
Some tips for LATEX, Matlab, and C

Jeffrey A. Fessler
EECS Department

The University of Michigan

October 9, 2003

1 Introduction

Over the years I’ve read (and written) many LATEX documents, Matlab scripts, and C programs, and I’ve
noticed that beginning users frequently do not fully take advantage of some of the powerful but sometimes
more subtle features of these programming languages. This paper is a collection of tips. They are not exactly
“frequently asked questions” but more like “frequently made suggestions.” Take ’em or leave ’em...

This document originated in ∼/fessler/l/tex/tr/tips.
Future updated versions may become available in my technical report collection at

http://www.eecs.umich.edu/˜fessler/papers/t,tr.htm

2 LATEX

2.1 newcommand

One cannot overstate the utility of LATEX’s \newcommand command.
Here is a basic LATEX example that fails to fully illustrate the benefits of newcommands.

If λ is positive, then
\(5 \lambda > 4 \lambda .\) If λ is positive, then 5λ > 4λ.

Liberal use of newcommand has several advantages:
• increases flexibility (easier to make changes to fonts and notation later)
• saves typing (saving time and tendons),
• can improve readability,
• allows one command to have multiple effects, e.g., putting a term both in italics for emphasis and adding

it to the index.
Here is the above example “simplified” by using newcommand.

\newcommand{\lam}{\lambda}
If \lam is positive, then
\(5 \lam > 4 \lam .\) If λ is positive, then 5λ > 4λ.

2.2 xspace and ensuremath

In the preceding example, if λ will be used frequently in text, then it would be nice not to have to type the $
signs around \lam each time. The ensuremath command has the effect of providing those $ signs when
needed, so the preceding example is improved as follows.

1

\newcommand{\lam}{\ensuremath{\lambda}}
If \lam\ is positive, then
\(5 \lam > 4 \lam .\) If λ is positive, then 5λ > 4λ.

In this example, we had to add the extra backslash after \lam, since otherwise the space following lam
would have been interpreted by LATEX as the “end of command” character, rather than as a space, and we
would get “If λis positive.” The xspace package and command solves this problem, thereby eliminating
the need for any of those extra backslashes throughout the body of the document.

The final example below is the best way of all. This must be preceded by \usepackage{xspace}
in the document preamble.

\newcommand{\xmath}[1]{\ensuremath{#1}\xspace}
\newcommand{\lam}{\xmath{\lambda}}
If \lam is positive, then
\(5 \lam > 4 \lam .\) If λ is positive, then 5λ > 4λ.

I use this xmath macro extensively in my preamble, and I will use it in the examples hereafter.
Since the old version of LATEX did not have a ensuremath command, the original LATEX manual [1,

p. 55] suggested using mbox as a “trick” to provide the convenience of using the same macro in text or
equations. Unfortunately, as the follow example shows, the mbox approach does not work properly in
subscripts, whereas ensuremath does.

\newcommand{\p}{\xmath{p}}
\newcommand{\q}{\mbox{q}}
Here are \p and \q\ in text, but
\(\min_{\p} \neq \min_{\q} .\)

Here are p and q in text, but minp 6= minq .

The second edition of the LATEX manual recommends ensuremath rather than mbox; presumably the
above problem motivated the development of the ensuremath command.

2.3 mathbf vs bm

Bold symbols appear frequently, and are an excellent reason to use newcommand. Traditional LATEX has
some quirks about bold though. If you liked the above, then you would probably be disappointed by the
following example.

\newcommand{\x}{\xmath{\mathbf{x}}}
\newcommand{\lam}{\xmath{\mathbf{\lambda}}}
\newcommand{\thet}{\mbox{\boldmath θ}\xspace}
When \x, \lam, and \thet are vectors, then
\(0 = \min_{\lam,\x,\thet} \| \x - \lam - \thet \|. \)

When x, λ, and θ are vectors, then 0 = min
λ,x,θ ‖x − λ − θ‖.

There are two annoying problems here. First, notice that λ was not made bold by the mathbf command;
instead one needs the boldmath command, and who can remember the difference between mathbf and
boldmath? Secondly, notice that the θ in the subscript to min is not of subscript size. Not very profes-
sional looking.

