Technical Reports, Etc.

  1. A O Hero, J A Fessler.
    Asymptotic convergence properties of EM-type algorithms.
    Technical Report 282, Comm. and Sign. Proc. Lab., Dept. of EECS, Univ. of Michigan, Ann Arbor, MI, 48109-2122, Apr. 1993.
  2. J A Fessler, A O Hero.
    Space-alternating generalized EM algorithms for penalized maximum-likelihood image reconstruction.
    Technical Report 286, Comm. and Sign. Proc. Lab., Dept. of EECS, Univ. of Michigan, Ann Arbor, MI, 48109-2122, Feb. 1994.
  3. J A Fessler.
    EM and gradient algorithms for transmission tomography with background contamination.
    Technical Report UM-PET-JF-94-1, Cyclotron PET Facility, Univ. of Michigan, Ann Arbor, MI, 48109-2122, Dec. 1994.
  4. J A Fessler.
    ASPIRE 3.0 user's guide: A sparse iterative reconstruction library.
    Technical Report 293, Comm. and Sign. Proc. Lab., Dept. of EECS, Univ. of Michigan, Ann Arbor, MI, 48109-2122, Jul. 1995.
  5. J A Fessler.
    Resolution properties of regularized image reconstruction methods.
    Technical Report 297, Comm. and Sign. Proc. Lab., Dept. of EECS, Univ. of Michigan, Ann Arbor, MI, 48109-2122, Aug. 1995.
  6. J A Fessler, J M Ollinger.
    Signal processing pitfalls in positron emission tomography.
    Technical Report 302, Comm. and Sign. Proc. Lab., Dept. of EECS, Univ. of Michigan, Ann Arbor, MI, 48109-2122, Sep. 1996.
  7. A O Hero, M Usman, A Sauve, J A Fessler.
    Recursive algorithms for computing the Cramer-Rao bound.
    Technical Report 305, Comm. and Sign. Proc. Lab., Dept. of EECS, Univ. of Michigan, Ann Arbor, MI, 48109-2122, Nov. 1996.
  8. J A Fessler.
    Conjugate-gradient preconditioning methods: numerical results.
    Technical Report 303, Comm. and Sign. Proc. Lab., Dept. of EECS, Univ. of Michigan, Ann Arbor, MI, 48109-2122, Jan. 1997.
  9. J A Fessler.
    Spatial resolution properties of penalized weighted least-squares image reconstruction with model mismatch.
    Technical Report 308, Comm. and Sign. Proc. Lab., Dept. of EECS, Univ. of Michigan, Ann Arbor, MI, 48109-2122, Mar. 1997.
  10. J A Fessler.
    Users guide for ASPIRE 3D image reconstruction software.
    Technical Report 310, Comm. and Sign. Proc. Lab., Dept. of EECS, Univ. of Michigan, Ann Arbor, MI, 48109-2122, Jul. 1997.
  11. J A Fessler.
    On transformations of random vectors.
    Technical Report 314, Comm. and Sign. Proc. Lab., Dept. of EECS, Univ. of Michigan, Ann Arbor, MI, 48109-2122, Aug. 1998.
  12. J A Fessler.
    Computing parametric images from dynamic sequences using a QR decomposition method.
    Technical Report 321, Comm. and Sign. Proc. Lab., Dept. of EECS, Univ. of Michigan, Ann Arbor, MI, 48109-2122, Dec. 1998.
  13. J A Fessler.
    Some tips for LaTeX, Matlab, and ANSI C.
    Technical Report ?, Comm. and Sign. Proc. Lab., Dept. of EECS, Univ. of Michigan, Ann Arbor, MI, 48109-2122, Nov. 2001.
    Script mentioned in report.
  14. J A Fessler.
    Iterative tomographic image reconstruction using nonuniform fast Fourier transforms.
    Technical Report ?, Comm. and Sign. Proc. Lab., Dept. of EECS, Univ. of Michigan, Ann Arbor, MI, 48109-2122, Dec. 2001.
  15. S Ahn, J A Fessler.
    Standard errors of mean, variance, and standard deviation estimators.
    Technical Report 413, Comm. and Sign. Proc. Lab., Dept. of EECS, Univ. of Michigan, Ann Arbor, MI, 48109-2122, Jul. 2003.
  16. S Matej, J A Fessler, I G Kazantsev.
    Fourier-based forward and back-projectors for iterative image reconstruction.
    Technical Report MIPG303, MIPG Technical Report, University of Pennsylvania, May. 2003.
  17. M W Jacobson, J A Fessler.
    Properties of MM algorithms on convex feasible sets: extended version.
    Technical Report 353, Comm. and Sign. Proc. Lab., Dept. of EECS, Univ. of Michigan, Ann Arbor, MI, 48109-2122, Nov. 2004.
  18. Dan Ruan, J A Fessler.
    Adaptive ellipse tracking and a convergence proof.
    Technical Report 382, Comm. and Sign. Proc. Lab., Dept. of EECS, Univ. of Michigan, Ann Arbor, MI, 48109-2122, May. 2007.
  19. Dan Ruan, J A Fessler.
    Fundamental performance analysis in image registration problems: \Cramer-Rao bound and its variations.
    Technical Report 386, Comm. and Sign. Proc. Lab., Dept. of EECS, Univ. of Michigan, Ann Arbor, MI, 48109-2122, Mar. 2008.
  20. Daniel J Lingenfelter, J A Fessler.
    System modeling for gamma-ray imaging systems.
    Technical Report 411, Comm. and Sign. Proc. Lab., Dept. of EECS, Univ. of Michigan, Ann Arbor, MI, 48109-2122, Mar. 2012.

