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Abstract: In this paper, we consider the problem of active model discrimination amongst a finite
number of affine models with uncontrolled and noise inputs, each representing a different system
operating mode that corresponds to a fault type or an attack strategy, or to an unobserved
intent of another robot, etc. The active model discrimination problem aims to find optimal
separating inputs that guarantee that the outputs of all the affine models cannot be identical
over a finite horizon. This will enable a system operator to detect and uniquely identify potential
faults or attacks, despite the presence of process and measurement noise. Since the resulting
model discrimination problem is a nonlinear non-convex mixed-integer program, we propose to
solve this in a computationally tractable manner, albeit only approximately, by proposing a
sequence of restrictions that guarantee that the obtained input is separating. Finally, we apply
our approach to attack detection in the area of cyber-physical systems security.
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1. INTRODUCTION

The public interest in the integration of smart systems into
everyday lives is on the rise. These systems, also known as
cyber-physical systems (CPS) and include smart homes,
smart grids, intelligent transportation and smart cities, are
essentially engineered systems that consist of interacting
networks of physical and computational components. How-
ever, as more and more components and functionalities
become integrated, there is an increased risk of unin-
tended system faults and also intentional attacks. Recent
attack incidents, e.g., the Maroochy water breach, the
StuxNet computer worm and industrial security incidents
[Cárdenas et al. (2008); Farwell and Rohozinski (2011)],
highlight a need to address the security of CPS.

Model discrimination as a tool to detect faults, attacks
or more broadly, the system mode of operation, is an
important common problem in statistics, machine learning
and systems theory. Hence, algorithms developed for this
problem can have a significant impact on a wide array
of problems in CPS security, robotics, process control,
medical devices, fault detection, etc.

Literature Review. The problem of discriminating among
a set of models arises in a wide variety of applications such
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as fault or attack detection and isolation, mode estimation
in hybrid systems and intention estimation in human-
robot interactions. The model discrimination approaches
can be broadly categorized as passive and active methods.
In passive methods, the aim is to guarantee discrimination
regardless of the input applied to the system, while active
methods seek an input that guarantees distinction among
models. The former provides “stronger” guarantees but is
limited to problems with specific system properties, while
the latter is “weaker” but is more widely applicable.

The control and hybrid systems community are predomi-
nantly interested in finding system properties that lead to
model discrimination. In the spirit of active methods, Gre-
wal and Glover (1976) and Babaali and Egerstedt (2004)
introduced the system properties of distinguishability and
controlled-discernibility, respectively as the existence of an
input that enables distinguishing between the generated
trajectories for a given time horizon for all admissible
initial conditions. As the passive counterpart, Lou and Si
(2009); Rosa and Silvestre (2011) introduced the concept
of input-distinguishability, i.e., the ability to distinguish
between the behaviors of two linear models for a given time
horizon regardless of the inputs applied to the models.

On the other hand, the fault detection and isolation com-
munity is more focused on the development of compu-
tationally tractable model discrimination algorithms. In
Harirchi and Ozay (2015, 2016); Harirchi et al. (2016), a
computational method for passively discriminating among



fault models is proposed, where a time horizon length
that is sufficient for providing guarantees on discrimination
of system and fault models is calculated (referred to as
the T -detectability problem). Then, a model invalidation
approach is proposed to detect and isolate different fault
models in real-time with a receding horizon scheme with-
out compromising detection/isolation guarantees.

A great deal of attention is also given to model-based ac-
tive fault detection approaches. In Nikoukhah and Camp-
bell (2006); Tabatabaeipour (2015); Scott et al. (2014);
Raimondo et al. (2016), set-membership approaches are
proposed to isolate multiple linear time-varying mod-
els subject to uncertainties and noise. However, these
approaches either suffer from expensive computation or
numerical instability when uncertainties are directly de-
scribed by polytopic constraints, or they sacrifice optimal-
ity by approximating these polytopes with zonotopes for
computational tractability. In contrast, our recent work in
Jacobsen et al. (2017), in the context of intention estima-
tion in autonomous vehicles, considers an active method
for discriminating among a set of affine models with un-
controlled inputs using a Mixed-Integer Linear Program
with Special Ordered Sets constraints. This approach can
directly handle polyhedral uncertainties and can also con-
sider asymmetric responsibilities for state bounds satis-
faction in multi-agent interactions. However, the effect of
noise was neglected, and it was also assumed that the
excitation input does not affect the state constraints.

Then again, the CPS security community is concerned
with both finding system properties and algorithm devel-
opment. The property of strong detectability/observability
of each model has been found to be a necessary condition
in Yong et al. (2015); Fawzi et al. (2014) for detection and
isolation of data injection attacks, and passive attack de-
tection algorithms have been proposed using SMT solvers
in Shoukry et al. (2014), state observers in Pasqualetti
et al. (2013), l1-relaxations in Fawzi et al. (2014) and
mode estimation filters in Yong et al. (2015). To our best
knowledge, active attack detection via input design has
not been explored. The “closest” existing methods use
input watermarks [Mo et al. (2015)] and moving targets
[Weerakkody and Sinopoli (2015)] to aid attack detection.

