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I. INTRODUCTION

Despite the continuing remarkable increase of computing speed, the belief persists that nonlinear pixel-by-pixel
kinetic images are impractical for routine use. This paper presents an efficient method for computing parametric
images. The key feature of the method is that we minimize computation per pixel by precomputing tables of QR
factorizations. We also describe an efficient algorithm for enforcing nonnegativity of the natural kinetic parameters.

For 40 planes of 64 by 64 images of 26 frames, only ? seconds are required for ?
We focus on the two-compartment model, although the general approach applies to more complicated models.
Table search also performed by [1]

II. M ODEL

Let c1(t) andc2(t) represent the radioisotope concentrations in compartments 1 and 2 of Fig. 1 respectively, and let
cp(t) denote the plasma concentration (input function). Then the governing differential equation is

ċ(t) = −Ac(t) +K1

[
1
0

]
cp(t),

where

c(t) =

[
c1(t)

c2(t)

]
, andA =

[
k2 + k3 −k4
−k3 k4

]
.

Given this differential equation, we first want to obtain an expression for the total tissue concentration:

c(t) = c1(t) + c2(t).

We do this by diagonalizing the differential equation.
The eigenvalues ofA can be found by setting|A− λI| = 0, yielding:

λ± =
1

2
(k2 + k3 + k4)±

1

2

√
(k2 + k3 + k4)2 − 4k2k4.

Note that ifk4 = 0, then
λ± = {(k2 + k3), 0}.
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Eigenvectors ofA are found by setting(A− λ±I)v± = 0, yielding (for example):

v± =

[
k4 − λ±

k3

]
.

LetV = [v+ v−], then

AV = V Λ, where Λ =

[
λ+ 0
0 λ−

]
.

ThusA = V ΛV −1, so

ċ(t) = −V ΛV −1c(t) +K1

[
1
0

]
cp(t)

or

V −1ċ(t) = −ΛV −1c(t) +K1V
−1

[
1
0

]
cp(t).

Definew(t) = V −1c(t), then

ẇ(t) = −Λw(t) +K1V
−1

[
1

0

]
cp(t). (1)

One can computeV −1 to show that

V −1
[
1

0

]
=

1

λ+ − λ−

[
−1
1

]
.

SinceΛ is diagonal, (1) is a separable differential equation, whose solution is:

w(t) =
K1

λ+ − λ−

[
−e−tλ

+

e−tλ
−

]
⊗ cp(t),

where⊗ denotes convolution.
Noting that

c(t) = [1 1] c(t) = [1 1] V w(t),

we can substitute back to show that

c(t) =
K1

λ+ − λ−
[(λ+− k3 − k4)e

−tλ+ + (k3 + k4 − λ
−)e−tλ

−
]⊗ cp(t).

In particular, ifk4 = 0, then

c(t) = K1

[
k2

k2 + k3
e−(k2+k3)t +

k3
k2 + k3

e−0t
]
⊗ cp(t).

We measure the average tissue concentrationc(t) overn time intervals[tLi , t
R
i ], i = 1, . . . , n. In addition there is a

contribution due to blood activityb(t). So the (noiseless) measured counts are proportional to:

yi =
1

tRi − t
L
i

∫ tRi
tLi

2−(t−t0)/Th[(1− β)c(t) + βb(t)] dt, (2)

whereTh is the half-life of the radio-isotope,t0 is a reference time, and the2−(t−t0)/Th factor represents the decay
of radioactivity. Assuming the time intervals are small enough relative to the tissue kinetics, one can bring the decay
factor outside of the integral and precorrect the measurementsyi. In the remainder of this paper we assume theyi’s
have been precorrected for radioisotope decay, so we disregard the2−(t−t0)/Th factor.
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Define

s0,i =
1

tRi − t
L
i

∫ tRi
tLi

b(t) dt,

s1,i(λ) =
1

tRi − t
L
i

∫ tRi
tLi

e−λt ⊗ cp(t) dt. (3)

Then we can rewrite (2) as

yi = (1− β)
K1

λ+ − λ−
[
(λ+ − k3 − k4) · s1,i(λ

+) + (k3 + k4 − λ
−) · s1,i(λ

−)
]
+ β · s0,i. (4)

Now define1

θ0 = β

θ1 = (1− β)K1(λ
+ − k3 − k4)/(λ

+− λ−)

θ2 = (1− β)K1(k3 + k4 − λ
−)/(λ+− λ−)

λ = [λ+ λ−], (5)

and stack everything into vectors:

y =



y1
...
yn


 , sj =



sj,1

...
sj,n


 , j = 0, 1,

and define
Sλ = [s0 s1(λ

+) s1(λ
−)]. (6)

Then we can rewrite (4):
y = Sλ θ, (7)

whereθ = [θ0 θ1 θ2]′.
After estimatingλ andθ, we can convert back to the kinetic parameters by inverting (5). In particular, ifk4 = 0 (i.e.,

λ− is fixed to 0), then

β = θ0

K1 = (θ1 + θ2)/(1− θ0).

k2 = λ+θ1/(θ1 + θ2)

k3 = λ+θ2/(θ1 + θ2)

For fitting withk4 6= 0, the formulae are:

β = θ0

K1 = (θ1 + θ2)/(1− θ0)

k2 = (λ+θ1 + λ
−θ2)/(θ1 + θ2)

k4 = λ+λ−/k2

k3 = (λ+θ2 + λ
−θ1)/(θ1 + θ2)− k4. (8)

1One can verify that since the kinetic parameters are positive andβ ∈ [0,1), thenλ+ > λ−, andθ1 andθ2 are positive.
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Fig. 1. Two compartment model.

III. E STIMATION

The above description focussed on a two-compartment model, but the form of the final equation (7) is applicable to
any time-invariant linear differential equation, i.e., we can generally write:

y = Sλθ + noise.