Dissertation

  1. J A Fessler.
    Object-based 3-D reconstruction of arterial trees from a few projections. Stanford Univ., 1990

Software

  1. J A Fessler.
    Image reconstruction toolbox (IRT) for Matlab.
    Available from \myurl., 2016
  2. J A Fessler.
    Matlab tomography toolbox.
    Available from \myurl., 2004
  3. Donghwan Kim, J A Fessler.
    Another look at the "Fast iterative shrinkage/Thresholding algorithm (FISTA). 2016
  4. Donghwan Kim, J A Fessler.
    Generalizing the optimized gradient method for smooth convex minimization. 2016
  5. Donghwan Kim, J A Fessler.
    Optimized first-order methods for smooth convex minimization - Supplementary material. 2015
  6. Hung Nien, J A Fessler.
    Relaxed linearized algorithms for faster X-ray CT image reconstruction. 2015
  7. Saiprasad Ravishankar, Raj Rao Nadakuditi, J A Fessler.
    Efficient sum of outer products dictionary learning (SOUP-DIL) - The $\ell_0$ method. 2015
  8. Saiprasad Ravishankar, Raj Rao Nadakuditi, J A Fessler.
    Efficient sum of sparse outer products dictionary learning (SOUP-DIL). 2015
  9. Donghwan Kim, J A Fessler.
    On the convergence analysis of the optimized gradient methods. 2015
  10. Madison G McGaffin, J A Fessler.
    Algorithmic design of majorizers for large-scale inverse problems. 2015
  11. Daniel S Weller, Ayelet Pnueli, Gilad Divon, Ori Radzyner, Yonina C Eldar, J A Fessler.
    Undersampled phase retrieval with outliers. 2014
  12. Donghwan Kim, J A Fessler.
    Optimized first-order methods for smooth convex minimization. 2014
  13. Hung Nien, J A Fessler.
    Fast X-ray CT image reconstruction using the linearized augmented Lagrangian method with ordered subsets. 2014
  14. Hung Nien, J A Fessler.
    A convergence proof of the split Bregman method for regularized least-squares problems. 2014

Back to Fessler home page