At the inaugural Conference on Parsimony and Learning (CPAL), my group is presenting three works that have come out of a recent exciting collaboration with UM Prof Qing Qu and other colleagues on low-rank learning in deep networks. Prof Qu’s prior work studying neural collapse in deep networks has opened many exciting directions for us to pursue! All three works study deep linear networks (DLNs), i.e. deep matrix factorization. In this setting (which is simplified from deep neural networks that have nonlinear activations), we can prove several interesting fundamental facts about the way DLNs learn from data when trained with gradient descent. Congratulations SPADA members Soo Min Kwon, Can Yaras, and Peng Wang (all co-advised by Prof Qu) for these publications!
Yaras, C., Wang, P., Hu, W., Zhu, Z., Balzano, L., & Qu, Q. (2023, December 1). Invariant Low-Dimensional Subspaces in Gradient Descent for Learning Deep Linear Networks. Conference on Parsimony and Learning (Recent Spotlight Track). https://openreview.net/forum?id=oSzCKf1I5N
Wang, P., Li, X., Yaras, C., Zhu, Z., Balzano, L., Hu, W., & Qu, Q. (2023, December 1). Understanding Hierarchical Representations in Deep Networks via Feature Compression and Discrimination. Conference on Parsimony and Learning (Recent Spotlight Track). https://openreview.net/forum?id=Ovuu8LpGZu
Kwon, S. M., Zhang, Z., Song, D., Balzano, L., & Qu, Q. (2023, December 1). Efficient Low-Dimensional Compression of Overparameterized Networks. Conference on Parsimony and Learning (Recent Spotlight Track). https://openreview.net/forum?id=1AVb9oEdK7