Contributions. In this paper, we present an active ap-
proach for discriminating among a set of affine models with
uncontrolled inputs, which extends our previous work in
Jacobsen et al. (2017). We additionally consider noise in
the modeling framework (to be distinguished from uncon-
trolled inputs) and relaxed a relatively strong assumption
that the designed input cannot affect the state constraints
that the uncontrolled input is responsible for. This results
in a nonlinear non-convex mixed-integer program. We pro-
pose to solve this in a computationally tractable manner,
albeit only approximately, by proposing a sequence of
restrictions. Instead of relaxations that result in the loss of
feasibility, our solution is guaranteed to be feasible in the
sense that the obtained input guarantees the discrimina-
tion among models, but the resulting objective value may
be suboptimal. Moreover, to the extent of our knowledge,
our work is the first to apply active model discrimination
to attack detection problems in CPS, which we illustrate
with a fraud detection scenario in smart buildings.

2. MOTIVATING EXAMPLE: FRAUD DETECTION

Fig. 1. Four zone radiant system with two heaters

As a motivation for the input design problem studied in
this paper, we consider a potential utility bill fraud sce-
nario in smart buildings. Specifically, we consider attacks
on a building heat management system that intelligently
regulates the indoor temperature by a feedback law based
on weather forecast and sensor readings. An attack takes
the form of sensor measurement manipulation by a tenant
(via data injection attack) in order to achieve his/her
own desired temperature range by taking advantage of the
temperature regulation system of the building. Ideally, an
attacker aims to remain undetected, hence paying less in
utility bills than his/her actual energy consumption.

From our perspective as the building manager, this attack
scenario can result in higher utility costs, thus there is
an incentive for detecting potential sensor data injection
attacks. At the same time, to make the case for intentional
fraud, there is also a need to make sure that the change of
temperature is not a result of a serendipitous fault.

For instance, consider a building floor with two apartments
and a common area (Room 3), where the left apartment
consists of Room 1 and the right apartment consists of
Rooms 2 and 4 (cf. Fig. 1). Suppose further that the in-
telligent building heating management regulates the floor
temperature to approximately 21◦C when the ambient
temperature is (10 ± 2)◦C. A possible attack scenario is
that the left/right tenant chooses to intentionally decrease
the temperature reading of the apartment in order to
trick the heating management system into heating his/her
apartment to the desired temperature range between 24◦C
and 26◦C. On the other hand, the higher temperature may
also be a result of an accidental persistent fault in the
temperature regulation system.

Thus, our objective as the building manager is to mini-
mally perturb the temperature regulation system in order
to conclusively distinguish among a nominal, a fault and
an attack scenario, hence detecting an intentional fraud.

3. PRELIMINARIES

3.1 Notation and Definitions

Let x ∈ Rn denote a vector and M ∈ Rn×m represent a
matrix. The vector norm of x is denoted by ‖x‖i with
i ∈ {1, 2,∞}, MT denotes the transpose of M, while
1 and I represent the vector of ones and the identity
matrix of appropriate dimensions, respectively. The diag
and vec operators are defined for a collection of matrices
Mi, i = 1, . . . , n and matrix M as follows:



n

diag
i=1
{Mi} =

M1

. . .
Mn

 , n
vec
i=1
{Mi} =

M1

...
Mn

 ,
diag
N
{M} = IN ⊗M, vec

N
{M} = 1N ⊗M,

where ⊗ is the Kronecker product. The set of positive
integers up to n is denoted by Z+

n , and the set of non-
negative integers up to n is denoted by Z0

n. We will also
make use of Special Ordered Set of degree 1 (SOS-1)
constraints in our optimization solution, defined as follows:

Definition 1. (SOS-1 Constraints [Gurobi (2015)]). A spe-
cial ordered set of degree 1 (SOS-1) constraint is a set
of integer, continuous or mixed-integer scalar variables
for which at most one variable in the set may take a
value other than zero, denoted as SOS-1: {v1, . . . , vN}.
For instance, if vi 6= 0, then this constraint imposes that
v1 = . . . = vi−1 = vi+1 = . . . = vN = 0.

