Active Model Discrimination with Applications to Fraud Detection in Smart Buildings

F. Harirchi, S.Z. Yong, E. Jacobsen and N. Ozay
Proc. IFAC World Congress, Toulouse, France, July 2017.

In this paper, we consider the problem of active model discrimination amongst a finite number of affine models with uncontrolled and noise inputs, each representing a different system operating mode that corresponds to a fault type or an attack strategy, or to an unobserved intent of another robot, etc. The active model discrimination problem aims to find optimal separating inputs that guarantee that the outputs of all the affine models cannot be identical over a finite horizon. This will enable a system operator to detect and uniquely identify potential faults or attacks, despite the presence of process and measurement noise. Since the resulting model discrimination problem is a nonlinear non-convex mixed-integer program, we propose to solve this in a computationally tractable manner, albeit only approximately, by proposing a sequence of restrictions that guarantee that the obtained input is separating. Finally, we apply our approach to attack detection in the area of cyber-physical systems security.