from sensors that are high-quality EPA instruments and others that are consumer grade. Code for the paper experiments is available at https://gitlab.com/heppcat-group, and the HePPCAT method is available as a registered Julia package. Congratulations to my student Kyle Gilman, former student David Hong, and colleague Jeff Fessler.

Congratulations Dr. Bower!

Last fall, my PhD student Amanda Bower defended her thesis titled “Dealing with Intransitivity, Non-Convexity, and Algorithmic Bias in Preference Learning.” Amanda was in the Applied Interdisciplinary Math program, co-advised by Martin Strauss. She will now be moving on to work with Twitter’s ML Ethics, Transparency, and Accountability (META) group. We are so proud that she is going to go make her mark on the world. Congratulations Dr. Bower!

Faktum är att Viagra på nätet börjar fungera efter 20-25 minuter för många patienter, vilket ger upp till 6 timmars prestanda från och med den tiden. Det mesta av Viagra som du kan köpa online är generiskt sildenafilcitrat och ofta är tabletterna märkta på detta sätt.

Online matrix factorization for Markovian data

Hanbaek Lyu, Deanna Needell, and I recently had a manuscript published at JMLR: “Online matrix factorization for Markovian data and applications to Network Dictionary Learning.” In this work we show that the well-known OMF algorithm for i.i.d. stream of data converges almost surely to the set of critical points of the expected loss function, even when the data stream is dependent but Markovian. It would be of great interest to show that this algorithm further converges to global minimizers, as has been recently proven for many batch-processing algorithms. We are excited about this important step, generalizing the theory for the more practical case where the data aren’t i.i.d. Han’s work applying this to network sampling is super cool — and in fact it’s impossible to sample a sparse network in an i.i.d. way, so this extension is critical for this application. The code is available here. Han is on the academic job market this year.

IAS Missing Data Workshop videos online

Bianca Dumitrascu, Boaz Nadler, and I hosted a virtual workshop in early September, supported by the Institute for Advanced Study. We had excellent speakers from across the spectrum of machine learning, statistics, and applications that consider missing data. You can find videos of all the seminars here.

In accordance with Part 1 of Article 60 of the Federal Law of December 29, 2012 N 273-FZ “On Education in the Russian Federation” (hereinafter – Federal Law N 273-FZ), the types of documents occupational therapy schools ny to be issued in the Russian Federation are established.
In accordance with the order of the Ministry of Education and Science of Russia dated July 1, 2013 N 499 “On approval of the Procedure for organizing and carrying out educational activities for additional professional programs” (registered by the Ministry of Justice of the Russian Federation on August 20, 2013, registration N 29444)

Preference Learning with Salient Features

I am excited that Amanda Bower will have the opportunity to discuss our new work in preference learning, “Preference Modeling with Context-Dependent Salient Features“, at ICML next week. In this work, we propose a new model for preference learning that takes into account the fact that when making pairwise comparisons, certain features may play an outside role in the comparison, making the pairwise comparison result inconsistent with a general preference order. We look forward to hearing people’s questions and feedback! Update post-conference: Her presentation can be viewed here.

Online Tensor Completion and Tracking

Kyle Gilman and I have a preprint out describing a new algorithm for online tensor completion and tracking. We derive and demonstrate an algorithm that operates on streaming tensor data, such as hyperspectral video collected over time, or chemo-sensing experiments in space and time. Kyle presented his work at the first fully virtual ICASSP, which you can view here. Anyone can register for free to this year’s virtual ICASSP and watch the videos, post questions, and join the discussion. Kyle’s code is also available here. We think this algorithm will have a major impact in speeding up low-rank tensor processing, especially with time-varying data, and we welcome questions and feedback.

The speed of the girl’s movement around the city is about four kilometers per hour, or two and a half, if she wears heels higher than six centimeters. The zone of possible contact is five meters free hookup, no more. That is, everything about everything you get … How much do you get? (Damn, they told me for a reason: study math properly, you will need it!) Well, like, five seconds.