Fortunately, the bm package takes care of all of these, and saves typing too!
Just put \usepackage{bm} in your preamble, and the preceding example simplifies to the following.

2

\newcommand{\bmath}[1]{\ensuremath{\bm{#1}}\xspace}
\newcommand{\x}{\bmath{x}}
\newcommand{\lam}{\bmath{\lambda}}
\newcommand{\thet}{\bmath{\theta}}
When \x, \lam, and \thet are vectors, then
\(0 = \min_{\lam,\x,\thet} \| \x - \lam - \thet \|. \)

When x, λ, and θ are vectors, then 0 = minλ,x,θ ‖x − λ − θ‖.

Note that this handy bmath macro takes care of three things: math mode, bold, and the space.

2.4 Equation references

Maybe I’m just absent minded, but when writing long documents it is easy to forget equation labels. The
following definition of \ee displays the label in the margin in the document (for drafts).

\newcommand{\pbox}[1] {%
\makebox[0pt][r]{\raisebox{7mm}[0pt][0pt]{\small #1}}\ignorespaces}
\newcommand{\be} {\begin{equation}}
\newcommand{\ee}[1] {\label{#1}\end{equation}\pbox{#1}}
\newcommand{\eref}[1] {(\ref{#1})}
\be
E = mcˆ2
\ee{e,albert}
You have probably seen \eref{e,albert} before.

E = mc
2 (1)e,albert

You have probably seen (1) before.

Note that \eref{} takes less typing than (\ref{}) and also helps make it clear in the source that
this is an equation reference.

Combining \label and \end{equation} into one command ensures that I always remember to put
a label for any numbered equation. (One should only number equations that are referenced in the document,
or plausible to be referenced by future papers.)

Of course I don’t want others to know of my forgetfulness, so for the final version I use
\newcommand{\ee}[1]{\label{#1}\end{equation}}

Similar tricks work for tables and figures.
A key point here is that using macros allows one to “overload” one command to have multiple effects,

which can be very useful (in this case, defining a label, ending an equation, and displaying the label).
The above ee macro may conflict with a macro provided in one of the AMS packages. If so, you can

use renewcommand instead of newcommand to force your definition of the macro. Another useful macro
command is providecommand which only defines the macro if it is not already defined.

The showkeys package also shows such labels in the margins, and more! It is very very useful! (Many
thanks to Markus Fenn for bringing this to my attention!)

2.5 Other nice packages

• Use \usepackage{cite} so that citations come out [1,2,3] instead of [1][2][3].
• Use \usepackage{times} to have nicer looking Times Roman fonts that convert well to PDF.
• Use \usepackage{psfrag} so that you can replace text fragments in included EPS figures with

LATEX stuff, using the following syntax: \psfrag{hattheta}{$\hat{\theta}$}, where

3

hattheta is a text string you might have used in a matlab plot axis, title, or text command, or an
xfig text string.

• Use \usepackage{color} to add color to documents. (See ∼/fessler/l/tex/talk for ex-
amples.)

• Use \usepackage{ifthen} to add conditional statements.
• Use \usepackage{amsymb} to get special symbols like the following.

\newcommand{\reals}{\xmath{\mathbb{R}}}
This is the cool way to make \reals.

This is the cool way to make R.
• For other examples of general macros, see ∼/fessler/l/tex/def,gen.

For other examples of math macros, and ∼/fessler/l/tex/def,math.

2.6 PDF conversion

The de facto format for sharing documents has become Adobe’s PDF format. (In the recent past, I have
emailed postscript files to people crippled by too many years of using Windoze, and they email me back
saying that they can’t read the gibberish I’ve sent them.) The default fonts used by LATEX are bitmapped
fonts. These look awful when magnified in a PDF viewer, and they are also often designed for a given
“resolution” (say, 300dpi) so they are suboptimal for the 600dpi and 1200dpi printers around EECS.

PDF and other modern display methods used outline fonts, the standard for which is Adobe’s “Type 1”
fonts.

