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Image registration, as a special form of signal warping, is an important task in image processing. Given the many
current developments in algorithms and techniques in image registration, it is desirable to have fundamental perfor-
mance criteria to compare the overall optimality of different estimators. This report presents an observation model for
image registration that accounts for image noise more realistically than most formulations, and describes performance
analysis based on Cramér-Rao Bound and its related variant MCRB.

I. MODEL - THE IDEAL V.S. COMMONLY USED

In a general setting, image registration methods aim to find the motion in an image sequence. Let zi denote the ith
observation (frame) of an underlying image. In reality, only sampled observations are available, with spatial sample
spacing ∆. Therefore, it is natural to use a discrete spatial index to refer to the sampled location. Without loss of
generality, we take zi[n] = zc

i (n∆) where zc notates the underlying continuous intensity map. Accounting for additive
observation noise, we formulate the generative model as:

zi[n] = f(n+ τi(n)) + εi[n], (1)

where it is standard to assume εi are normally distributed I.I.D noise. In principle, the task of registratering the obser-
vation sequence is to find the deformation sequence of continuous maps {τi} for all i. We adopt the parametric setting,
and represent the underlying continuous image intensity as a linear combination of a finite number of basis functions
b with coefficients c = {ck}, i.e., f(x) =

∑K
k=1 ckb(x, k). For simplicity, we focus on pairwise registration which

requires estimating one deformation field τ , and drop the subindex in τi. Furthermore, we assume the deformation field
is properly (sufficiently) parameterized with α, so the estimation performance for deformation and image intensity may
be characterized by that of the parameter set (c, α). For simplicity, we formulate our problem in 1-D format, but the
analysis generalizes to higher dimension (2-D and/or 3-D). The two observed images are modeled as:

z1[n] =
K

∑

k=1

ckb(n, k) + ε1[n],

z2[n] =
K

∑

k=1

ckb(n+ τα(n), k) + ε2[n] n = 1, 2, . . . , N, (2)

where {b(·, k)} are common intensity bases, and τ parameterized by α captures the pointwise deformation. The
components of additive noise εi are zero mean I.I.D Gaussian with variance σ2.

The formulation in (2) captures the spatial sampling of the observation, the finite representation of the underlying
“true” intensity {ck}

K
k=1 and τ denotes the point-wise deformation.
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For comparison purposes, in traditional registration setup, the estimator is often designed to find the transformation
Γ̂ such that 1

Γ̂ = arg min
Γ
D(z2, z1 ◦ Γ), (3)

where D is some difference measure, e.g., sum-of-squared-difference (SSD) or mutual information (MI), and Γ in-
dicates the transformation. In this setting, it is implicitly assumed that the z1 (sometimes called “reference“) is a
noise-free version of the true intensity image f , and z2 (also called “homologous”) is a deformed image with statistical
noise corresponding to the form of the difference metric. Clearly there is a lack of symmetry regarding the presence of
noise in this formulation.

For simplicity, we use sum-of-squared-difference (SSD) as our default choice of the error metric D for (3) hereafter,
to reveal the parallel structure with Gaussian noise assumptions, which is made in many practical cases.

II. CRAMÉR-RAO BOUND AND ITS ASYMPTOTIC BEHAVIOR

We first reformulate (2) in a compact vector form as follows.

z =

[

z1
z2

]

=

[

A0

Aτ

]

c +

[

ε1
ε2

]

= Aτc + ε, (4)

where z
4
= [z1(1), . . . , z1(N), z2(1), . . . , z2(N)]T ∈ <2N and c

4
= [c1, . . . , cK ]T ∈ <K

≥0 are column vectors by
stacking the corresponding elements. The concatenated random noise vector ε ∼ N (0,Σ = σ2I2N ). A0, Aτ ∈
M

N×K have elements A0(i, j) = b(i, j) and Aτ (i, j) = b(i + τ(i), j) for i = 1, 2, . . . , N, j = 1, 2, . . . ,K. The
overall system matrix A = [AT

0 , A
T
τ ]T . The Cramér-Rao Bound (CRB) is a fundamental lower bound on the variance

of any unbiased estimator [1] and serves as a benchmark for estimator performance. When maximum-likelihood (ML)
estimators are applied, which are known to be asymptotically unbiased, it is interesting use CRB to bound their variance.
In [2], it is suggested that when inverting the Fisher information matrix (FIM) corresponding to the parameter of interest
only is not straight-forward, it is feasible to use “complete-parameter” Fisher information matrices. Following a similar
logic, we can write (4) in a more general form,

z = h(τα, c) + ε

= h(θ) + ε, (5)

where h(τα, c)
4
= Ac and θ = [α, c] denotes the “complete-parameter” vector. It follows immediately from the i.i.d

Gaussian assumption of noise ε that the ML estimator θ̂ML minimizes the L2 distance between observation z and
system response h(θ) as follows:

θ̂ML = arg min
θ

‖z − h(θ)‖2 .

Before we delve into the detailed computation, we clarify our goal and the structure of FIM here. We are ultimately
interested in the performance of estimators for the deformation parameter α, and the image intensity parameter c is
chosen to augment the data to simplify expression. With θ ∈ <N+K , the FIM corresponding to θ takes on the form:

F (θ∗) = E
z|θ=θ∗

{

−
∂2

∂θ2
Λ(z|θ)|θ=θ∗

}

,

where Λ is the log-likelihood function Λ(z|θ)
4
= log f(z|θ).

Moreover, if we define Jx,y = E
{

[ ∂
∂xΛ(z)]T [ ∂

∂yΛ(z)]
}

, then the complete-data FIM can be decomposed into block
form as:

Fθ =

[

Jα,α Jα,c

Jc,α Jc,c

]

. (6)

1There is a slight abuse of notation here. The more precise formulation would be: Γ̂ = arg minΓ D(z2, P (zc

1
◦ Γ)), where zc

1
the underlying intensity map

that agrees with z1 on sampling grids, and P is the sampling function such that P (zc)(n) = zc(n∆). Even so, the cost function is still incomplete, as only z1 is
observed and the interpolator I : z1 → zc

1
needs to be specified. The de facto objective function is thus D(z2, P (I(z1) ◦ Γ)).
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The sub-block Jτ,τ is the FIM with respect to the quantity of interest - the deformation parameters. As CRB is the
inverse of the FIM, we can invoke the formula for partitioned-matrix inverse [3] to obtain:

CRB(α) = [Jα,α − Jα,cJ
−1
c,cJc,α]−1

CRB(c) = [Jc,c − Jc,αJ
−1
α,αJα,c]

−1. (7)

This form can be further simplified using its symmetry - a fact that we will utilize later in our computation.
The likelihood function with respect to θ is :

f(z; θ) =
1

(2π)2N/2|Σ|1/2
exp

(

−
1

2
e

T Σ−1
e

)

,

where e = z − h(θ) = z −A(τα)c.
The log-likelihood turns out to be:

Λ = log f(z; θ)

= −N log(2π)−2N log σ −
1

2σ2
‖z −A(τα)c‖2 . (8)

Now we compute each term of the FIM.

∇τΛ = −
1

2σ2
∇τ ‖z −A(τα)c‖2

=
1

σ2
(z −A(τα)c)T∇τ (A(τα)c) (9)

Notice that

∂

∂τ(l)
{Aτ [n, :]c} =

∂

∂τ(l)

K
∑

k=1

c(k)Aτ (n, k)

=
∂

∂τ(l)

K
∑

k=1

c(k)b(n+ τ(n), k)

=

{
∑K

k=1 c(k)ḃ(n+ τ(n), k), l = n;
0 else, (10)

where ḃ(·, ·) denotes the derivative of b(·, ·) with respect to the first variable.
Plugging (10) into (9), we obtain

∂

∂τ(l)
Λ =

1

σ2
(z2(l) −Aτ [l, :]c)

K
∑

k=1

ḃ(l + τ(l), k)c(k). (11)

Therefore, the gradient of Λ with respect to τ is:

∂

∂τ
Λ =

1

σ2
[(z2 −Aτc) � (Dc)]T =

1

σ2
[diag{Dc}(z2 −Aτ (c))]T , (12)

where D is the matrix whose elements are D(i, j) = ḃ(i + τ(i), j), 1 ≤ i ≤ N, 1 ≤ j ≤ K, and “�” denotes the
Schur/Hadamard product.

By chain rule, the gradient of Λ with respect to α is given by:

∇αΛ =
∂

∂τ
Λ
∂

∂α
τ

=
1

σ2
[(z2 −Aτc) � (Dc)]T [

∂

∂α
τ ], (13)
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where ∂
∂ατ ∈ M

N×L is the derivative matrix with element [ ∂
∂ατ ](i, j) = ∂

∂α(j)τ(i), and L corresponds to the length
of the deformation parameter α.