3.2 Modeling Framework and Problem Formulation

Consider N discrete-time affine time-invariant models
Gi = (Ai, Bi, Ci, Di, fi, gi), each with states xi ∈ Rn,
outputs zi ∈ Rp, and inputs ui ∈ Rm. The models evolve
according to the state equations

xi(k + 1) = Aixi(k) +Biui(k) + fi, (1)

and their output equations are

zi(k) = Cixi(k) +Diui(k) + gi. (2)

The initial condition for model i, denoted by x0
i = xi(0),

is constrained to a polyhedral set:

x0
i ∈ X0 = {x ∈ Rn : P0x ≤ p0}, ∀i ∈ Z+

N . (3)

The states xi are partitioned into xi ∈ Rnx and yi ∈ Rny ,
where ny = n−nx, and the inputs ui are partitioned into
u ∈ Rmu , vi ∈ Rmv and wi ∈ Rmw , where mu + mv +
mw = m, as follows:

xi(k) =

[
xi(k)
yi(k)

]
,ui(k) =

[
u(k)
vi(k)
wi(k)

]
. (4)

These partitions facilitate the modeling of ‘responsibilities’
for the different components of the inputs ui. The states
xi and yi represent the subset of the states xi that are
the ‘responsibilities’ of the controlled and uncontrolled

inputs, u and wi, respectively. The term ‘responsibility’
in this paper is to be interpreted as u and wi, respectively,
having to independently satisfy the following polyhedral
state constraints (for k ∈ Z+

T ):

xi(k) ∈ Xx,i = {x ∈ Rnx : Px,ix ≤ px,i}, (5)

yi(k) ∈ Xy,i = {y ∈ Rny : Py,iy ≤ py,i}, (6)

subject to constrained inputs described by polyhedral sets
(for k ∈ Z0

T−1):

u(k) ∈ U = {u ∈ Rmu : Quu ≤ qu}, (7)

wi(k) ∈ Wi = {w ∈ Rmwi : Qw,iw ≤ qw,i}. (8)

On the other hand, the noise input vi is also polyhedrally
constrained, i.e.,

vi(k) ∈ V = {v ∈ Rmv : Qvv ≤ qv}, (9)

has no responsibility to satisfy any state constraints. In
the fraud detection example in the previous section, u
is the input that the building manager designs, v is the
unknown variation in the ambient temperature, while wi
is the attack signal that is chosen by a selfish tenant.

Remark 1. Since it is the responsibility of wi to satisfy
the constraint in (6), it is important to make sure that
the models are meaningful in the sense that over the time
horizon T of interest and for each i ∈ Z+

N ,

∃wi(k) ∈ Wi,∀k ∈ Z0
T−1 : (6) is satisfied (10)

for any given x0
i ∈ X0and for any given u(k) ∈ U and

vi(k) ∈ V for all k ∈ Z0
T−1. We refer to affine mod-

els satisfying this assumption as well-posed and assume
throughout the paper that the given affine models are
always well-posed. Note that models that do not satisfy
this assumption are unpractical, since we would essentially
be delegating responsibility to the uncontrolled input that
is impossible to satisfy.

Using the above partitions of states and inputs, the cor-
responding partitioning of the state and output equations
in (1) and (2) are:

xi(k + 1) =

[
Axx,i Axy,i
Ayx,i Ayy,i

]
xi(k)

+

[
Bxu,i Bxv,i Bxw,i
Byu,i Byv,i Byw,i

]
ui(k) +

[
fx,i
fy,i

]
,

zi(k) = Cixi(k) + [Du,i Dv,i Dw,i]ui(k) + gi.

Ai,T =


Ai
A2
i
...
ATi

, Θi,T =


I 0 · · · 0
Ai I · · · 0
...

. . .

AT−1
i AT−2

i · · · I

 , A =
N

diag
i=1

{Ai,T },

Ei = diag
T

{Ci},

C =
N

diag
i=1

{Ei},

f i,T = vec
T
{fi},

f̃i,T = Θi,T f i,T ,

f̃ =
N

vec
i=1
{f̃i,T },

g̃i,T = vec
T
{gi},

g̃ =
N

vec
i=1
{g̃i,T },

Du =
N

vec
i=1
{Fu,i}, Dv =

N

diag
i=1

{Fv,i}, Dw =
N

diag
i=1

{Fw,i}, Γu =
N

vec
i=1
{Γu,i,T }, Γv =

N

diag
i=1

{Γv,i,T }, Γw =
N

diag
i=1

{Γw,i,T };

for † = {x, y} and ∗ = {u, v, w} :

B∗,i =

[
Bx∗,i
By∗,i

]
, Γ∗,i,T =


B∗,i 0 · · · 0
AiB∗,i B∗,i · · · 0

...
. . .

AT−1
i B∗,i AT−2

i B∗,i · · · B∗,i

,
F∗,i = diag

T

{D∗,i},

B†∗,d,i,T = diag
T

{B†∗,i},

A†,d,i,T = diag
T

{
[
A†x,i A†y,i

]
},

M†,i,T = A†,d,i,T

[
I

Ai,T−1

]
,

M† = diagNi=1{M†,i,T },

f̃†,i,T = A†,d,i,T

[
0

Θi,T−1

]
f i,T−1 + f†,i,T , f̃† =

N
vec
i=1
{f̃†,i,T }, f†,i,T = vec

T
{f†,i},

Γ†∗,i,T = A†,d,i,T

[
0 0

Γ∗,i,T−1 0

]
+B†∗,d,i,T , Γ†u =

N
vec
i=1
{Γ†u,i,T }, Γ†v =

N

diag
i=1

{Γ†v,i,T }, Γ†w =
N

diag
i=1

{Γ†w,i,T }, (?)