To use these fonts you should do the following.
• Add \usepackage{times} to the start of your .tex file. This gives you Times Roman fonts instead

of LATEX’s default fonts, which I think look better overall anyway.
• Convert your .dvi files to .ps files and your .ps to .pdf files using commands like the following:
dvips -Ppdf -G0 -K -o file.ps -t letter file.dvi

ps2pdfwr -dCompatibility=1.3 -dMaxSubsetPct=100 -dSubsetFonts=true \
-dEmbedAllFonts=true file.ps file.pdf

• That should be all you need! But just in case that does not work, here is the OLD way I used to do
it, included for historical completeness. Now the cmfonts are included with latex, so it should not be
necessary to do all this.

• Add something like the following to your .cshrc file.
setenv TEXCONFIG /usr/gnu/tex/dvips:/n/ir7/home/fessler/l/tex/font/cmtype1
setenv DVIPSHEADERS $TEXCONFIG

Replace /n/ir7/home/fessler with whatever directory ˜fessler is from your host. My home
directory moves more often than this document is updated!
My tex/font/cmfonts directory has the outline descriptions of the LATEX fonts. You need this
because the times package only replaces the text, not the mathematics with outline fonts. (There are
probably packages (mathtime?) (mathptm?) that can also replace the math.)
These fonts came from http://www.ams.org/tex/type1-cm-fonts.html, if I recall cor-
rectly, or from the CTAN web site.

• Type source .cshrc so the new variables are set.
• Run LATEX (and rerun it as necessary...)
• Convert your DVI file to a PS file as follows:

dvips -Pcmfonts -K filename.dvi
This should use the outline fonts in place of any residual Computer Modern fonts (the LATEX default) in
your document.

4

• Run distill (we have it on ir2 and DCO has it on another machine - dip? quip?) to convert the PS file
to a PDF file: distill filename.ps
Or you can try ps2pdf on your machine, but, when I last tried it, it did make good equation fonts.
Another option may be the shareware program PStill available from
http://www.wizards.de/˜frank/pstill.html

That web page also has several links about LATEX to PDF conversion.
You can also make PDF files directly from LATEX by the command pdflatex, but I do not know if it

automatically used outline fonts.

2.7 bibtex and .bib and .b2 files

The cross referencing abilities of LATEX are one of its strengths, particularly when combined with bibtex.
A bibtex entry in a .bib file looks like the following.

@ARTICLE{
ramachandran:71:tdr,
author = {G N Ramachandran and A V Lakshminarayanan},
title = {Three-dimensional reconstruction from radiographs...},
journal = {Proc. Natl. Acad. Sci.},
volume = 68,
number = 9,
pages = {2236--40},
month = sep,
year = 1971
}

I have over 4000 bibtex entries in my database, and back when I reached about 400 entries I grew
very weary of typing author, title, etc., and even of cutting and pasting those.

I developed my own much more concise format. The above citation is stored as follows.

@a ramachandran:71:tdr pnas 68 9 2236-40 sep 1971
G N Ramachandran A V Lakshminarayanan
Three-dimensional reconstruction from radiographs...

There are almost no redundant characters here. The @a signifies a journal article.
Plain text database files are in ∼/fessler/l/tex/biblio/b2, organized by topic, each corre-

sponding to a folder of papers.
A Makefile in that directory converts those files to the usual bibtex format, concatenating them all

into ∼/fessler/l/tex/biblio/master.bib. The conversion is by the Perl script
∼/fessler/l/tex/src/script,bib/b2,bib.

Another Perl script ∼/fessler/l/src/script,bib/b1,grep. lets me extract all records con-
taining a given keyword. This is the script that I use when trying to find a given paper.

Recommendation: put my master.bib in your BIBINPUTS path, so that you can cite any of the
papers in my database without retyping them. On multiple occasions I have proofread papers that have had
typos in the references, including to my own papers! This wastes both our time: yours in typing, and mine
in proofreading. The majority of the papers you will cite are already in my database (and probably I’d like
to read the new papers you find too!). To set up the path, use something like the following.

setenv FESS /n/ir7/home/fessler/l/tex
setenv BIBINPUTS :$FESS/biblio:$FESS/macros

5

Then to use this in your LATEX document, simply add the following near the end.

\bibliographystyle{unsrt}
\bibliography{master}

You can also try the IEEE.bst bibliographystyle that is in my macros directory.
You are welcome to copy any of my bibliographic material to your own directory if you want your own

copy. I would much rather have you copy and paste it into your own organizational style than see you retype
it and get tendonitis (like me) and introduce new errors.