Now we compute the FIM Jα,α with

E

{

∂2

∂α2
Λ

}

= −E

{

[
∂

∂α
Λ]T [

∂

∂α
Λ]

}

= −
dτ

dα

T

E

{

[
∂

∂τ
Λ]T [

∂

∂τ
Λ]

}

dτ

dα
(14)

= −
1

σ2

dτ

dα

T

E

{

diag{Dc}(z2 −Aτc)[
1

σ2
(z2 −Aτc)T diag{Dc}]T

}

dτ

dα

= −
1

σ2

dτ

dα

T

diag2{Dc}
dτ

dα
(15)

To calculate Jc,τ and Jc,c, we take the derivative of Λ with respect to c:

∂

∂c
Λ = −

1

2σ2

∂

∂c
||z −Ac||2

=
1

σ2
(z −Ac)TA. (16)

It is now straight forward to compute the entries for the complete FIM:

E

{

∂2

∂c∂c
Λ

}

= −
1

σ2
ATA (17)

E

{

∂2

∂τ(l)∂c(m)
Λ

}

=
1

σ2
E {−Aτ [l,m]D[l, :]c + ε2(l)D[l,m]}

= −
1

σ2
Aτ [l,m]D[l, :]c. (18)

The matrix Jα,c can be represented in compact form as:

E

{

∂2

∂α∂c
Λ

}

= −
1

σ2

dτ

dα

T

diag{Dc}Aτ . (19)

With symmetry, the complete FIM is obtained:

Fθ =
1

σ2

[

dτ
dα

T
diag2{Dc} dτ

dα
dτ
dα

T
diag{Dc}Aτ

AT
τ diag{Dc} dτ

dα ATA

]

. (20)

As a special case, when τ is parameterized with rect functions, i.e., τ(n) = α[n], we have dτ
dα = I . The FIM for

(τ, c) is then given by:

F(τ,c) =
1

σ2

[

diag2{Dc} diag{Dc}Aτ

AT
τ diag{Dc} ATA

]

. (21)

At this point, we make the following observations:

1. With the commonly used model (3), it is assumed that the observed reference image z1 corresponds to the ground
truth c. In other words, most existing methods solve for the ML estimator τ with the generative model:

z2 =

K
∑

k=1

ckb(n+ τ(n), k) + ε2(n), (22)
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by plugging in the ck’s that best fits z1. It is easy to derive the CRB for the log-likelihood function Λcom(z2; τ) =
−N/2 log(2π)−N log σ − 1

2σ2 ||z2 − Aτc||
2. The FIM matrix F com

τ = Jτ,τ as we derived in (15). Therefore,
CRBcom(τ) = J−1

τ,τ . Notice that2 as Jτ,cJ
−1
c,cJc,τ ≥ 0 , CRBcom(τ) ≤ CRB(τ) as extra information (known

{ck}) is assumed in the case of (22). In other words, the plug-in operation provides a “looser” bound for the
variance than the “true” CRB corresponding to model (2).

2. For asymptotically large SNR, i.e., σ2 → 0, we do expect a decent estimate of c directly from the reference
image only, assuming no model mismatch in the generative basis. In this case, the plug-in estimator as used in the
traditional model, even though not a true ML estimator, is expected to perform similarly to the real ML estimator.
Indeed, [4] shows that the “fake” bound approximates the true CRB 3.

3. The above points may be interpreted better with a slight modification of the model in (2). Instead of i.i.d noise,
we assume that noise level in the two images are not symmetric, more specifically, we assume ε1 ∼ N (0, σ2

1IN )
and ε2 ∼ N (0, σ2

2IN ).
The log-likelihood is given by:

Λ = −
1

2σ2
1

‖z1 −A0c‖2 −
1

2σ2
2

‖z2 −Aτc‖2 + some constant. (23)

The partial derivatives of the log-likelihood with respect to τ ( thus α) is not affected by target image model, and
the second-order derivative the log-likelihood with respect to c is given by:

E

{

∂2

∂c∂c
Λ

}

= −
1

σ2
1

AT
0A0 −

1

σ2
2

AT
τ Aτ .

We thus obtain the complete FIM with respect to (τ, c) as:

F(τ,c) =

[

1
σ2

2

diag2{Dc} 1
σ2

2

diag{Dc}Aτ

1
σ2

2

AT
τ diag{Dc} 1

σ2

1

AT
0A0 + 1

σ2

2

AT
τ Aτ .

]

. (24)

When σ1 → 0, corresponding to high SNR in the template image, then Jc,c → ∞ and

CRB(τ) = [Jτ,τ − Jτ,cJ
−1
c,cJc,τ ]

−1 → J−1
τ,τ ,

which reduces to the CRBcom.
4. To compute CRB(τ) exactly could be challenging, as ATA may not be easy to invert for arbitrary τ . Notice that

the sub-matrix A0 of A has nice shift-invariant structure, yet Aτ depends on the deformation. In special cases,
such as when the whole image (signal) experience uniform transformation τ(i) = const for i = 1, 2, . . . , N , then
Jc,c is block-shift-invariant, and efficient inversion is possible.

5. As a special case, we consider when the whole image experiences uniform transformation, where a natural pa-
rameterization is to use α to describe the global transformation, i.e., τα(i) = α for ∀i.
Under the uniform transformation assumption, we have

dτ

dα
= 1,

where 1 indicates a column vector (of length N in our case) with all unity elements.
Substituting this relation into (15), (19) respectively and we obtain:

Fθ =
1

σ2

[

1
T diag2{Dc}1 1

T diag{Dc}Aτ

AT
τ diag{Dc}1 ATA

]

=
1

σ2

[

c
TDDT

c [Dc]TAτ

AT
τ [Dc] ATA

]

. (25)

2In most cases, we assume it is nonsingular, so it is in fact positive definite.
3In particular, the parameters to be estimated τ is not coupled with the nuisance parameters c in our case, and the asymptotic behavior of the bound can be

shown with ease.
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III. RELATING TO MCRB
The modified Cramér-Rao Bound (MCRB) was first introduced [5] to resolve the synchronization issues in decoding

systems. Rather than seeking the variance around the estimator for the “true” augmented data (“complete data”) which
includes both the quantity of interest and the nuisance parameters c, MCRB choose to look on the other parameters
as “unwanted”. Instead of using the true CRB, the MCRB may be regarded as an approximation via “marginalizing”
over the nuisance parameters. In fact, MCRB is always lower than CRB, thus a looser bound. In some cases, MCRB
approaches the true CRB [4].

The central idea is the following. Instead of computing the true FIM

F = Ez

{

[
∂

∂τ
log f(z; τ)]2

}

,

it uses
Ez,c

{

[
∂

∂τ
log f(z; τ, c)]

}

. (26)

The rationale for MCRB is the following:

Ez,c

{

[ ˆτ(z) − τ ]2
}

= Ec

{

Ez|c[(
ˆτ(z) − τ)2]

}

≥ Ec

{

1

Ez|c[(
∂
∂τ log f(z; τ, c))2]

}

≥
1

Ec

{

Ez|c[(
∂
∂τ log f(z; τ, c))2]

}

=
1

Ez,c

{

[ ∂
∂τ log f(z; τ, c)]2

} . (27)

The first inequality comes from the application of CRB to the estimator τ̂(z) for a fixed c and second is Jensen’s
inequality.

IV. AN ALTERNATING MINIMIZATION ALGORITHM

For registration purposes, we want to minimize the negative log-likelihood in (23). We assume the underlying image
intensity f (and thus c are fixed unknown) and adopt the frequentist point of view. It is natural to ask for the solution
of the augmented problem:

(τ̂ , ĉ) = arg min
τ,c

−Λ.

Here, we describe an alternating minimization algorithm to solve this problem.

Algorithm 1 Alternating minimizing the nagetive log-likelihood in (23).
1: Initialize ĉ

2: repeat
3: For given c = ĉ, minimize ‖z2 −Aτc‖2 over τ . This step coincides with conventional registration methods by

assuming c known. Obtain τ̂ .
4: For given τ = τ̂ , minimize 1

2σ2

1

‖z1 −A0c‖
2
2 + 1

2σ2

2

‖z2 −Aτc‖
2
2. This is a typical quadratic minimization

problem, and the solution is given by:

ĉ =
[ 1

σ2
1

AT
0A0 +

1

σ2
2

AT
τ Aτ

]†( 1

σ2
1

AT
0 z1 +

1

σ2
2

AT
τ z2

)

, (28)

where (·)† indicates the pseudo-inverse operator for the Gram matrix.
5: until Some convergence condition is satisfied.

We make the following remarks:
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• As σ1 → 0, the contribution of A0 and z1 dominates (28), and the solution reduces to

ĉ =
[

AT
0A0

]†
AT

0 z1, (29)

which corresponds to the conventional method where z1 is considered to be a highly reliable “template” and the
image intensity is solely obtained by fitting z1.

• More generally, alternating descent may be used instead of requiring the achieving minimizer at each iteration.
This could be particularly beneficial for the step in updating τ conditioned on ĉ, as the quadratic form in the other
step makes the minimization over c trivial. Relaxing conditional maximization to increase in log-likelihood may
has potential computational advantage as well as better behavior to local maxima.

• As σ1 → 0, the alternating descent algorithm reduces to exactly any conventional descent algorithm in solving (3)
with l2 difference metric. In the asymptotic case, the conditional minimization of c given by (29) is independent
of τ and the whole alternating descent algorithm reduces to using the plug-in estimator (29) and descend −Λ with
respect to τ .