Further, we will consider a time horizon of length T and
introduce some time-concatenated notation. The time-
concatenated states and outputs are defined as

xi,T =
T

vec
j=1
{xi(j)}, xi,T =

T
vec
j=1
{xi(j)},

yi,T =
T

vec
j=1
{yi(j)}, zi,T =

T
vec
j=1
{zi(j)},

while the time-concatenated inputs are defined as

ui,T =
T−1
vec
j=0
{ui(j)}, uT =

T−1
vec
j=0
{u(j)},

vi,T =
T−1
vec
j=0
{v(j)}, wi,T =

T−1
vec
j=0
{wi(j)}.

Then, concatenating x0
i , xi,T , xi,T , vi,T , wi,T , yi,T and zi,T

across all modes as

x0 =
N
vec
i=1

{x0
i }, xT =

N
vec
i=1

{xi,T }, xT =
N
vec
i=1

{xi,T }, (11)

vT =
N
vec
i=1

{vi,T }, wT =
N
vec
i=1

{wi,T }, yT =
N
vec
i=1

{yi,T }, zT =
N
vec
i=1

{zi,T },

the states and outputs over the entire time horizon can
be written as simple functions of the initial state x0 and
input vectors uT and wT , as well as noise vT :

xT = Mxx0 + ΓxuuT + ΓxvvT + ΓxwwT + f̃x, (12)

yT = Myx0 + ΓyuuT + ΓyvvT + ΓywwT + f̃y, (13)

xT = Ax0 + ΓuuT + ΓvvT + ΓwwT + f̃ , (14)

zT = CxT +DuuT +DvvT +DwwT + g̃, (15)

where the matrices and vectors M∗, Γ∗u, Γ∗v, Γ∗w and f̃∗
for ∗ ∈ {x, y}, as well as A, Γu, Γv, Γw, C, Du, Dv, Dw,

f̃ and g̃ are summarized in (?).

3.3 Active Model Discrimination Problem

The problem of input design for model discrimination can
be defined formally as follows:

Problem 1. (Active Model Discrimination). Find an opti-
mal input sequence u∗T subject to the input constraint
in (7) and its corresponding ‘responsibility’ in (5) that
minimizes a desired or given cost function c(uT ) such
that for any plausible output sequence zT that satisfies
(3),(6),(8),(9), only one model is valid. In other words,
find a feasible and optimal input sequence u∗T such that
the output trajectories of each pair of models have to differ
in at least one time instance for all possible initial states
x0 and uncontrolled input and noise sequences wT and
vT . The optimization problem can be formally stated as
follows:

min
uT ,xT

c(uT )

s.t. ∀k ∈ Z+
T : (2),(4),(5) hold, (16a)

∀k ∈ Z0
T−1 : (1),(7) hold, (16b)

∀i, j ∈ Z+
N : i < j, ∃k ∈ Z0

T : zi(k) 6= zj(k) (16c)

∀vT , wT , yT ,x0 : (3),(6),(8),(9) hold. (16d)

From the above problem statement, we note that the input
u we design has to satisfy the state constraints in (5) for
all models i ∈ Z+

N and for any initial state x0
i ∈ X0 and

noise input vi(k) ∈ V, similar in spirit to robust control
problems. On the other hand, the uncontrolled input wi
has to only satisfy its corresponding state constraints in
(6), with the “aid” of the initial state and noise input.

4. ACTIVE MODEL DISCRIMINATION APPROACH

In this section, we present our approach to solve Problem
1. Section 4.1 follows a similar approach to our previous
work in Jacobsen et al. (2017) to formulate the active
model discrimination problem as a mixed-integer linear
program (MILP), but further includes direct feedthrough
terms and also process and measurement noise. On the
other hand, Section 4.2 proposes a sequence of optimiza-
tion problems that can overcome the difficulty associated
with relaxing a relatively restrictive assumption in Jacob-
sen et al. (2017).

4.1 Model Discrimination via an MILP

In this section, our objective is to convert Problem 1 to
a tractable optimization problem. Hence, we first replace
the non-convex separability condition in (16c) with |zi(k)−
zj(k)| ≥ ε, where ε is the amount of desired separation or
simply the machine precision or optimization tolerance,
and then by introducing slack variables and SOS-1 con-
straints, we transform (16c) into:

∀i, j ∈ Z+
N , i < j,

∀l ∈ Z+
p , k ∈ Z0

T ,
∀α ∈ {1, 2}

:

zi,l(k)−zj,l(k)−ε+si,j,k,l,1 ≥ 0,
zj,l(k)−zi,l(k)−ε+si,j,k,l,2 ≥ 0,
ai,j,k,l,α ∈ {0, 1},
SOS-1: {si,j,k,l,α, ai,j,k,l,α},

(17)

∑
k∈Z0

T

∑
l∈Z1

p

∑
α∈{1,2}

ai,j,k,l,α ≥ 1, (18)

where a is the vector of binary variables ai,j,k,l,α concate-
nated over the indices in the order i, j, k, l, α, and s is
similarly a vector of slack variables si,j,k,l,α, defined as
s = [sT1 sT2 ]T, where sα for α ∈ {1, 2} is defined in (??).