I am told that the commercial product endnote can download from various abstract databases and
format references into the bibtex format.

2.8 def.raw def.glo files

Just like I forget my equation numbers, in long documents I can also forget my macros (newcommands).
So, these days I just create two files, one called def.raw that looks like this example:

lam \ensuremath{\lambda}\xspace
x \ensuremath{\bm{x}}\xspace

(etc.) and another called def.glo that looks like this example:

y \ensuremath{\bm{y}\xspace}
a measurement vector

thet \ensuremath{\theta}\xspace
an angle in degrees

(etc.) Then I run the following Perl script

˜fessler/l/src/script/tex,def > def.tex

which converts these two files into a file def.tex that looks like the following

\newcommand{\lam} {\ensuremath{\lambda}\xspace}
\newcommand{\x} {\ensuremath{\bm{x}}\xspace}

\newcommand{\y} {\ensuremath{\bm{y}\xspace}}
\newcommand{\thet} {\ensuremath{\theta}\xspace}

\providecommand{\defitem}[3]{\ty{#1} & #2 & #3\\}
\providecommand{\defstart}{
\begin{tabular}{l|l|l}
\defitem{Macro}{Symbol}{Meaning}}
\providecommand{\defstop}{\end{tabular}}
\providecommand{\defglo}{
\defstart
\defitem{y}{\y}{a measurement vector}
\defitem{thet}{\thet}{an angle in degrees}
\defstop
}

6

This script does two things. First, it puts all the newcommands in, saving me from having to type them.
Second, it automatically builds a command defglo that prints a “glossary of definitions” in my document.
I’ll illustrate it right here by typing \input{def.tex}\defglo right at the end of this sentence.

Macro Symbol Meaning
y y a measurement vector
thet θ an angle in degrees

Admittedly I didn’t start doing this until I starting writing my book (and realized that a symbol glossary
would be useful). But since then I’ve found it useful.

3 Matlab

Ever since version 5 or so, Matlab has been an object based programming language. This means that
operators (like +) can be overloaded to have generalized meanings depending on the type of object being
operated on.

Here is a simple example. In conventional matlab, the expression ’path/’ + ’file’ would be an
error: you cannot “add” strings. But to me, a logical meaning for addition of strings would be to append
them. Here’s how to do it. In my matlab/mfiles directory, I have a subdirectory named @char. This
name is because the class name of strings in matlab is char. Within this directory I have the file plus.m
which is the following:

function c = plus(a,b)
c = [a b];

By creating this subdirectory and file, and by having that subdirectory in my matlab path, I have over-
loaded the “plus” (+) operator in matlab. When I type name = ’path/’ + ’file’, matlab notices
that the object on the left of the + is of class char, and it searches through its own rules of addition for strings
and, finding none, it searches through my @char subdirectory and finding the plus.m file it essentially
calls name = plus(’path/’, ’file’) and the actually concatenation is done by the commands in
the plus.m function. (Actually I don’t know which order matlab searches for the overloaded functions.)

Ok, you might not be too impressed with the time savings in the above example, since I could have just
typed name = [’path/’ ’file’] in the first place, which has the same number of keystrokes and is
(almost) just as readable.

For my work, the real benefit of operator overloading is for system matrices and iterative algorithms.
Consider the simple iterative algorithm

xn+1 = xn + αA′(y − Axn).

If A is a matrix in matlab (sparse or full), then this algorithm translates very nicely into matlab as follows.

x = x + alpha * A’ * (y - A * x);

You really cannot get any closer connection between the math and the program than this! But these days
we are working a lot with system models that are too big to store as matrices in matlab, and instead are
represented by subroutines that compute the “forward projection” action Ax and the “backprojection action
A′z for input vectors x and z respectively. The conventional way to use one of these systems in matlab
would be to replace the above program as follows.

Ax = forward_project(x, system_arguments)
residual = y - Ax;
correction = back_project(residual, system_arguments)
x = x + alpha * correction

7

Yuch! This is displeasing for two reasons. First, the code looks a lot less like the mathematics. Second, you
need a different version of the code for every different system model (forward/back-projector pair) that you
develop.