V. COMPARISON WITH CONVENTIONAL METHODS: CRB V.S. M-ESTIMATE

As we have commented briefly in the previous sections, the conventional method estimate the intensity f from the
source image z1 only. With l2 difference metric, we can write the solution to the conventional method as:

ĉ = arg min
c

‖z1 −A0c‖
2
2 ;

τ̂ = arg min
τ

‖z2 −Aτ ĉ‖
2
2 , (30)

where z1, z2 are discrete observations for the source and target image in vector form, A0 and Aτ are defined as in (4).
The first equation in (30) can be solved in closed form given its quadratic form:

ĉ = A†
0z1,

and we can rewrite (30) as:
τ̂ = arg min

τ

∥

∥

∥
z2 −AτA

†
0z1

∥

∥

∥

2

2
. (31)

We can also stack the expression as before, and define A
4
= [−AτA

†
0 I] and write the objective as:

τ̂ = arg min
τ

Φ(τ, z) = ‖A(τ)z‖2
2 . (32)

In the following derivations, we will use the most convenenient and use the above equivalent expressions inter-
changably.

Our goal is to derive the covariance of the minimizer defined above and we use similar philosophy as in [6]. By
implicit function theorem, the partial derivative of Φ with respect to τ are uniformly zero:

∂

∂τ(i)
Φ(τ, z)|τ=τ̂ = 0, ∀ spatial location i, (33)

for any given data z.
Differentiating (33) again with respect to z and applying the chain rule yields:

∇20Φ(τ̂(z), z))∇z τ̂(z) + ∇11Φ(τ̂(z), z) = 0. (34)

Where, the components of ∇20Φ(τ̂(z), z) are ∂2

∂τ(i)∂τ(j)Φ(τ̂(z), z), and the elements of ∇11 are ∂2

∂τ(i)∂z(j)Φ(τ̂(z), z).
We consider the case when ∇20Φ(τ̂(z), z) is invertible, or more precisely positive definite. Note that Φ(τ̂(z), z) is
locally strictly convex. This assumption is true if the following regularity condition is satisfied: There ∃ a compact
neighborhood N(τ̂) such that Φ(τ, z) > Φ(τ̂(z), z) for all τ 6= τ̂ . Then we obtain:

∇Y τ̂(z) = [−∇20Φ(τ̂ , z)]−1∇11Φ(τ, z).
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and so the covariance matrix for τ̂ would be Cov{z} transformed by local linearizion [7], i.e.,

Cov{τ̂} ≈ ∇z τ̂(z) Cov{z}[∇z τ̂(z)]
′.

By substitution, we obtain

Cov{τ̂} ≈ [∇20Φ(τ̂ , z)]−1∇11Φ(τ̂ , z) Cov{z}[∇11Φ(τ̂ , z)]′[∇20Φ(τ̂ , z)]−1. (35)

By assumption, we assume the covariance of z is of the form:

Cov{z} =

[

σ2
1IN 0
0 σ2

2IN

]

. (36)

It remains to derive the expressions for ∇20Φ(τ̂ , z) and ∇11Φ(τ̂ , z).
We first adopt the objective function form in (31) to take derivative with respect to τ(l).

∂

∂τ(l)
Φ(τ, z) =

N
∑

n=1

(Aτ [n, :]A
†
0z1 − z2(n))

∂2

∂τ(l)2
{Aτ (n)A†

0z1}. (37)

Similar to (10),

∂

∂τ(l)

{

Aτ [n, :]A
†
0z1

}

=
∂

∂τ(l)

K
∑

k=1

(A†
0z1)(k)Aτ (n, k)

=
∂

∂τ(l)

K
∑

k=1

(A†
0z1)(k)b(n+ τ(n), k)

=

{
∑K

k=1(A
†
0z1)(k)ḃ(n+ τ(n), k), l = n;

0 else, (38)

where ḃ(·, ·) denote the derivative of b(·, ·) with respect to the first variable.
Plugging (38) into the expression in (37) yields:

∂

∂τ(l)
Φ(τ, z) = (Aτ [l, :]A

†
0z1 − z2(l))

K
∑

k=1

(A†
0z1)(k)ḃ(l + τ(l), k). (39)

To obtain ∇20Φ, we take derivative with respect to τ(n). Noticing that the dependence of ∂
∂τ(l)Φ on τ is only via

τ(l), we obtain:

∂2

∂τ(l)∂τ(n)
Φ(τ, z) =











{
∑K

k=1(A
†
0z1)(k)ḃ(l + τ(l), k)

}2
+ · · ·

+ (Aτ [l, :]A
†
0z1 − z2(l))

∑K
k=1(A

†
0z1)(k)b̈(l + τ(l), k), l = n;

0 else.

where b̈(·, ·) denotes the second-order partial derivative with respect to the first argument in b(·, ·).
To compute ∇11Φ(τ̂ , z), we need to take derivative of (39) with respect to each element of z. We perform this by

distinguishing the among elements in z1 and z2 respectively.
Noting that ∂

∂z1(n) [A
†
0z1](k) = A†

0[k, n], we obtain:

∂2

∂τ(l)∂z1(n)
Φ(τ, z) = Aτ [l, :]A

†
0[:, n]

K
∑

k=1

(A†
0z1)(k)ḃ(l + τ(l), k) + · · ·

+ (Aτ [l, :]A
†
0z1 − z2(l))

K
∑

k=1

A†
0[k, n]ḃ(l + τ(l), k). (40)
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∂2

∂τ(l)∂z2(n)
Φ(τ, z) =

{

−
∑K

k=1(A
†
0z1)(k)ḃ(l + τ(l), k), l = n;

0 else.
We assume that at the point of evaluation (τ̌ , z̄), the samples of the warped zc

1 approximates the observation z2, more
specifically:

AτA
†
0z̄1 ≈ z̄2.

This is a reasonable assumption for most registration results. For simplicity, we denote c̄
4
= A†

0z̄1, Ď(i, j)
4
= ḃ(i +

τ̌(i), j), and the warping map W
4
= Aτ̌A

†
0, then we can rewrite in matrix form:

∇20Φ(τ̌ , z̄) = diag2
{

Ďc̄
}

∇11Φ(τ̌ , z̄) =
[

diag
{

Ďc̄
}

W − diag
{

Ďc̄
} ]

. (41)

Plugging (41) and (36) into the expression for Cov{τ̂} in (35), we obtain:

Cov{τ̂} |τ̂=τ̌ ≈ diag
{

Ďc̄
}−1

[σ2
1WWT + σ2

2I] diag
{

Ďc̄
}−1

. (42)

Remark: as σ2
1 → 0, z1 approaches the noise-free observation of a template image f , and the conventional method

should yield the same estimate as the more realistic model. In fact,

Covσ1→0{τ̂} = σ2
2 diag2

{

Ďc̄
}

,

which agrees with our previous analyis for CRB(τ) → J−1
τ,τ for as z1 asymptotically becomes noise-free in (24).

It makes sense to compare the covariance prediction for the M-estimate of the conventional method and the Cramér-
Rao Bound obtained from the more realistic model from (2). For simplicity, we assume that A0 to be invertible so that
A−1

0 = A†
0 and consequently the warping map W = AτA

−1
0 is invertible.

To study CRB(τ), we plug Jτ,c, Jc,c from (24) and obtain:

CRB(τ) = [Jτ,τ − Jτ,cJ
−1
c,cJc,τ ]

−1

=
{ 1

σ2
2

diag2{Dc}−
1

σ2
2

diag{Dc}Aτ [
1

σ2
1

AT
0A0 +

1

σ2
2

AT
τ Aτ ]

−1 1

σ2
2

AT
τ diag{Dc}

}−1

= σ2
2 diag{Dc}−1 {

I −
1

σ2
2

Aτ [
1

σ2
1

AT
0A0 +

1

σ2
2

AT
τ Aτ ]

−1AT
τ

}−1
diag{Dc}−1 . (43)

With the W = AτA
−1
0 , Aτ = WA0 and we can write:

1

σ2
1

AT
0A0 +

1

σ2
2

AT
τ Aτ =

1

σ2
1

AT
0A0 +

1

σ2
2

AT
0 W

TWA0.

The middle part of (43) can be rewritten as:
{

I −
1

σ2
2

Aτ [
1

σ2
1

AT
0A0 +

1

σ2
2

AT
τ Aτ ]

−1AT
τ

}−1

=
{

I − σ2
1Aτ [σ

2
2A

T
0A0 + σ2

1A
T
0 W

TWA0]
−1AT

τ

}−1

=
{

I − σ2
1AτA

−1
0 [σ2

2I + σ2
1W

TW]−1A−T
0 AT

τ

}−1

=
{

I − σ2
1W[σ2

2I + σ2
1W

TW]−1WT
}−1

. (44)

By Woodbury-Sherman-Morissey identity:

[σ2
2I + (σ1W)σ1W

T ]−1 =
1

σ2
2

I −
1

σ4
2

σ2
1W[I +

σ2
1

σ2
2

WWT ]−1WT ,

thus σ2

{

I − 1
σ2

2

Aτ [
1
σ2

1

AT
0A0 + 1

σ2

2

AT
τ Aτ ]

−1AT
τ

}−1
= σ2

2I + σ2
1WWT .

Substituting into (43), we obtain:

CRB(τ) = diag{Dc}(σ2
2I + σ2

1WWT ) diag{Dc} . (45)
This result coincides with the covariance estimate for the M-estimate evaluated at (Ď, c̄) in (42).
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VI. A BABY EXAMPLE

This section uses a simple example to illustrate the results from previous sections and also motivate discussion about
performance comparison. In particular, it is expected that the proposed model in (4) has advantage over the traditional
model in (3) as the estimation for c which parameterizes the underlying image intensity should be more reliable as it
combines the information from both the source and the target observations. Consider the model

z =

[

z1
z2

]

=

[

I
αI

]

c +

[

ε1
ε2

]

, (46)

where we assume both z1 and z2 are vectors of the same size as the underlying (unknown) c. The scaling parameter
α which relates z1 and z2 in the noise-free case is the quantity of interest. ε ∼ N (0, σ2

1I) and ε2 ∼ N (0, σ2
2I) are

independent Gaussian additive noise.