The above problem formulation is still nontrivial because
of the semi-infinite constraints in the form of (16d).
Hence, we will convert this problem into the following
mixed-integer linear program (MILP) using some tools
from robust optimization Ben-Tal et al. (2009); Bertsimas
et al. (2011). However, before we proceed, note that the
constraint (6) that represents the responsibility of the
uncontrolled (attack) input can be obtained in terms of
the uncertain variables x = [xT

0 vTT wT
T ]T as

Hyx ≤ py − P yΓyuuT − P y f̃y,
where Hy, py, P y, Γyu and f̃y are defined in (?) and (??).
Then, we can obtain the following result by assuming that
P yΓyu = 0 (to avoid bilinear terms as will be discussed
below), proof of which follows directly from our previous
work in Jacobsen et al. (2017).

Theorem 1. (Discriminating Input Design (DID)). Let
P yΓyu = 0 where P y and Γyu are defined in (?) and (??).
Then, given well-posed affine models and the separability
index ε, the following problem:

min
uT ,s,a,Π

c(uT ) (PDID)

s.t. QuuT ≤ qu,ΦTΠ = RT,Π ≥ 0, (19a)

ΠTφ ≤ r(uT , s), (19b)

a ∈ {0, 1}pTN(N−1), (19c)∑
k∈Z0

T

∑
l∈Z1

p

∑
α∈{1,2}

ai,j,k,l,α ≥ 1, (19d)

SOS-1: {si,j,k,l,α, ai,j,k,l,α}, (19e)



∀i, j ∈ Z+
N : i < j, ∀l ∈ Z1

p, ∀k ∈ Z0
T and α ∈ {1, 2}, where

Π is a matrix of dual variables, while Qu, Φ, R, qu, φ and
r(uT , s) are problem-dependent matrices and vectors that
are defined in (??), is equivalent up to the separability
index ε to Problem 1 and its solution is optimal.

The equivalence up to the separability index ε can be
interpreted as a restriction, which enforces a ‘stricter’ sep-
aration of the output trajectories by a minimum ‘distance’
ε in at least one time instance. As ε → 0, this restriction
becomes equivalent to (16c). In this paper, we consider ε
to be the numerical precision of the solver.

Through simple matrix manipulations, it can be seen that
if P yΓyu 6= 0, then the constraint in (19b) will become

ΠTψ(uT ) ≤ r(uT , s), (20)

where ψ(uT ), defined in (??), is a linear function of uT
that is a decision variable. Hence, a bilinear term will ap-
pear, which makes the problem a non-linear mixed-integer
program. In the next section, we provide an algorithm to
solve Problem 1 for this case in a tractable manner.

4.2 Sequence of Restrictions

As discussed before, (PDID) becomes a mixed-integer non-
linear problem because of the bilinear term that appears
in (19b) as a result of the product between ΠT and ψ(uT ).
In order to solve this nonlinear program, we propose to
solve a sequence of problems with restricted feasibility sets.
This ensures the feasibility of the obtained solution, if the
approach finds one; that is, the solution will indeed be
separating. We show that this approach is computationally
tractable, but comes at a cost that the obtained solution is
no longer guaranteed to be optimal. First, recall from (20)
that the bilinear terms come from the dependence of the
uncertainty set, Φx ≤ ψ(uT ), on our control actions, uT .
By relaxing this uncertainty set, we restrict the feasibility
set of uT . That is, by giving more freedom to the uncon-
trolled (attack) inputs, we restrict the set of our available
actions. Let us define:

ψ̃i0 = max
uT∈UT

ψi(uT ), (21)

where ψ̃i0 and ψi(uT ) are the ith rows of ψ̃0 and ψ(uT ),

respectively. Clearly, ψ̃0 denotes the component-wise max-
imum of ψ(uT ) over all of our available actions. Now,

replacing ψ(uT ) with ψ̃0 will be a relaxation of

Φx ≤ ψ(uT )→ Φx ≤ ψ̃0,

which in turn results in a restriction on our inputs. With
this, we will now define the restricted model discrimination
problem as:

Problem 2. The restricted active model discrimination
problem with parameter ψ̃ is defined as in (PDID), except

with ψ(uT ) being replaced with constant vector ψ̃. We

refer to this problem as Restricted(ψ̃).

Note that the above problem can now be tractably solved
using off-the-shelf mixed-integer linear program (MILP)
softwares. However, the obtained solution can be far from
optimal. Hence, in order to obtain a better solution that
remains feasible, we propose the following algorithm to
implement a sequence of restrictions (cf. Fig. 2).