The elegant solution is to develop matlab objects that know how to perform the actions
• A * x (matrix vector multiplication, operation mtimes)
• A’ (transpose), and
• A’ * z (mtimes again, with a transposed object).

Once such an object is defined, one can use exactly the same iterative algorithm as before. The details are
too involved to be typeset. For examples, see ∼/fessler/l/src/matlab/alg/systems.

3.1 Sparse matrices

Matlab stores sparse matrices by columns, so column-based operations can be much faster than row-based
operations. If you need many row-based operations, then it is best to first form the transpose of the sparse
matrix, then access the columns of the transposed matrix (which are the rows of the original matrix). This
is particularly relevant for ordered subsets algorithms.

4 C

Over the years, I have found that liberally using the C preprocessor #define command to define macros
has many of the same advantages of LATEX’s newcommand:
• increases flexibility (easier to make global changes to routines later)
• saves typing (saving time and tendons),
• can improve readability,
• allows one command to have multiple effects, e.g., both calling a subroutine and printing a debugging

message during development.
These benefits are illustrated below with a memory allocation example.

4.1 Memory allocation

Most C programs written by novices have line like the following.

float *ptr;
ptr = (float *) calloc(n, sizeof(*ptr));

Sooner or later this code will crash when n is too large or nonpositive, and the novice will learn that it
is worth the effort to put in error checking like the following.

float *ptr;
if (!(ptr = (float *) calloc(n, sizeof(*ptr)))) {

fprintf(stderr, "could not allocate ptr at %d of %s\n",
__LINE__, __FILE__);

exit(-1);
}

There are several disadvantages of this. First, it is annoyingly long to type. Second, it is not that easy
to read, since the most important parts (ptr and n) are buried in a morass of other largely superfluous
characters (sizeof etc.). Third, exiting is better than crashing, but does not help debugging much since
there is no “traceback” to the offending calling routine that presumably asked for too much memory.

To overcome some these disadvantages, consider the following macrofied code.

8

#define Mem(p,n) { \
if (!((p) = (void *) calloc((unsigned) (n), sizeof(*(p))))) { \

fprintf(stderr, "could not allocate ptr at %d of %s\n", \
__LINE__, __FILE__); \

exit(-1); \
} \

}

float *ptr1, *ptr2;
Mem(ptr1, n)
Mem(ptr2, 2*n)

This code is easier to read, and has the advantage that the Mem macro is easily changed to include
debugging messages showing how many bytes are being allocated and where.

My own code takes this several steps further.
• I make any routine that includes memory allocation of type bool (aka int) and then use a macro Mem0

that returns 0 (failure) rather than exiting to the calling routine. This enables an automatic traceback that
simplifies debugging.

• In debugging mode (which I use all the time), my Mem0 macro actually calls my own subroutine
io_mem_alloc that maintains a list of all allocated memory. Similarly, I have a Free0 macro that
calls my subroutine io_mem_free that removes freed items from the list. Then, before my program
exits, I check that all allocated memory was freed (this helps find memory leaks), and I print the maxi-
mum amount of allocated memory (this is useful for keeping track of the memory requirements of various
algorithms).
If you want to take advantage of this in your own routines, do the following.

• Add #include "def.h" to your C programs.
• Add the following arguments to your compile flags in your Makefile

-I/n/ir7/fessler/l/src/give/code -DCountAlloc
(That directory contains def.h which defines the Mem0 and Free0 macros.

• Copy ∼/fessler/l/src/io/univ/io,alloc.c to your directory and edit the line #include
"defs-env.h" to be #include "def.h" instead.

• Replace all callocs and mallocs in your code with Mem0, and all frees with Free0, making sure
the subroutines they are in are of type bool or int.

• Add the statement PrintAlloc somewhere (e.g., near the end) of your main program, which will
cause memory usage to be printed.
In my experience, a small investment in macrofying code when writing it more than pays off when

debugging it, though it took me several years of debugging to realize this.

4.2 Other macros

I use similar (but simpler) macros for nearly all other system calls, e.g., fopen becomes Fopen0, etc. See
∼/fessler/l/src/defs/def,*.h for examples. These macros both reduce typing and facilitate
debugging.

References

[1] L. Lamport. LaTeX: A document preparation system. Addison-Wesley, New York, 1986.

9