.1 M-estimator for the Conventional Method
In the conventionally method, the parameter c is estimated solely from observation z1:

ĉ(z) = arg min
c

‖z1 − c‖2
2 = z1. (47)

Since z1 ∼ N (c, σ2
1I), ĉ is an unbiased estimator for c with covariance σ2

1I .
The objective function that α̂ minimizes is

Φ(α, z)
4
= ‖[αI − I]z‖2

2 = ‖z2 − αz1‖
2
2 . (48)

α̂(z) = arg min
α

Φ(α, z)

= arg min
α

‖z2 − αĉ‖2
2

= arg min
α

‖z2 − αz1‖
2
2

=
z1

T z2

‖z1‖
2
2

. (49)

Hereafter, we discuss two approaches in approximating the mean and variance of α̂: a direct method based on the
explicit solution in (49); and an indirect approach that relies on implicit function theorem and M-estimate. The explicit
method is straightforward, requires less manipulation, and should be reasonably accurate. On the other hand, explicit
solutions are not available in general (as we will see for the ML estimator), so the implicit method is more universally
applicable. In this study, the direct method serves as a good baseline reference for approximation performance, and the
derivation based on indirect approach is of didactic value.

.2 Direct Approximation of Mean and Variance for the M-estimate
First, we directly approximate the mean and covariance of α̂ based on the explicit solution in (49).
The expected value of α̂ from (49) is given by:

E[α̂] = E

{

(c̄ + ε1)
T (ᾱc̄ + ε2)

(c̄ + ε1)T (c̄ + ε1)

}

,

where ε1 ∼ N (0, σ2
1I) and ε2 ∼ N (0, σ2

2I). We compute the above expression using conditional expectation:

E[α̂] = Eε1 {Eε2 [α̂]|ε1}

= ᾱEε1

{

(c̄ + ε1)
T
c̄

(c̄ + ε1)T (c̄ + ε1)

}

. (50)
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where the second line follows from the independence between ε1 and ε2.
Let ci denote the ith element of c̄ and ei denote the ith element of ε1. Then ci are constants and ei are scalar i.i.d

Gaussian variables ei ∼ N (0, σ2
1).

We can rewrite (50) as:

E[α̂]/ᾱ = E

{∑n
i=1(ci + ei)ci

∑n
i=1(ci + ei)2

}

. (51)

Define function f : <n → < via f(x) = x
T

c

x
T

x
. We perform second-order Taylor expansion of f around the point

x = c̄ and then take expectation with respect to x = c̄ + ε1:

E[α̂]/ᾱ = E[f(c̄) +
1

2
(x − c̄)T∇2

x
f(c̄)(x − c̄)]

= 1 +
1

2
E[(x − c̄)T∇2

x
f(c̄)(x − c̄)]

= 1 +
1

2
E[εT1 ∇

2
x
f(c̄)ε1]. (52)

Now we focus on the term E[εT1 ∇
2fx(c̄)ε1] whose sign determines the bias. The gradient ∇xf and the Hessian

∇2
x
f of f are derived as follows:

∇xf = ‖x‖−2
2 c̄

T − 2 ‖x‖−4
2 (xT

c̄)xT .

The ith element of ∇xf is
[∇xf ]i = ‖x‖−2

2 ci − 2 ‖x‖−4
2 (xT

c̄)xi.

Taking derivative with respect to xj yields:

∂

∂xj
[∇xf ]i = −2 ‖x‖−4

2 cixj − 2
{

−4 ‖x‖−6
2 x

T
c̄xixj + ‖x‖−4

2 (xicj + x
T
c̄δ[i− j]

}

,

where δ is the kronecker impulse function defined as

δ[x] =

{

1 x = 0;
0 otherwise.

The equivalent matrix representation of the Hessian is given by:

∇2
x
f = 8 ‖x‖−6

2 x
T
c̄xx

T − 2 ‖x‖−4
2 (xc̄

T + c̄x
T ) − 2(xT

c̄) ‖x‖−4
2 I. (53)

Evaluating the Hessian at c̄ and noting that the i.i.d structure of the noise ε1 made the computation ofE[ε1∇
2f(c̄)ε1] =

σ2
1 trace

{

∇2f(c̄)
}

depend only on the diagonal elements of the Hessian, we obtain:

[∇2
x
f(c̄)]ii = 2 ‖c̄‖−4

2 (2c2i −
n

∑

j=1

c2j ).

Subsequently:

E[εT1 ∇
2
x
f(c̄)ε1] = σ2

1

n
∑

i=1

[∇2
x
f(c̄)]ii

= 2σ2
1 ‖c̄‖

−2
2 (2 − n), (54)

which is negative for all n > 2.
Subsequently,

E[α̂]/ᾱ ≈ 1 − (n− 2)σ2
1 ‖c̄‖

−2
2 . (55)

As (54) describes the difference between E[α̂/ᾱ] and unity, this indicates that for n > 2, α̂ is an estimate of ᾱ that
biases towards smaller magnitude.
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Similarly, we compute Var{α̂} via E[α̂2] − E[α̂]2. The correlation reads:

E

{

(c̄ + ε1)
T (ᾱc̄ + ε2)(ᾱc̄ + ε2)

T (c̄ + ε1)

‖c̄ + ε1‖
4
2

}

.

As before, we first use conditional expectation to separate out the uncertainty in ε2 via:

E[α̂2] = Eε1Eε2 [α̂
2|ε1] = E

{

(c̄ + ε1)
T (ᾱ2

c̄c̄
T + σ2

2I)(c̄ + ε1)

‖c̄ + ε1‖
4
2

}

.

Define a deterministic symmetric matrix H 4
= (ᾱ2

c̄c̄
T + σ2

2I) and a function f(x) = x
T Hx

‖x‖4

2

, and we aim to find
E[f(x)] for x = c̄ + ε1. We expand the function f(x) around x = c̄ and approximate E[α̂2] via:

E[α̂2] ≈
c̄

TH c̄

‖c̄‖4
2

+
1

2
E[(x − c̄)T∇2

x
f(c̄)(x − c̄)]

=
c̄

TH c̄

‖c̄‖4
2

+
1

2
E[εT1 ∇

2
x
f(c̄)ε1]. (56)

The deterministic term f(c̄) simplifies to:

f(c̄) =
c̄

TH c̄

‖c̄‖4
2

= ᾱ2 +
σ2

2

‖c̄‖2
2

.

Since ε1 is componentwise independent, E[α̂2] only depends on the diagonal element of ∇2
x
f(c̄), which we derive

as follows.
∇xf(x) = −4 ‖x‖−6

2 x
T (xTHx) + 2 ‖x‖−4

2 x
TH.

The ith element of ∇xf(x) reads −4 ‖x‖−6
2 xi(x

THx)+2 ‖x‖−4
2 x

TH(:, i)., whereH(:, i) indicates the ith column
of H . We may explicitly write x

TH(:, i) =
∑

j xj [ᾱ
2cicj + σ2

2δ[i− j]]. The second-order derivative is given by:

∂2

∂x2
i

f(x) = −4 ‖x‖−6
2 [xTHx+2xix

TH(:, i)]+24 ‖x‖−8
2 x2

i x
THx+2 ‖x‖−4

2 (ᾱ2c2i +σ2
2)−8 ‖x‖−6

2 xix
TH(:, i).

(57)
To evaluate ∂2

∂x2

i

f(x) at x = c̄, we use the following relations:

c̄
TH(:, i) = ci(ᾱ

2 ‖c̄‖2
2 + σ2

2);

c̄
TH c̄ = ‖c̄‖2

2 (ᾱ2 ‖c̄‖2
2 + σ2

2).

Substituting these relations into the expression (57) for ∂2

∂x2

i

f(x), we obtain:

∂2

∂x2
i

f(x)|x=c̄ = 8 ‖c̄‖−6 c2i (ᾱ
2 ‖c̄‖2

2 + σ2
2) − 4 ‖c̄‖−4 (ᾱ2 ‖c̄‖2

2 + σ2
2) + 2 ‖c̄‖−4 (ᾱ2c2i + σ2

2).

By the independence of the elements in ε1, we obtain:

E[εT1 ∇
2
x
f(c̄)ε1] = σ2

1

∑

i

∂2

∂x2
i

f(c̄)

= ‖c̄‖−2 (10 − 4n)ᾱ2σ2
1 + ‖c̄‖−4 (8 − 2n)σ2

1σ
2
2. (58)

Substituting this quantity into (56) provides:

E[α̂2] ≈ ᾱ2 + ‖c̄‖−2 σ2
2 + ‖c̄‖−2 (5 − 2n)ᾱ2σ2

1 + ‖c̄‖−4 (4 − n)σ2
1σ

2
2.
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Together with the estimation for E[α̂] obtained in (55), this equation yields an approximation for Var{α̂} as:

Var{α̂} = E[α̂2] − E[α̂]2

= ᾱ2 + ‖c̄‖−2 σ2
2 + ‖c̄‖−2 (5 − 2n)ᾱ2σ2

1 + ‖c̄‖−4 (4 − n)σ2
1σ

2
2 − (1 + ‖c̄‖−2 (2 − n)σ2

1)
2ᾱ2

= ‖c̄‖−2 (ᾱ2σ2
1 + σ2

2) − ‖c̄‖−4 σ2
1[(n− 4)σ2

2 − (n− 2)2ᾱ2σ2
1]. (59)

Expressions (55) and (59) reveal some interesting structure. For large enough n (in fact for n > 6), the variance
estimate (59) becomes upper-bounded by ‖c̄‖−2 (ᾱ2σ2

1 + σ2
2), which we will show later is the Cramér-Rao Bound for

the statistical model. This implies that it cannot be unbiased. In fact, the bias quantity measured by (2− n) ‖c̄‖−2 σ2
1ᾱ

also increases accordingly.
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Fig. 1. Bias and variance approximation obtained from explicit solution for conventional M-estimate.