Algorithm 1 Sequence of Restrictions

1: Input: ψ̃0 (cf. (21)), ν (convergence criterion).
2: Initialize: k = 0.
3: Solve uT,0 = Restricted(ψ̃0).
4: Let ρ0 = c(uT,0) and ρ−1 = ρ0 + ν.
5: if (ρk−1 − ρk ≥ ν) then, repeat the following:
6: k ← k + 1.

7: Let ψ̃k =
nψ
vec
i=1

ψ̃ik (nψ = cardinality of ψ(uT )) with

ψ̃ik = max
uT∈UT∩{uT |c(uT )≤ρk−1}

ψi(uT ).

8: Solve uT,k = Restricted(ψ̃k).
9: Let ρk = c(uT,k).

10: else
11: return uT,k, ρk.
12: end if

Besides being computationally tractable, the above algo-
rithm possesses nice properties as is shown in the following.

Theorem 2. Every solution uT,k produced by Algorithm 1
is a (suboptimal) feasible solution to (PDID) and the cor-

for † = {x, y} : P † =
N

diag
i=1

diag
T

{P†,i}, p† =
N

diag
i=1

diag
T

{p†,i}, H† = P †
[
M† Γ†v Γ†w

]
, h†(uT ) = p† − P †Γ†uuT − P †f̃†;

Qu = diag
T

{Qu}, Qv = diag
NT

{Qv}, Qw =
N

diag
i=1

diag
T

{Qw,i}, qu = diag
T

{qu}, qv = diag
NT

{qv}, qw =
N

diag
i=1

diag
T

{qw,i}, hy(uT ) = py − P y f̃y ,

for ∗ = {v, w} : F∗ =


F∗,1 −F∗,2 0 · · · · · · 0
F∗,1 0 −F∗,3 0 · · · 0

...
0 · · · · · · 0 F∗,N−1 −F∗,N

, E =


E1 −E2 0 · · · · · · 0
E1 0 −E3 0 · · · 0
...
0 · · · · · · 0 EN−1 −EN

, Fu =


Fu,1 − Fu,2
Fu,1 − Fu,3

...
Fu,N−1 − Fu,N

,

Hx =

diag
N

{P0} 0 0

0 Qv 0

0 0 Qw

, hx =

vec
N
{p0}

qv
qw

, g =


g̃1 − g̃2
g̃1 − g̃3

...
g̃N−1 − g̃N

, si,j,α =

vecp
l=1
{si,j,1,l,α}

...
vecp

l=1
{si,j,T,l,α}

, sα =


vecNj=2{s1,j,α}
vecNj=3{s2,j,α}

...
sN−1,N,α

,
E =

[
E
−E

]
, Fu =

[
Fu
−Fu

]
, F v =

[
Fv
−Fv

]
, Fw =

[
Fw
−Fw

]
, g =

[
g
−g

]
, Φ =

[
Hy
Hx

]
, ψ(uT ) =

[
hy(uT )
hx

]
, φ =

[
hy
hx

]
,

Λ = E
[
A Γv Γw

]
+
[
02p×nN F v Fw

]
, λ(uT , s) = ε1− s− g − (EΓu + Fu)uT − Ef̃, R =

[
−Λ
Hx

]
, r(uT , s) =

[
−λ(uT , s)
hx(uT )

]
. (??)



0

Φx ≤ ψ̃0

Φx ≤ ψ̃1

Φx ≤ ψ(u∗T )

(a) Sequence of restricted polytopes {x : Φx ≤ ψ̃}
in the x-space; x = [xT0 vTT wT

T ]T.

0

QuuT ≤ qu

c(uT ) ≤ c(uT,2)

c(uT ) ≤ c(uT,1)

c(uT ) ≤ c(uT,0)

u∗T
uT,2

uT,1

uT,0

(b) Sequence of restricted c(uT )-balls, illustrated as 2-norm balls, and
the polytope {uT : QuuT ≤ qu} in the uT -space; ρk = c(uT,k).

Fig. 2. Illustration of the sequence of restrictions algorithm.

responding objective value ρk is monotonically decreasing.
Furthermore, Algorithm 1 terminates.

Proof. Let uT,k be a solution to Restricted(ψ̃k). Then,
by definition of the uncertainty set in Line 7 of Algorithm
1, uT,k is also a solution to Restricted(ψ̃k+1). Since {Φx ≤
ψ̃k+1} ⊆ {Φx ≤ ψ̃k} by construction with the component-
wise maximum in (21) (cf. Fig. 2(a)), we obtain ρk+1 ≤ ρk
(cf. Fig. 2(a)) since the solutions are optimal for their
respective problems. Thus, ρk = c(uT,k) form a decreasing
sequence of real numbers. Since ρk ≥ 0 is bounded
from below by assumption, ρk converge by the monotone
convergence theorem; thus, the algorithm terminates.