For (unweighted) kinetic fitting, we would like to minimize

‖y − Sλθ‖
2

overθ andλ, subject to the constraint thatθ ≥ 0. We first consider the unconstrained case. The utility of the form
(7) is that we have transformed the estimation problem so that the nonlinear and linear components are separated. The
idea behind the QR approach is to use a brute-force table search for minimization overλ and to use the analytical
minimization overθ since that part is linear. In other words, we write the minimization as two parts:

min
λ
min
θ
‖y − Sλθ‖

2.

For the inner minimization overθ, we think ofλ as being fixed. It is easily shown that the least-squares estimate for
θ is

θ̂λ = [S
′
λSλ]

−1S′λy = [R
′
λQ
′
λQλRλ]

−1R′λQ
′
λy = R

−1
λ Q

′
λy,

where′ denotes matrix transposition, andSλ = QλRλ is the QR decomposition ofSλ [2], whereQλ is an×3matrix
whose columns are orthonormal, andRλ is an upper-triangular invertible3 × 3 matrix. (The QR decomposition can
be formed using the Gram-Schmidt procedure.) The key to the efficiency of our approach is the for a set (i.e. table) of
valuesλ ∈ Γ, we computeSλ using (3) and (6), and then precomputeQλ andRλ. Thus

y − Sλθ̂λ = y −QλRλR
−1
λ Q

′
λy = (I −QλQ

′
λ)y.

Therefore,
‖y − Sλθ̂λ‖

2 = ‖(I −QλQ
′
λ)y‖

2 = ‖y‖2 − ‖Q′λy‖
2.

Thus the outer minimization becomes

min
λ∈Γ

(
‖y‖2 − ‖Q′λy‖

2
)
= max
λ∈Γ
‖Q′λy‖

2.

The algorithm works as follows. In Matlab, we usekinetic1 mex() to computeSλ using (3) and (6) for each
λ ∈ Γ, and then we precomputeQλ andR−1λ . In the C program, for each value ofλ ∈ Γ, we compute‖Q′λy‖

2, which

is simply 3 inner products and a sum. Letλ̂ be the value that gives the largest norm. This value is found using a table
search whose dimension is the number of unconstrained components ofλ. We then form:

θ̂ = R−1
λ̂
Q′
λ̂
y.

Note that by precomputing the inverseR−1λ in Matlab, no matrix inversions are required in the C program. This
simplifies the C program. Now that we have estimates forλ andθ, we can solve back for the kinetic parameters
using (8).
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IV. N ONNEGATIVITY CONSTRAINT

The method as described above does not enforce nonnegativity. In some sense this may be desirable since negative
values serve as a warning to the user that the data needs to be inspected more closely. However, since negative values
for θ are not physically meaningful, in some applications it would desirable to use a method that explicitly enforces
the nonnegativity constraintduring estimationrather than simply clipping the negative values to zero after the fact.
This section describes one approach for constrained minimization that again makes use of precomputed tables. For
generality, we initially consider arbitrary equality constraints.

Consider them constraints (c′1θ = b1), . . . , (c
′
mθ = bm) or

C ′θ = b, C = [c1 . . . cm].

Applying the method of Lagrange to minimize‖y − Sλθ‖2, we would like to first minimize overθ

1

2
‖y − Sλθ‖

2 +
m∑
k=1

γk(c
′
kθ − bm).

Setting the gradient to zero:
0 = −S′λy + S

′
λSλθ +Cγ, γ = [γ1 . . . γm]

′.

Thus sinceSλ = QλRλ:

θ̂ = (S′λSλ)
−1(S′λy −Cγ) = (R

′
λRλ)

−1(R′λQλy −Cγ) = R
−1
λ (Qλy −Mλγ),

whereMλ = (R
′
λ)
−1C, and

y − Sλθ̂ = (I −QλQ
′
λ)y +QλMλγ.

Thus
‖y − Sλθ̂‖

2 = ‖(I −QλQ
′
λ)y‖

2 + 2〈y′(I −QλQ
′
λ),QλMλγ〉+ ‖QλMλγ‖

2

= ‖y‖2 − ‖Q′λy‖
2 + ‖Mλγ‖

2.

Thus the minimization overλ is equivalent to maximizing

‖Q′λy‖
2 − ‖Mλγ‖

2.

Solving forγ:
b = C′θ̂ = C′R−1λ (Qλy −Mλγ),=M

′
λ(Qλy −Mλγ),

thus
γ = (M ′

λMλ)
−1(M ′

λQλy − b).

Definezλ = Q′λy and let the QR decomposition ofMλ beMλ = P λUλ, then

γ = (U ′λUλ)
−1(U ′λP

′
λzλ − b) = U

−1
λ (P

′
λzλ − (U

′
λ)
−1b).

Thus
‖Mλγ‖

2 = ‖Pλ(P
′
λzλ − (U

′
λ)
−1b)‖2 = ‖P ′λzλ − (U

′
λ)
−1b‖2

and
θ̂λ = R

−1
λ [(I −P

′
λP λ)Q

′
λy +P λ(U

′
λ)
−1b].

For nonnegativity constraint, we haveb = 0 and the following constraint matrices:

e1, e2, e3, [e2 e3], [e1 e3], [e1 e2],

whereej is thejth standard unit vector of length 3.
To initialize the algorithm ... ?
The algorithm is to tabulate ... ?
Thus

max
λ

(
‖zλ‖

2 − ‖P ′λzλ‖
2
)
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V. NONLINEAR CONSTRAINTS

One would like to be able to impose constraints on the original kinetic parameters, such as fixingk4 to a specified
value, or fixing the ratioK1/k2.

???????????? How to do this ??????????????
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