Alternatively, we can follow [6], use implicit function theorem and Taylor expansion to approximate the bias and
variance of α̂ as the minimizer of (48). The data point ž at which to perform Taylor expansion about is mainly a choice
of convenience rather than considerations of asymptotic behavior. One natural choice of the expansion point would be
the noiseless data. Let z̄ denote the noiseless observation and c̄ and ᾱ denote the true parameter values, with č and α̌
denoting the resulting estimation in (47) and (49) when z̄ is observed. Then z̄ = [c̄; ᾱc̄], and

č = ĉ(z̄) = c̄;

α̌ = α̂(z̄) =
ᾱc̄

T
c̄

‖c̄‖2
2

= ᾱ. (60)
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As the minimizer for (48), α̂ satisfies:

∂

∂α
Φ(α, z)|α=α̂ = 2zT

[

I
0

]

[

αI −I
]

z = 0 ∀z.

Taking derivative with respect to z and invoking the chain rule, we obtain:

∂2

∂α2
Φ
∂

∂z
α+

∂2

∂α∂z
Φ = 0,

where
∂2

∂α2
Φ = 2 ‖z1‖

2
2 = 2zT

[

I 0
0 0

]

z, (61)

and
∂2

∂α∂z
Φ = 2zT

{[

αI −I
0 0

]

+

[

αI 0
−I 0

]}

= 2zT

[

2αI −I
−I 0

]

. (62)

Therefore,
∂

∂z
α̂(z) = −

∂2

∂α2
Φ−1 ∂2

∂α∂z
Φ = −‖z1‖

−2
2 z

T

[

2αI −I
−I 0

]

. (63)

Evaluating (63) at z = z̄, we obtain an estimate of covariance Cov{α} at α̌ = α̂z as

Cov{α̂(z)} ≈
∂

∂z
α(z̄) Cov{z}

∂

∂z
αT (z̄)

=
−1

‖c̄‖2
2

c̄
T

[

ᾱI −I
]

[

σ2
1I

σ2
2I

]

−1

‖c̄‖2
2

[

ᾱI
−I

]

c̄

=
ᾱ2σ2

1 + σ2
2

‖c̄‖2
2

. (64)

This quantity (64) coincides with the Cramér-Rao Bound obtained from the statistical model as we will show later.

To estimate the bias for α̂, we present the first and second-order Taylor expansion for E[α̂] as:

E(1)[α̂] = E[h(z)]

≈ E {h(ž) + ∇zh(ž)(z − ž)}

= h(ž) + E {∇zh(ž)(z − ž)} . (65)

E(2)[α̂] ≈ E

{

h(ž) + ∇zh(ž)(z − ž) +
1

2
(z − ž)T∇2

z
h(ž)(z − ž)

}

= h(ž) + E {∇zh(ž)(z − ž)} +
1

2
E

{

(z − ž)T∇2
z
h(ž)(z − ž)

}

. (66)

Notice that when ž is chosen to be z̄, z−ž is zero mean Gaussian. It follows that the first order termE {∇zh(ž)(z − ž)} =
0 in (65) and (66). Therefore, the first order Taylor approximation yields:

E(1)[α̂] = h(ž) = h(z̄) = ᾱ, (67)

corresponding to zero bias.
The second-order approximation (66) requires computing ∇2

z
h(ž), which can be be obtained up to second order [6]

via:
∇2

z
h = [−

∂2

∂α2
Φ]−1

{

∂3

∂α3
Φ∇zh

T∇zh+
∂3

∂α2∂z
ΦT∇zh+ ∇zh

T ∂3

∂α2∂z
Φ +

∂

∂α
∇2

z
Φ

}

. (68)
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Terms involved in the above expression are computed as follows:

∂3

∂α3
Φ = 0.

Taking derivative of (61) with respect to z yields

∂3

∂α2∂z
Φ = 2zT

[

I 0
0 0

]

= 2
[

zT
1 0

]

.

Taking derivative of (62) with respect to z yields

∂3

∂α∂z2
Φ = 2

[

2αI −I
−I 0

]

.

Evaluating at z = ž = z̄ and substituting into (68) yields:

∇2
z
h(z̄) = −

1

2 ‖c̄‖2
2

{

−2

‖c̄‖2
2

[

c̄

0

]

[

ᾱc̄
T −c̄

T
]

+
−2

‖c̄‖2
2

[

ᾱc̄

−c̄

]

[

c̄
T 0

]

+ 2

[

2ᾱI −I
−I 0

]

}

. (69)

Since z − ž ∼ N (0,

[

σ2
1I 0
0 σ2

2I

]

, the second-order term in (66) only involves the diagonal elements of ∇2
z
h(z̄).

We extract the corresponding blocks from (69) as:

∂2

∂z1(i)2
h(z̄) = −

1

2 ‖c̄‖2
2

{

−4

‖c̄‖2
2

ᾱc2i + 4ᾱ

}

;

∂2

∂z1(i)2
h(z̄) = 0.

Thus

E
{

(z − z̄)T∇2
z
h(z̄)(z − ž)

}

=
∑

i

σ2
1

∂2

∂z1(i)2
h(z̄)

=
σ2

1

‖c̄‖2
2

(2ᾱ− 2ᾱn)

= 2(1 − n)ᾱ
σ2

1

‖c̄‖2
2

. (70)

It follows that the second-order estimation for E[α̂] is

E(2)[α̂] = E(1)[α̂] +
1

2
E

{

(z − z̄)T∇2
z
h(z̄)(z − ž)

}

= ᾱ+ (1 − n)
σ2

1

‖c̄‖2
2

ᾱ =

{

1 + (1 − n)
σ2

1

‖c̄‖2
2

}

ᾱ. (71)

For n > 1 and reasonable signal-to-noise ratio, E(2)[α̂] implies shrinkage in magnitude, which WLOG, we refer to as
“negative bias” hereafter.

Notice that the choice of ž = z̄ is mainly due to computation convenience (so that z − ž is zero mean Gaussian). It
is feasible to perform the same routine for different data point ž. [8,9] proved that under certain regular conditions, the
M-estimate is asymptotically normal with mean α̃ where

E[
∂

∂α
Φ(α̃, z)] = 0.
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Fig. 2. Bias and variance approximation for M-estimate obtained from expansion about (ᾱ, z̄).

Under reasonable regularity conditions, we can exchange the order of expectation and differentiation, and take
∂

∂α
E[Φ(α̃, z)]] = 0.

Note that α̃ can be interpreted as a local minima for an “average” cost function E[Φ(α, z)], i.e.,

α̃ = arg min
α
E[Φ(α, z)]. (72)

The expectation of the objective function with respect to the distribution of the observation noise

E[Φ(α, z)] = E[

∥

∥

∥

∥

[

−αI I
]

[

c̄ + ε1
ᾱc̄ + ε2

]∥

∥

∥

∥

2

2

]

= E[
[

c̄
T + εT1 ᾱc̄

T + εT2
]

[

−αI
I

]

[

−αI I
]

[

c̄ + ε1
ᾱc̄ + ε2

]

]

= (α− ᾱ)2 ‖c̄‖2
2 + n(α2σ2

1 + σ2
2)

= (‖c̄‖2
2 + nσ2

1)α
2 − 2ᾱ ‖c̄‖2

2 α+ ᾱ2 ‖c̄‖2
2 (73)

is convex quadratic in α and the minimizer reads

α̌ = arg min
α
E[Ψ(α, z)]

=
‖c̄‖2

2

‖c̄‖2
2 + nσ2

1

ᾱ. (74)
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For simplicity, let β 4
=

‖c̄‖2

2
+nσ2

1

‖c̄‖2

2

, then α̌ = 1
β ᾱ. Since β > 1, the expansion point α̌ is a shrinkage with respect to the

true scale ᾱ.
We can construct an expansion point ž = [βc̄; ᾱc̄]. Then the minimizer of Φ(ž) = 1

β ᾱ = α̌, which satisfies the
requirement (72).