5. APPLICATION TO FRAUD DETECTION IN
SMART BUILDINGS

5.1 System Model

Nominal Model. We consider a building with four
rooms, which has a radiant system with two heaters
(boilers+pumps), adapted from Nghiem et al. (2013) and
illustrated in Fig. 1. We assume that the building manager
has direct control over the core temperatures of both
boilers. Furthermore, he/she has access to temperature
measurements of all four rooms. In addition, we assume
constant flow for both pumps.

This system can be represented by an affine state-space
model with four states and two inputs, as follows:

c1Ṫ1(t) = kr,1(Tc,1 − T1) + k1(Ta − T1) +
∑

j∈{2,3} k1j(Tj − T1)

c2Ṫ2(t) = kr,2(Tc,2 − T2) + k2(Ta − T2) +
∑

j∈{1,4} k2j(Tj − T2)

c3Ṫ3(t) = k3(Ta − T3) +
∑

j∈{1,4} k3j(Tj − T3)

c4Ṫ4(t) = kr,4(Tc,2 − T4) + k4(Ta − T4) +
∑

j∈{2,3} k4j(Tj − T4),

where the list of parameters are given in Table 1 and
their values 1 are chosen according to the ranges provided
in Nghiem et al. (2013) and with initial conditions 20 ≤
Ti(0) ≤ 26 for i ∈ {1, 2, 3, 4}. Additionally, we model the
ambient temperature as Ta = T a + δTa, with a known
average T a and a bounded uncertainty δTa ∈ Ta.

The system is discretized with a sampling time of 5
minutes. The system matrices of the discrete state space
are obtained as follows:
1 Ta = 10, k1 = 1

2.1
, k2 = 1

2.1
, k3 = 1

2.1
, k4 = 1

1.9
, kr,1 = 1

0.125
,

kr,2 = 1
0.125

, k12 = k21 = 1
0.16

, k13 = 1
0.16

, k24 = k42 = 1
0.2

,

k34 = k43 = 1
0.16

, c1 = 1800, c2 = 1800, c3 = 2000, c4 = 2100,
cr,1 = 3500, cr,2 = 3500.

Table 1. Radiant system parameters

Ta ambient air temperature (◦C)
Ti air temperature of zone i (◦C)
Tc,i core temperature of zone i (◦C)
ki thermal conductance between Ti and Ta (W/(Km2))
kr,i thermal conductance between Tc,i and Ti (W/(Km2))
kij thermal conductance between zones i and j (W/(Km2))
ci thermal capacitance of zone i (kJ/K)
cr,i thermal capacitance of the slab of zone i (kJ/K)

A =

0.0907 0.0659 0.1232 0.0672
0.0659 0.0817 0.0758 0.0725
0.1109 0.0682 0.2558 0.1344
0.0576 0.0621 0.1280 0.1233

 , C = I4, f =

0.4583
0.4357
0.5928
0.4648

 ,
Bu =

0.4303 0.1768
0.1232 0.5373
0.1571 0.2143
0.0536 0.5289

 , Bv =

0.04583
0.0436
0.0593
0.0465

 , D = 0,

where the inputs are the boiler core temperatures Tc,1 and
Tc,2, while the noise is the uncertainty in the ambient
temperature δTa. An output feedback controller ũ =

Kz + uff + u (with K =
[
−0.087 0 0 0

0 0.3228 0 −0.0974

]
and

uff =
[

23.7704
17.0980

]
) is designed to regulate the temperature

of the first room and the average temperature of the
second and fourth rooms to a common desired temperature
(21◦C for this example). In addition, the manager adds
a signal u as an active input that will be designed to
detect attacks and faults. In the nominal case (no faults
nor attacks), the output equation corresponds to the
temperature measurements of all rooms, i.e., z(t) = x(t) =
[T1(t) T2(t) T3(t) T4(t)]T.

Attack Model. The attack model assumes that the ten-
ant of Room 1 (attacker) manipulates the temperature
reading in his/her room by adding a signal a1(t) while
preventing the active input u from being added by the
building manager. More specifically, the attacker exploits
the output feedback mechanism with the goal of regulat-
ing the temperature of Room 1 to his/her desired range.
Mathematically, the output equation for the attack model
is given by:

z(t) = Cx(t)+Du(t)+

[
a1(t)
0

]
,−200 ≤ a1(t) ≤ 200. (22)

We further assume that the desired temperature of the
attacker is 24 ≤ T1(t) ≤ 26. In our modeling framework,
this means that it is the responsibility of the attack signal
a1(t) to keep T1(t) in the desired range at all times.



Fault Model. To make the problem more interesting, we
also consider a fault model that can cause a behavior
similar to the one of the attack scenario. We assume
that the valve of the pump of the first heater is stuck
somewhere in middle, and therefore, the flow is slower. The
effect of such a fault is modeled by: (i) changing the heat
conductance between the first room and its core water to
half of its nominal value, and (ii) modeling the uncertainty
in the position of valve as a fault input (a noise with no
responsibilities), wf (t).

