EM and Gradient Algorithms for Transmission Tomography with Background Contamination

Jeffrey A. Fessler

Old address: 3480 Kresge III, Box 0552, University of Michigan, Ann Arbor, MI 48109-0552 email: fessler@umich.edu Technical Report UM-PET-JF-94-1

October 2, 2003

gorithms described herein are obsolete and not recommended. See the book chapter [3] for more contemporary methods and comprehensive references.

ABSTRACT

This report describes slight extensions of the expectation-maximization (EM) algorithm and the gradient algorithm [1] for penalized-likelihood transmission reconstruction but that accommodates nonzero additive background contamination in the Poisson model. For definitions of the notation, etc., see [1, 2].

I. GRADIENT ALGORITHM

Lange [1, 4, 5] has proposed an iterative gradient algorithm that has the desirable property that it automatically enforces nonnegativity. In this paper we present a slightly modified version of this algorithm that accommodates nonzero r_n factors. First, observe that we can rewrite the partial derivatives of Φ as follows:

$$\frac{\partial}{\partial \mu_j} \Phi(\mu) = \dot{L}_j^{(+)}(\mu) - \beta \dot{P}_j^{(+)}(\mu) - \dot{L}_j^{(-)} - \beta \dot{P}_j^{(-)}(\mu),$$

where

$$\dot{L}_{j}^{(+)}(\mu) = \sum_{n} a_{nj} \left(\bar{y}_{n}(\mu) - r_{n} + \frac{y_{n}r_{n}}{\bar{y}_{n}(\mu)} \right)$$
(1)

$$\dot{L}_{j}^{(-)} = \sum_{n} a_{nj}y_{n}$$

$$\dot{P}_{j}^{(+)}(\mu) = \dot{P}_{j}(\mu) - \mu_{j}\ddot{P}_{j}(\mu)$$

$$\dot{P}_{j}^{(-)}(\mu) = \mu_{j}\ddot{P}_{j}(\mu).$$

The original version of this was in 1994. The al-Provided ϕ is a strictly convex function, one sees that $\dot{L}_{j}^{(-)}+eta\dot{P}_{j}^{(-)}(\mu)>0.$ This suggests using the following iteration:

$$\mu_{j}^{i+1} = \mu_{j}^{i} + \omega^{i} \frac{\mu_{j}^{i}}{\dot{L}_{j}^{(-)} + \beta \dot{P}_{j}^{(-)}(\mu^{i})} \left. \frac{\partial}{\partial \mu_{j}} \Phi(\mu) \right|_{\mu=\mu^{i}}$$

$$= \mu_{j}^{i} + \omega^{i} \mu_{j}^{i} \frac{\dot{L}_{j}^{(+)}(\mu) - \beta \dot{P}_{j}^{(+)}(\mu) - \dot{L}_{j}^{(-)} - \beta \dot{P}_{j}^{(-)}(\mu)}{\dot{L}_{j}^{(-)} + \beta \dot{P}_{j}^{(-)}(\mu^{i})}$$

$$= \mu_{j}^{i} \left(1 - \omega^{i} + \omega^{i} \frac{\dot{L}_{j}^{(+)}(\mu^{i}) - \beta \dot{P}_{j}^{(+)}(\mu^{i})}{\dot{L}_{j}^{(-)} + \beta \dot{P}_{j}^{(-)}(\mu^{i})} \right). \quad (2)$$

Since $\dot{L}_{j}^{(-)} + \beta \dot{P}_{j}^{(-)}(\mu^{i})$ is positive, if $\mu_{j}^{i} > 0$ then $\mu_{j}^{i+1} >$ 0 provided $\omega^i \leq 1$. Since this recursion does not guarantee monotone increases in the objective $\Phi(\mu^i)$, we begin each iteration with $\omega^i = 1$, and then if necessary halve it until $\Phi(\mu^{i+1}) > \Phi(\mu^i)$. This has never been necessary in our experiments with this algorithm to date. We refer to (2) as the gradient algorithm.

II. EM ALGORITHM

Lange and Carson [6] proposed an EM algorithm for transmission tomography using a Taylor series approximation for the M-step. Ollinger [7] reported that the EM algorithm did not completely converge with this approximation, and proposed a 1-D Newton's method for the M-step in the pure maximum likelihood case (no smoothness penalty). When one includes a smoothness penalty, the M-step of Ollinger's (or Lange and Carson's) method would require simultaneous solution of p coupled equations. Lange [1] has adapted a clever convexity method due to De Pierro [8, 9] to the M-step of [6]. We have adapted this same convexity method to the M-step of Ollinger [7]. For completeness we summarize the approach here; see [6,7] for additional details.

This work was supported in part by NIH grant CA-60711 and DOE grant DE-FG02-87ER60561.