Evaluating (63) at (č, ž) results in:

∂

∂z
α(ž) = −‖z1‖

−2
2 z

T

[

2αI −I
−I 0

]

= −
1

β2 ‖c̄‖2
2

[

βc̄
T α̌c̄

]

[

2α̌I −I
−I0

]

= −
c̄

T

β2 ‖c̄‖2
2

[

2β−1
β ᾱI −βI

]

. (75)

The approximated covariance of α̂ evaluated at the point (α̌, ž) is given by:

Cov{α̂} |z=ž,α̂=α̌ =
∂

∂z
α(ž) Cov{z}

∂

∂z
α(ž)

= β−4 ‖c̄‖−4
2 c̄

T
[

2β−1
β ᾱI −βI

]

[

σ2
1I 0
0 σ2

2I

]

[

2β−1
β ᾱI

−βI

]

c̄

= ‖c̄‖−2
2 β−4((2 −

1

β
)2ᾱ2σ2

1 + β2σ2
2). (76)

We know from previous analysis that the M-estimate is asymptotically unbiased, so its variance is to be bounded be-
low by Cramér-Rao Bound asymptotically. Therefore, it is curious to find whether there exists a consistent relationship
between the pre-asymptotic variance in (76) and the Cramér-Rao Bound , i.e.,

‖c̄‖−2
2 β−4((2 −

1

β
)2ᾱ2σ2

1 + β2σ2
2) ≷ ‖c̄‖−2

2 (ᾱ2σ2
1 + σ2

2)? (77)

The quantity on the right-hand-side is the Cramér-Rao Bound obtained from the statistical generative model (to be
shown later).

Claim 1: The covariance of the M-estimator is bounded above by the Cramér-Rao Bound . Moreover, it asymptoti-
cally approaches the Cramér-Rao Bound as σ1 → 0.

Proof: To compare the left and right hand sides in (77), it suffices determine the sign of their difference:

RHS − LHS = ‖c̄‖−2
2 β−2(β6 − 4β2 + 4β − 1)ᾱ2σ2

1 + (β4 − 1)σ2
2.

For simplicity, we drop the positive quantity ‖c̄‖−2
2 in later analysis as it does not affect the sign. Let A 4

= ᾱ2σ2
1 ,

B
4
= σ2

2 , and we want to determine the sign for:

π(A,B;β) = β−2(β6 − 4β2 + 4β − 1)A+ (β4 − 1)B.

The polynomial (β6 − 4β2 + 4β − 1) factors into

β6 − 4β2 + 4β − 1 = (β − 1)(β2 + β − 1)(β3 + 2β − 1).

By construction, β > 1, thus (β6 − 4β2 + 4β− 1) > 0, so π is linear in A,B with positive coefficients. Meanwhile,
A,B are both positive, so π(A,B;β) > 0. This result translates into the claim that in nondegenerative case (σ1 6= 0),
the variance of the M-estimate is bounded above by the Cramér-Rao Bound . It is easy to check that when σ1 = 0, the
variance equals the Cramér-Rao Bound .
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Now we approximate E[α̂] with (65) and (66) by expanding corresponding terms about (α̌, ž).
The first order coefficient ∇zh is obtained in (75), and the corresponding first-order approximation for the mean is:

E(1)[α̂] = h(ž) + E∇zh(ž)(z − ž)

=
ᾱ

β
+ E

{

−
c̄

T

β2 ‖c̄‖2
2

[

2β−1
β ᾱI −βI

]

[

c̄ + ε1 − βc̄

ᾱc̄ + ε2 − ᾱc̄

]

}

=
ᾱ

β
+

ᾱ

β3 ‖c̄‖2
2

c̄
T (2β − 1)(β − 1)c̄

=
ᾱ

β
[1 +

(2β − 1)(β − 1)

β2
]

=
3β2 − 3β + 1

β3
ᾱ. (78)

Since β > 1, (β−1)3 = β3−3β2 +3β−1 = β3−(3β2−3β+1) > 0. Consequently 3β2−3β+1
β3 < 1. Equivalently,

E[α̂]
ᾱ < 1, indicating a shrinkage in magnitude, which agrees qualitatively with the result from exact solution.
Expression in (78) can be rewritten as:

E[α̂] =
3β2 − 3β + 1

β3
ᾱ

= [1 −
(β − 1)3

β3
]ᾱ. (79)

Denote the signal-to-noise ratio in z1 as s 4
=

‖c̄‖2

2

nσ2

1

and

E[α̂]

ᾱ
= 1 −

1

(s+ 1)3
.

To approximate the bias with second-order Taylor expansion, we use (68) and evaluate at (ᾱ/β, ž =).

∇2
z
h(ž) = −

1

‖βc̄‖2
2

{

−
1

β2 ‖c̄‖2
2

[

βc̄

0

]

[

2β−1
β ᾱc̄

T −βc̄
T

]

−
1

β2 ‖c̄‖2
2

[

2β−1
β ᾱc̄

−βc̄

]

[

βc̄
T 0

]

+ . . .

+

[

2 ᾱ
β I −I

−I 0

]

}

.

To compute (z − ž)T∇2
z
h(ž)(z − ž) in (66), it suffices to use only the diagonal blocks of ∇2

z
h(ž), because the

components of z−ž =

[

c̄ + ε1 − βc̄

ᾱc̄ + ε2 − ᾱc̄

]

=

[

(1 − β)c̄ + ε1
ε2

]

are independent. Partition z−z into the deterministic

ψ and random part η so that ψ =

[

(1 − β)c̄
0

]

and η =

[

ε1
ε2

]

. Then the quadratic term in the second-order Taylor

expansion in (66) can be written as:

E[(ψ + η)T∇2
z
h(ž)(ψ + η)] = ψT∇2

z
h(ž)ψ + E[ηT∇2

z
h(ž)η],

where expectation of cross terms between ψ and η are dropped since η is zero-mean.
The diagonal portion of ∇2

z
h(ž) reads:

∇2
z
h(ž) =

2

β2 ‖c̄‖2
2

{

1

β2 ‖c̄‖2
2

[

β(2β − 1)ᾱc̄c̄
T

0

]

−

[ ᾱ
β I

0

]

}

. (80)
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It follows that

ψT∇2
z
h(ž)ψ =

2(β − 1)2

‖z1‖
2
2

{

(β − 1) ‖c̄‖4
2

β2 ‖c̄‖2
2

ᾱ−
‖c̄‖2

2

β
ᾱ

}

=
2(β − 1)2

β3
[
(2β − 1)

β
− 1]ᾱ

=
2(β − 1)3

β4
ᾱ. (81)

ηT∇2
z
h(ž)η =

2

β2 ‖c̄‖2
2

{

β(2β − 1)σ2
1 ‖c̄‖

2
2

β3 ‖c̄‖2
2

ᾱ−
nσ2

1

β
ᾱ

}

=
2σ2

1

β6 ‖c̄‖2
2

[(2β − 1) − nβ]ᾱ. (82)

Summing (81) and (82) yields:

E[(z − ž)T∇2
z
h(ž)(z − ž)] =

2(β − 1)3

β4
ᾱ+

2σ2
1

β6 ‖c̄‖2
2

[(2β − 1) − nβ]ᾱ. (83)

Combining (83) with the first order estimation of E[α̂], we obtain the second order approximation for E[α̂] as:

E(2)[α̂] = h(ž) + E

{

∇zh(ž)(z − ž) +
1

2
(z − ž)T∇2

z
h(ž)(z − ž)

}

= E(1)[α̂] +
1

2
E[(z − ž)T∇2

z
h(ž)(z − ž)]

=

{

β3 − (β − 1)3

β3
+

(β − 1)3

β4

}

ᾱ+
(2 − n)β − 1

β5

σ2
1

‖c̄‖2
2

ᾱ

=
β4 − (β − 1)4

β4
ᾱ+

(2 − n)β − 1

β5

σ2
1

‖c̄‖2
2

ᾱ (84)

Recall that β =
‖c̄‖2

2
+nσ2

1

‖c̄‖2

2

, so for reasonable SNR, (2−n)β−1
β ≈ 1 − n. Using the s =

‖c̄‖2

2

nσ2

1

, we can rewrite E(2)[α̂]

approximately as:

E(2)[α̂] = [1 −
1

(s+ 1)4
+

(1 − n)s3

n(1 + s)4
]ᾱ. (85)

Notice that when SNR is high (large s), then

E(2)[α̂] = [1 −
1

(s+ 1)4
+

(1 − n)s3

n(1 + s)4
]ᾱ

≈ [1 +
1 − n

n(1 + s)
]ᾱ

= [1 −
1 − n

n

nσ2
1

‖c̄‖2
2 + nσ2

1

]ᾱ

≈ [1 + (1 − n)
σ2

1

‖c̄‖2
2 + nσ2

1

]ᾱ, (86)

which closely resembles the result (71) obtained from expanding about noiseless data z̄. In fact, for high enough SNR,
‖c̄‖2

2
+nσ1

σ2

1

≈
‖c̄‖2

2

σ2

1

so that (86) and (71) are approximately equal. This relation is expected, as for small SNR, ž ≈ z̄ and
α̌ ≈ ᾱ, the small error analysis is essentially performed on the same neighborhood!
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Fig. 3. Bias and variance approximation of M-estimate obtained from expansion about (α̌, ž).

