I’m excited that our results for the K-Subspaces algorithm were accepted to ICML. My postdoc Peng Wang will be presenting his excellent work; you may read the paper here or attend his session if you are interested. K-Subspaces (KSS) is a natural generalization of K-Means to higher dimensional centers, originally proposed by Bradley and Mangasarian in 2000. Peng not only showed that KSS converges locally, but that a simple spectral initialization guarantees a close-enough initialization in the case of data drawn randomly from arbitrary subspaces. This makes a giant step in a line of questioning that has been open for more than 20 years. Great work Peng!