Define the following function:

$$Q_{\rm EM}(\mu;\mu^i) =$$

$$\sum_{n} \sum_{j=1}^{P} \bar{X}_{nj} \log e^{-a_{nj}\mu_j} + (\bar{X}_{n,j-1} - \bar{X}_{nj}) \log(1 - e^{-a_{nj}\mu_j}),$$

where

$$\bar{X}_{nj} = \gamma_{n,j-1}^{i} - \gamma_{nj}^{i} + y_n \left(\frac{\gamma_{np}^{i}}{\gamma_{np}^{i} + r_n}\right)$$

and

$$\gamma_{nj}^i = b_n \prod_{k=1}^j e^{-a_{nk}\mu_k^i}$$

The function $Q_{\rm EM}$ corresponds to the conditional loglikelihood of a complete-data space for transmission tomography, and as such one can show [6, 10] that

$$L(\mu) - L(\mu^i) \ge Q_{\rm EM}(\mu;\mu^i) - Q_{\rm EM}(\mu^i;\mu^i)$$

Therefore, if we define

$$\Phi_{\rm EM}(\mu;\mu^{i}) = Q_{\rm EM}(\mu;\mu^{i}) - \beta P^{\star}(\mu;\mu^{i}), \qquad (3)$$

then one can show that

$$\Phi(\mu) - \Phi(\mu^i) \ge \Phi_{\rm EM}(\mu; \mu^i) - \Phi_{\rm EM}(\mu^i; \mu^i)$$

so by choosing μ^{i+1} to maximize $\Phi_{\rm EM}(\cdot; \mu^i)$ we ensure monotonic increases in Φ . The convenient aspect of $\Phi_{\rm EM}(\cdot; \mu^i)$ is that it is a separable function of μ_1, \ldots, μ_p , so maximizing $\Phi_{\rm EM}(\cdot; \mu^i)$ requires p separate 1-D maximizations.

Unfortunately, those maximizations do not have a closed form, so following Ollinger [7] we apply Newton's method to each parameter. One can show

$$\begin{aligned} \frac{\partial}{\partial \mu_j} Q_{\rm EM}(\mu;\mu^i) \bigg|_{\mu=\mu^i} &= \dot{L}_j(\mu^i) \\ - \frac{\partial^2}{\partial \mu_j^2} Q_{\rm EM}(\mu;\mu^i) \bigg|_{\mu=\mu^i} &= \sum_n a_{nj}^2 \frac{\gamma_{nj}^i}{1-\exp(-a_{nj}\mu_j^i)} \\ \frac{\partial}{\partial \mu_j} P^{\star}(\mu;\mu^i) \bigg|_{\mu=\mu^i} &= \dot{P}_j(\mu^i) \\ \frac{\partial^2}{\partial \mu_j^2} P^{\star}(\mu;\mu^i) \bigg|_{\mu=\mu^i} &= 2\ddot{P}_j(\mu^i). \end{aligned}$$

Combine the above with (3) to yield the iteration:

$$\mu_j^{i+1} = \left[\mu_j^i + \omega^i \frac{\frac{\partial}{\partial \mu_j} \Phi_{\rm EM}(\mu^i; \mu^i)}{-\frac{\partial^2}{\partial \mu_j^2} \Phi_{\rm EM}(\mu^i; \mu^i)} \right]_+, \qquad (4)$$

where ω^i is chosen using the halving search to assure monotonicity, starting with $\omega^i = 1$. The key difference between the coordinate-ascent update in [2] and (4) is that the latter uses a *simultaneous* update, and as such it is more amenable to parallel implementations.

REFERENCES

- K. Lange and J. A. Fessler. Globally convergent algorithms for maximum a posteriori transmission tomography. *IEEE Tr. Im. Proc.*, 4(10):1430–8, October 1995.
- [2] J. A. Fessler. Hybrid Poisson/polynomial objective functions for tomographic image reconstruction from transmission scans. *IEEE Tr. Im. Proc.*, 4(10):1439–50, October 1995.
- [3] J. A. Fessler. Statistical image reconstruction methods for transmission tomography. In M. Sonka and J. Michael Fitzpatrick, editors, *Handbook of Medical Imaging, Volume 2. Medical Image Processing and Analysis*, pages 1–70. SPIE, Bellingham, 2000.
- [4] K. Lange, M. Bahn, and R. Little. A theoretical study of some maximum likelihood algorithms for emission and transmission tomography. *IEEE Tr. Med. Im.*, 6(2):106–14, June 1987.
- [5] K. Lange. Convergence of EM image reconstruction algorithms with Gibbs smoothing. *IEEE Tr. Med. Im.*, 9(4):439–46, December 1990. Corrections, T-MI, 10:2(288), June 1991.
- [6] K. Lange and R. Carson. EM reconstruction algorithms for emission and transmission tomography. J. *Comp. Assisted Tomo.*, 8(2):306–16, April 1984.
- [7] J. M. Ollinger. Maximum likelihood reconstruction of transmission images in emission computed tomography via the EM algorithm. *IEEE Tr. Med. Im.*, 13(1):89–101, March 1994.
- [8] A R De Pierro. On the relation between the ISRA and the EM algorithm for positron emission tomography. *IEEE Tr. Med. Im.*, 12(2):328–33, June 1993.
- [9] A R De Pierro. A modified expectation maximization algorithm for penalized likelihood estimation in emission tomography. *IEEE Tr. Med. Im.*, 14(1):132–137, March 1995.
- [10] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. J. Royal Stat. Soc. Ser. B, 39(1):1–38, 1977.