.3 ML Estimator for the Statistical Model
The maximum likelihood estimator from (23) aims to jointly estimate c and α via:

[α̂, ĉ] = arg min
α,c

1

σ2
1

‖z1 − c‖2
2 +

1

σ2
2

‖z2 − αc‖2
2 . (87)

Note that conditioned on α, (87) is quadratic in c with the solution ĉ(α, z) given by:

ĉ =

{

[

I
αI

]T
[

1
σ2

1

I 0

0 1
σ2

2

I

]

[

I
αI

]

}−1
[

I αI
]

[

1
σ2

1

I 0

0 1
σ2

2

I

]

z

= (
1

σ2
1

+
α2

σ2
2

)−1(
1

σ2
1

z1 +
α2

σ2
2

z2)

=
1

α2σ2
1 + σ2

2

(σ2
2z1 + ασ2

1z2). (88)

Remark:

• In the limiting case when σ1 → 0 (with non-vanishing σ2), z1 is a noise-free observation of c, it is natural to
estimate c solely on z1 as (88) reduces to

lim
σ1→0

ĉ = z1,
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which coincides with (47) in the conventional method. On the other hand, as the noise level in z2 becomes small
relative to that in z1 (σ2 → 0 with non-vanishing σ1), the estimate reduces to:

lim
σ2→0

ĉ = z2/α,

which corresponds to the case of estimating c solely from z2.
More precisely,

lim ĉ = z1 as σ1/σ2 → 0;

lim ĉ = z2/α as σ1/σ2 → ∞. (89)

• It is easy to check the estimator in (88) is unbiased with variance

Var{ĉ} =
σ2

1σ
2
2

α2σ2
1 + σ2

2

I =
σ2

1

1 + α2 σ2

1

σ2

2

I.

It immediately follows that this quantity is upper-bounded by the covariance σ2
1I of the estimator for c (47)

resulting from conventional methods.

Now we can plug in the expression of ĉ in (88) and (87) reduces to a minimization problem over α only:

α̂ = arg min
α

Ψ(α, z)

= arg min
α

1

σ2
1

∥

∥

∥

∥

z1 −
1

α2σ2
1 + σ2

2

(σ2
2z1 + ασ2

1z2)

∥

∥

∥

∥

2

2

+
1

σ2
2

∥

∥

∥

∥

z2 −
α

α2σ2
1 + σ2

2

(σ2
2z1 + ασ2

1z2)

∥

∥

∥

∥

2

2

= arg min
α

1

α2σ2
1 + σ2

2

‖αz1 − z2‖
2
2 (90)

This function Ψ is nonlinear in α. Note that Ψ ≥ 0. In the case of noise-free observation z = z̄, ᾱ achieves the zero
value and is the global minimizer (we will justify this more precisely later). Therefore, we can utilize the techniques
for M-estimate as before, and analyze the behavior of α̂ in the neighborhood α̂(z̄) = ᾱ.

Let α̂ be the minimizer of the function Ψ(α, z), then it is true that

∂

∂α
Ψ(α, z) =

∂

∂α

1

α2σ2
1 + σ2

2

∥

∥

[

αI −I
]

z
∥

∥

2
= 0 ∀z.

∂

∂α
Ψ(α, z) =

1

(α2σ2
1 + σ2

2)
2
(αz1 − z2)

T [2z1(α
2σ2

1 + σ2
2) − 2ασ2

1(αz1 − z2)]

=
2

(α2σ2
1 + σ2

2)
2
z

T

[

αI
−I

]

[

σ2
2I ασ2

1

]

z. (91)

Let Q 4
=

[

αI
−I

]

[

σ2
2I ασ2

1

]

=

[

ασ2
2I α2σ2

1I
−σ2

2I −ασ2
1I

]

, then the derivative of ∂
∂αΨ with respect to z is given by:

∂2

∂α∂z
Ψ =

2

(α2σ2
1 + σ2

2)
2
z

T (Q+QT )

=
2

(α2σ2
1 + σ2

2)
2
z

T

[

2ασ2
2I (α2σ2

1 − σ2
2)I

(α2σ2
1 − σ2

2)I −2ασ2
1I

]

. (92)

Evaluating (92) at z = z̄ and α = ᾱ yields:

∂2

∂α∂z
Ψ(ᾱ, z̄) =

2

ᾱ2σ2
1 + σ2

2

c̄
T

[

ᾱI −I
]

(93)
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Now we compute the derivative of ∂
∂αΨ with respect to α and evaluate at the minimizer α̂ = ᾱ with z = z̄:

∂2

∂α2
Ψ = 2

∂

∂α

{

(αz1 − z2)
T (σ2

2z1 + ασ2
1z2)

(α2σ2
1 + σ2

2)
2

}

(94)

= 2

{

−2
2ασ2

1

(α2σ2
1 + σ2

2)
3
(αz1 − z2)

T (σ2
2z1 + ασ2

1z2) +
1

(α2σ2
1 + σ2

2)
2
[zT

1 (σ2
2z1 + ασ2

1z2) + (αz1 − z2)
Tσ2

1z2]

}

This is a convenient form to be evaluated at z = z̄, and we obtain:

∂2

∂α2
Ψ(z̄) =

2

ᾱ2σ2
1 + σ2

2

‖c̄‖2
2 . (95)

To prepare for future use, we simplify the general form of (95) into:

∂2

∂α2
Ψ =

2

(α2σ2
1 + σ2

2)
3

{

(−3α2σ2
1 + σ2

2)σ
2
2 ‖z1‖

2
2 + 2(3σ2

2 − α2σ2)ασ2
1z

T
1 z2 + (3α2σ2

1 − σ2
2)σ

2
1 ‖z2‖

2
2

}

=
2

(α2σ2
1 + σ2

2)
3
z

T

[

(−3α2σ2
1 + σ2

2)σ
2
2I (3σ2

2 − α2σ2)ασ2
1I

(3σ2
2 − α2σ2)ασ2

1I (3α2σ2
1 − σ2

2)σ
2
1I

]

z. (96)

Estimating ∂
∂z
α yields:

∂

∂z
α̂|z̄,ᾱ = −

∂2

∂α2
Ψ−1 ∂2

∂α∂z
Ψ

= −
1

‖c̄‖2
2

c̄
T

[

ᾱI −I
]

. (97)

The covariance evaluated at (ᾱ, z̄) is

Cov{α̂} |(z̄,ᾱ) =
∂

∂z
α(z̄) Cov{z}

∂

∂z
α(z̄)

= ‖c̄‖−4
2 c̄

T
[

ᾱI −I
]

[

σ2
1I 0
0 σ2

2I

] [

ᾱI
−I

]

c̄

= ‖c̄‖−2
2 (ᾱ2σ2

1 + σ2
2) (98)

.4 Lower Bound for Covariance From Cramér-Rao Bound
The negative log-likelihood is given as the objective function in (87). It is straight-forward to compute the sub-

matrices for the Fisher-Information Matrix.
∂

∂α
Λ = −

1

σ2
2

(αc − z2)
T
c;

∂2

∂α2
Λ = −

1

σ2
2

c
T
c.

∂2

∂α∂c
Λ =

−1

σ2
2

(2αc
T − zT

2 ),

resulting in

E[
∂2

∂α2
c] =

−1

σ2
2

αc
T .

The Fisher-information matrix (FIM) is thus given by:

FIM =
1

σ2
2

[

c
T
c αc

T

αc (α2 +
σ2

2

σ2

1

)I

]

.
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Invoking block-matrix inversion, we obtain:

Cov{α̂} ≥ σ2[cT
c − αc

T (α2 +
σ2

2

σ2
1

)−1αc]

= ‖c‖−2
2 (α2σ2

1 + σ2
2). (99)

Since the ML estimator is known to be asymptotically unbiased, the coincidence between (98) and (99) justifies the
well-known fact that the ML estimator is asymptotically efficient (thus is asymptotically a uniformly minimal variance
and unbiased estimator (UMVUE)).

.5 Approximate Bias of the ML Estimator
Not withstanding the value of asymptotic analysis for the ML estimator, it is often of great interest to analyze

the bias and variance before the the estimator enters the asymptotic zone. Hereafter, we focus on deriving analytical
approximation for the bias of the ML estimator. As in the covariance analysis previously, we assume the estimate is over
continuous parameter’s α and is computed by “completely” maximizing the objective function (likelihood in this case)
without “stopping rules” that terminates the iterations before the maximum is reached. We derive the approximation
using implicit function theorem, the Taylor expansion (with different orders of approximation accuracy), and the chain
rule.

The objective function Ψ in (90) implicitly defines the M-estimate α̂ as a function of z. Yet the absence of an explicit
analytical expression of the form α̂ = h(z) (as the one in (49)) makes it difficult to study the mean of α̂ directly. As
in the previous section, we apply Taylor expansion, chain rules and implicit function theorem to estimate the bias with
the first and second order approximation given by:

E[α̂] ≈ h(ž) + E {∇zh(ž)(z − ž)} . (100)

E[α̂] ≈ h(ž) + E

{

∇zh(ž)(z − ž) +
1

2
(z − ž)T∇2

z
h(ž)(z − ž)

}

. (101)

We now determine the point of expansion ž and the approximation for first (linear) and second order (Hessian)
coefficients ∇zh, ∇2

z
h. To obtain the best choice for α̌

α̌ = arg min
α
E[Ψ(α, z)], (102)

where α̌ and ž in the Taylor expansions are related by α̌ = h(ž), we compute E[Ψ(α, z)] as follows:

E[Ψ(α, z)] =
1

α2σ2
1 + σ2

2

n
∑

i=1

(αz1(i) − z2(i))
2.

