Selected Publications

Here I list “selected publications” that are representative of my work overall.

Selected Publications

Hong, D., Yang, F., Fessler, J. A., & Balzano, L. (2023). Optimally Weighted PCA for High-Dimensional Heteroscedastic Data. SIAM Journal on Mathematics of Data Science, 5(1), 222–250. https://doi.org/10.1137/22M1470244
Wang, P., Liu, H., So, A. M.-C., & Balzano, L. (2022). Convergence and Recovery Guarantees of the K-Subspaces Method for Subspace Clustering. Proceedings of the 39th International Conference on Machine Learning, 22884–22918. https://proceedings.mlr.press/v162/wang22r.html
Balzano, L. (2022). On the equivalence of Oja’s algorithm and GROUSE. Proceedings of The 25th International Conference on Artificial Intelligence and Statistics, 7014–7030. https://proceedings.mlr.press/v151/balzano22a.html
Yaras, C., Wang, P., Zhu, Z., Balzano, L., & Qu, Q. (2022). Neural Collapse with Normalized Features: A Geometric Analysis over the Riemannian Manifold. Advances in Neural Information Processing Systems. https://openreview.net/forum?id=Zvh6lF5b26N
Lipor, J., Hong, D., Tan, Y. S., & Balzano, L. (2021). Subspace clustering using ensembles of K-subspaces. Information and Inference: A Journal of the IMA, 10(1), 73–107. https://doi.org/10.1093/imaiai/iaaa031
Hong, D., Gilman, K., Balzano, L., & Fessler, J. A. (2021). HePPCAT: Probabilistic PCA for Data with Heteroscedastic Noise. ArXiv:2101.03468 [Eess, Math, Stat]. http://arxiv.org/abs/2101.03468
Ongie, G., Pimentel-Alarcón, D., Balzano, L., Willett, R., & Nowak, R. D. (2021). Tensor Methods for Nonlinear Matrix Completion. SIAM Journal on Mathematics of Data Science, 253–279. https://doi.org/10.1137/20M1323448
Bower, A., & Balzano, L. (2020). Preference Modeling with Context-Dependent Salient Features. International Conference on Machine Learning, 1067–1077. https://proceedings.mlr.press/v119/bower20a.html
Balzano, L., Chi, Y., & Lu, Y. M. (2018). Streaming PCA and Subspace Tracking: The Missing Data Case. Proceedings of the IEEE, 1–18. https://doi.org/10.1109/JPROC.2018.2847041
Kennedy, R., Balzano, L., Wright, S. J., & Taylor, C. J. (2016). Online algorithms for factorization-based structure from motion. Computer Vision and Image Understanding, 150, 139–152. https://doi.org/10.1016/j.cviu.2016.04.011
Zhang, D., & Balzano, L. (2016). Global Convergence of a Grassmannian Gradient Descent Algorithm for Subspace Estimation. Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, 1460–1468. http://jmlr.org/proceedings/papers/v51/zhang16b.html
Balzano, L., & Wright, S. J. (2014). Local Convergence of an Algorithm for Subspace Identification from Partial Data. Foundations of Computational Mathematics, 1–36. http://link.springer.com/article/10.1007/s10208-014-9227-7
Balzano, L., & Wright, S. J. (2013). On GROUSE and incremental SVD. 2013 IEEE 5th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 1–4. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6713992
He, J., Balzano, L., & Szlam, A. (2012). Incremental gradient on the Grassmannian for online foreground and background separation in subsampled video. Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference On, 1568–1575. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6247848
Eriksson, B., Balzano, L., & Nowak, R. (2012). High rank matrix completion. Proc. of Intl. Conf. on Artificial Intell. and Stat. http://jmlr.csail.mit.edu/proceedings/papers/v22/eriksson12/eriksson12.pdf
Balzano, L., Nowak, R., & Recht, B. (2010). Online identification and tracking of subspaces from highly incomplete information. Communication, Control, and Computing (Allerton), 2010 48th Annual Allerton Conference On, 704–711. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5706976
Balzano, L., & Nowak, R. (2007). Blind calibration of sensor networks. Proceedings of the 6th International Conference on Information Processing in Sensor Networks, 79–88. http://dl.acm.org/citation.cfm?id=1236372