Using the above models, Fig. 3 shows a sample trajectory
of nominal, attack and fault models for two different active
inputs u. As shown in the figure, the fault and attack
models can produce similar outputs when no separating
input is applied, whereas a separating input forces the
trajectory of the fault model out of the attacker’s desired
temperature, thus enables us to distinguish between them.
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Fig. 3. Representative trajectories of three models when no
input is applied (left), and when a separating input is
applied (right).

5.2 Simulation Results

In this section, we present some results that are obtained
when applying the proposed active model discrimination
approach to the motivating example of fraud detection
in smart buildings, described in Section 2. Our proposed
method is general enough to capture a wide variety of
attack and fault models in large residential and commercial
buildings, but for illustration purposes, we restrict our-
selves to a small residential building where the nominal,
attack and fault models are obtained from first principles,
as previously described with the following uncertainty and
input sets: Ta = [−2, 2], U = {u(t) | u(t) ∈ [−30, 30]}
and Wf = {wf (t) | wf (t) ∈ [−85, −150]} (set of
fault inputs), unless otherwise specified. All the examples
are implemented on a 3.4 GHz machine with 16 GB of
memory that runs MacOS. For the implementation of the
active model discrimination algorithms, we utilized Yalmip
[Löfberg (2004)] and Gurobi [Gurobi (2015)] in MATLAB.

Convergence of Sequence of Restrictions. In Section 4.2,
we proposed an iterative approach for tractably finding a
feasible but potentially suboptimal solution to the active
model discrimination problem. In Fig. 4, we plot the ob-
jective value versus the iteration number of the algorithm
for three different objective functions. As illustrated by
figure, the objective value is monotonically decreasing and
converges after a few iterations, as desired. The criterion
to stop the iterative process in this numerical example is
chosen to be ‖uk−1

T ‖? − ‖ukT ‖? < ν, where ? ∈ {1, 2,∞},
ν is the numerical machine tolerance and ukT denotes the
solution at iteration k.
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Fig. 4. Objective value vs. iterations.

Effect of Uncertainty in Ambient Temperature. The ef-
fect of noise or uncertainty is demonstrated here through
simulation. We solve sequences of restricted active model
discrimination problems (cf. Algorithm 1) for a range of
uncertainty bounds in the ambient temperature. As ex-
pected, the value of objective value after the convergence of
the sequence of restrictions increases when the uncertainty
bound grows. The results are illustrated in Fig. 5.

Uncertainty Bound
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Fig. 5. Objective value vs. noise bound.

Effect of Objective Function on Separating Inputs. The
intermediate separating inputs (before convergence) ob-
tained from Algorithm 1 are illustrated in Fig. 6 for
three different objective functions. Additionally, on the
bottom right plot, the resulting “converged” inputs from
Algorithm 1 are shown for all three objective functions,
when only cooling (negative) inputs are allowed. Note
that the color bars indicate the direction of convergence
with increasing iterations. This also corresponds to a
non-increasing sequence of objective values, as desired.
Moreover, we observe that heating solutions have smaller
objective values in this particular example.
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Fig. 6. Separating inputs for all iterations of Algorithm 1
for different objective functions (except bottom right).
Separating inputs obtained from Algorithm 1 when
only cooling is allowed (bottom right).



6. CONCLUSION

In this paper, we proposed an optimization-based ap-
proach for finding a separating input that guarantees
the distinction amongst multiple noisy affine models with
uncontrolled inputs. In our modeling framework, these
uncontrolled inputs, which can include attack signals, are
inputs of rational agents that have asymmetric responsi-
bilities to satisfy state and input constraints that are rep-
resented by polyhedral constraints. This new framework
extends our previous work in Jacobsen et al. (2017) by
adding direct feedthrough and also noise (similar to uncon-
trolled inputs but without responsibilities). In addition, we
removed the assumption that the states constraints that
the uncontrolled/attack input are responsible for cannot
be affected by the controlled inputs. The elimination of this
assumption leads to bilinear terms that make the model
discrimination problem nonlinear and non-convex.

Thus, we proposed an algorithm, which leverages a se-
quence of restrictions to find a feasible suboptimal solution
in a computationally tractable manner. The sequence of
mixed-integer linear programs (MILP) can be solved using
off-the-shelf optimization softwares. To illustrate the effi-
cacy of this approach, we applied it to the problem of fraud
detection in smart buildings, where we considered both
fault and attack models. The proposed approach delivered
a suboptimal input that discriminates among nominal,
fault and attack models, even when the separating control
inputs are restricted to have significantly smaller bounds
than that for the attacker.

As a future direction, we will employ nonlinear optimiza-
tion approaches to solve a relaxation of Problem 1, which
will provide us with a lower bound on the optimal value.
Then, by comparing the result of Algorithm 1 with this
obtained lower bound, we can draw conclusions about the
suboptimality of the solution.
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