For each index i,

E[(αz1(i) − z2(i))
2] = E[α2z1(i)

2 − 2αz1(i)z2(i) + z2(i)
2]

= α2(c̄2i + σ2
1) − 2αᾱc̄2i + ᾱ2c̄2i + σ2

2

= (α2 − 2αᾱ+ ᾱ2)c̄2i + (α2σ2
1 + σ2

2), (103)

where c̄i and ᾱ are the underlying “true” parameter values.
Substituting (103) yields:

E[Ψ(α, z)] =
1

α2σ2
1 + σ2

2

(α− ᾱ)2 ‖c̄‖2
2 + n. (104)

Even thoughE[Ψ(α, z)] is nonlinear inα, its global minimizer is immediately observed asα = ᾱ, becauseE[Ψ(ᾱ, z)] =
n achieves the lower bound for E[Ψ(α, z)] as a function of α. Thus we have found the proper point to expand around
α̌ = ᾱ.
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Note that when noise free data is observed, i.e., z = z̄, the minimizer α̂ in (90) is obtained as:

α̂(z̄) = arg min
α

1

α2σ2
1 + σ2

2

‖αz̄1 − z̄2‖
2
2

= arg min
α

1

α2σ2
1 + σ2

2

‖αc̄ − ᾱc̄‖2
2

= arg min
α

(α− ᾱ)2 ‖c‖2
2

α2σ2
1 + σ2

2

. (105)

Note this function is nonnegative, its global minimizer is obtained at α = ᾱ, i.e., h(z̄) = ᾱ = α̌. This indicates that
ž = z̄ is the proper choice to expand h around, without requiring to know the precise value of ᾱ.

In this case, the bias analysis with first-order Taylor expansion as in (100) is simple by noting that (z − z̄) ∼

N (0,

[

σ2
1I

σ2
2I

]

), so that

E[α̂] = h(z̄) + E {∇zh(z̄)(z − z̄)}

= ᾱ (106)

This states that the estimator is unbiased if we approximate its first moment up to first order dependence on the data.
The first order expansion is usually sufficient in practice and has been extensively used. However, there are situations

where (100) may be inadequate. We next derive a mean approximation based on the second-order Taylor expansion
(101) which is expected to be more accurate, but also computationally more intensive.

The first two (0th and 1st order) terms in (101) are (100), so it suffices to study the Hessian ∇2
z

.
For scalar α, we follow the simplified expression in [6] to obtain the Hessian of h(z) as:

∇2
z
h = [−

∂2

∂α2
Ψ]−1

{

∂3

∂α3
Ψ∇zh

T∇zh+
∂3

∂α2∂z
ΨT∇zh+ ∇zh

T ∂3

∂α2∂z
Ψ +

∂

∂α
∇2

z
Ψ

}

. (107)

Some of the key gradients are already available: ∇zh is given in (97) as well as ∂2

∂α2 Ψ in (95) (before evaluation)
and ∂2

∂α∂z
Ψ in (92). We still need to compute ∂3

∂α3 Ψ(ᾱ, z̄), ∂3

∂α2∂zΨ(ᾱ, z̄) and ∂
∂α∇

2
z
Ψ.

Evaluating (95) at (ᾱ, z̄) yields:
∂2

∂α2
Ψ(ᾱ, z̄) =

2 ‖c̄‖2
2

ᾱ2σ2
1 + σ2

2

.

Taking derivative of (96) with respect to z yields:

∂3

∂α2∂z
Ψ =

4

(α2σ2
1 + σ2

2)
3
z

T

[

(−3α2σ2
1 + σ2

2)σ
2
2I (3σ2

2 − α2σ2)ασ2
1I

(3σ2
2 − α2σ2)ασ2

1I (3α2σ2
1 − σ2

2)σ
2
1I

]

(108)

Evaluating (108) at (ᾱ, z̄) yields:

∂3

∂α2∂z
Ψ(ᾱ, z̄) =

4

(ᾱ2σ2
1 + σ2

2)
3
c̄

T
[

(σ4
2 − ᾱ4σ4

1)I 2ᾱσ2
1(ᾱ

2σ2
1 + σ2

2)I
]

(109)

Taking derivative of (95) with respect to α yields:

∂3

∂α3
Ψ =

−12ασ2
1

(α2σ2
1 + σ2

2)
3
zT
1 (σ2

2z1 + ασ2
1z2) +

2

(α2σ2
1 + σ2

2)
3
[−4ασ2

1z
T
1 (σ2

2z1 + ασ2
1z2) + . . .

+2ασ2
1z

T
1 (σ2

2z1 + ασ2
1z2) + 2(α2σ2

1 + σ2
2)σ

2
1z

T
1 z2]. (110)

Evaluating (110) at (110) at (ᾱ, z̄) yields:

∂3

∂α3
Ψ(ᾱ, z̄) =

−12ᾱσ2
1 ‖c̄‖

2
2

(ᾱ2σ2
1 + σ2

2)
. (111)
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The term ∂
∂α∇

2
z
Ψ is obtained by taking derivative of ∂2

∂α∂z
Ψ in (92) with respect to z as:

∂

∂α
∇2

z
Ψ = 2(

1

α2σ2
1 + σ2

2

)2
[

2ασ2
2I (α2σ2

1 − σ2
2)I

(ασ2
1 − σ2

2)I −2ασ2
1I

]

(112)

Evaluating at ᾱ yields:

∂

∂α
∇2

z
Ψ(ᾱ) = 2(

1

ᾱ2σ2
1 + σ2

2

)2
[

2ᾱσ2
2I (ᾱ2σ2

1 − σ2
2)I

(ᾱσ2
1 − σ2

2)I −2ᾱσ2
1I

]

. (113)

Substituting the expressions of all components into the right-hand-side of (107) yields:

∇2
z
h(z̄) = −

ᾱ2σ2
1 + σ2

2

2 ‖c̄‖2
2

{ −12ᾱσ2
1

(ᾱ2σ2
1 + σ2

2)
2 ‖c̄‖2

2

[

ᾱI
−I

]

c̄c̄
T

[

ᾱI −I
]

+ . . .

−
4

(ᾱ2σ2
1 + σ2

2)
3 ‖c̄‖2

2

[

(σ4
2 − ᾱ4σ4

1)I
2ᾱσ2

1(ᾱ
2σ2

1 + σ2
2)I

]

c̄c̄
T

[

ᾱI −I
]

+ . . .

−
4

(ᾱ2σ2
1 + σ2

2)
3 ‖c̄‖2

2

[

ᾱI
−I

]

c̄c̄
T

[

(σ4
2 − ᾱ4σ4

1)I 2ᾱσ2
1(ᾱ

2σ2
1 + σ2

2)I
]

+ . . .

+2(
1

ᾱ2σ2
1 + σ2

2

)2
[

2ᾱσ2
2I (ᾱ2σ2

1 − σ2
2)I

(ᾱσ2
1 − σ2

2)I −2ᾱσ2
1I

]

}

. (114)

The second order term in (101) depends on the Hessian ∇2
z
h(z̄) via (z − z̄)T∇2

z
h(z̄)(z − z̄) since ž = z̄, where

z− z̄ are exactly the noise component ε ∼ N (0,

[

σ2
1I

σ2
2I

]

). Because the elements of ε are mutually independent,

E
{

(z − z̄)T∇2
z
h(z̄)(z − z̄)

}

only depends on the diagonal elements of the Hessian ∇2
z
h(z̄).

When a component is located in the z1 portion of z, the noise component ε(i) ∼ N (0, σ2
1), and taking the corre-

sponding element in the Hessian, we obtain:

∂2

∂z1(i)2
h(z̄) = −

1

2 ‖c̄‖2
2

{

−12ᾱ3σ2
1c

2
i

(ᾱ2σ2
1 + σ2

2) ‖c̄‖
2
2

−
8ᾱ(σ4

2 − ᾱ4σ4
1)c

2
i

(ᾱ2σ2
1 + σ2

2)
2 ‖c̄‖2

2

+ 4ᾱσ2
2

}

. (115)

Similarly,

∂2

∂z2(i)2
h(z̄) = −

1

2 ‖c̄‖2
2

{

−12ᾱσ2
1c

2
i

(ᾱ2σ2
1 + σ2

2) ‖c̄‖
2
2

+
16ᾱσ2

1c
2
i

(ᾱ2σ2
1 + σ2

2) ‖c̄‖
2
2

− 4ᾱσ2
1

}

. (116)

Combining the above to obtain:

E[εT∇2
z
h(z̄)ε] = σ2

1

n
∑

i=1

∂2

∂z1(i)2
h(z̄) + σ2

2

n
∑

i=1

∂2

∂z2(i)2
h(z̄)

= −
1

2 ‖c̄‖2
2

{

−12ᾱ3σ4
1

(ᾱ2σ2
1 + σ2

2)
−

8ᾱ(σ4
2 − ᾱ4σ4

1)σ
2
1

(ᾱ2σ2
1 + σ2

2)
2

}

−
1

2 ‖c̄‖2
2

{

−12ᾱσ2
1σ

2
2

(ᾱ2σ2
1 + σ2

2)
+

16ᾱσ2
1σ

2
2

(ᾱ2σ2
1 + σ2

2)

}

=
ᾱσ2

1

‖c̄‖2
2

. (117)

The second order approximation of the estimator yields:

E[α̂]/ᾱ = 1 +
σ2

1

‖c̄‖2
2

,

which indicates a bias toward positive magnitude. Comparing with the bias analysis for the conventional M-estimate,
the bias of the ML estimate is independent of the data length n, which indicates that even though both estimators are
asymptotically unbiased, they approach the asymptotic region with different rate (roughly 1 : n).
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Fig. 4. Bias and variance approximation of ML-estimate obtained from expansion about (α̌, ž).
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