Publications

Please also see my Google scholar profile; it is sometimes more up to date.

Preprints

Hong, D., Gilman, K., Balzano, L., & Fessler, J. A. (2021). HePPCAT: Probabilistic PCA for Data with Heteroscedastic Noise. ArXiv:2101.03468 [Eess, Math, Stat]. http://arxiv.org/abs/2101.03468
Ritchie, A., Balzano, L., & Scott, C. (2020). Supervised PCA: A Multiobjective Approach. ArXiv:2011.05309 [Cs, Stat]. http://arxiv.org/abs/2011.05309
Gilman, K., & Balzano, L. (2020). Grassmannian Optimization for Online Tensor Completion and Tracking in the t-SVD Algebra. ArXiv:2001.11419 [Cs, Eess]. http://arxiv.org/abs/2001.11419
Wang, Y., Thong, T., Saligrama, V., Colacino, J., Balzano, L., & Scott, C. (2019). A gene filter for comparative analysis of single-cell RNA-sequencing trajectory datasets. BioRxiv, 637488. https://doi.org/10.1101/637488
Hong, D., Fessler, J. A., & Balzano, L. (2018). Optimally Weighted PCA for High-Dimensional Heteroscedastic Data. ArXiv:1810.12862 [Math, Stat]. http://arxiv.org/abs/1810.12862
Zhang, D., & Balzano, L. (2016). Convergence of a Grassmannian Gradient Descent Algorithm for Subspace Estimation From Undersampled Data. ArXiv:1610.00199 [Cs, Math, Stat]. http://arxiv.org/abs/1610.00199

Published

2021

Lipor, J., Hong, D., Tan, Y. S., & Balzano, L. (2021). Subspace clustering using ensembles of K-subspaces. Information and Inference: A Journal of the IMA, 10(1), 73–107. https://doi.org/10.1093/imaiai/iaaa031
Ongie, G., Pimentel-Alarcón, D., Balzano, L., Willett, R., & Nowak, R. D. (2021). Tensor Methods for Nonlinear Matrix Completion. SIAM Journal on Mathematics of Data Science, 253–279. https://doi.org/10.1137/20M1323448

2020

Gilman, K., & Balzano, L. (2020). Online Tensor Completion and Free Submodule Tracking With The T-SVD. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 3282–3286. https://doi.org/10.1109/ICASSP40776.2020.9053199
Lipor, J., & Balzano, L. (2020). Clustering quality metrics for subspace clustering. Pattern Recognition, 107328. https://doi.org/10.1016/j.patcog.2020.107328
Bower, A., & Balzano, L. (2020). Preference Modeling with Context-Dependent Salient Features. Accepted to ICML. http://arxiv.org/abs/2002.09615
Lyu, H., Needell, D., & Balzano, L. (2020). Online matrix factorization for Markovian data and applications to Network Dictionary Learning. Journal of Machine Learning Research, 21(251), 1–49. http://jmlr.org/papers/v21/20-444.html
Thong, T., Wang, Y., Brooks, M. D., Lee, C. T., Scott, C., Balzano, L., Wicha, M. S., & Colacino, J. A. (2020). Hybrid Stem Cell States: Insights Into the Relationship Between Mammary Development and Breast Cancer Using Single-Cell Transcriptomics. Frontiers in Cell and Developmental Biology, 8. https://doi.org/10.3389/fcell.2020.00288

2019

Du, Z., Ozay, N., & Balzano, L. (2019). Mode Clustering for Markov Jump Systems. 2019 IEEE 8th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 126–130. https://doi.org/10.1109/CAMSAP45676.2019.9022650
Hong, D., Balzano, L., & Fessler, J. A. (2019). Probabilistic PCA for Heteroscedastic Data. 2019 IEEE 8th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 26–30. https://doi.org/10.1109/CAMSAP45676.2019.9022436
Hong, D., Lei, S., Mathieu, J. L., & Balzano, L. (2019). Exploration of tensor decomposition applied to commercial building baseline estimation. 2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP), 1–5. https://doi.org/10.1109/GlobalSIP45357.2019.8969417
Ritchie, A., Scott, C., Balzano, L., Kessler, D., & Sripada, C. S. (2019). Supervised Principal Component Analysis Via Manifold Optimization. 2019 IEEE Data Science Workshop (DSW), 6–10. https://doi.org/10.1109/DSW.2019.8755587
Gilman, K., & Balzano, L. (2019). Panoramic Video Separation with Online Grassmannian Robust Subspace Estimation. Proceedings of the IEEE International Conference on Computer Vision Workshops. Proceedings of the IEEE International Conference on Computer Vision Workshops. http://openaccess.thecvf.com/content_ICCVW_2019/html/RSL-CV/Gilman_Panoramic_Video_Separation_with_Online_Grassmannian_Robust_Subspace_Estimation_ICCVW_2019_paper.html
Eftekhari, A., Ongie, G., Balzano, L., & Wakin, M. B. (2019). Streaming Principal Component Analysis From Incomplete Data. Journal of Machine Learning Research, 20(86), 1–62. http://jmlr.org/papers/v20/16-627.html

2018

Gitlin, A., Tao, B., Balzano, L., & Lipor, J. (2018). Improving $K$-Subspaces via Coherence Pursuit. IEEE Journal of Selected Topics in Signal Processing, 12(6), 1575–1588. https://doi.org/10.1109/JSTSP.2018.2869363
Hong, D., Balzano, L., & Fessler, J. A. (2018). Asymptotic performance of PCA for high-dimensional heteroscedastic data. Journal of Multivariate Analysis, 167, 435–452. https://doi.org/10.1016/j.jmva.2018.06.002
Hong, D., Malinas, R. P., Fessler, J. A., & Balzano, L. (2018). Learning Dictionary-Based Unions of Subspaces for Image Denoising. 2018 26th European Signal Processing Conference (EUSIPCO), 1597–1601. https://doi.org/10.23919/EUSIPCO.2018.8553117
Ledva, G. S., Balzano, L., & Mathieu, J. L. (2018). Exploring Connections Between a Multiple Model Kalman Filter and Dynamic Fixed Share with Applications to Demand Response. 2018 IEEE Conference on Control Technology and Applications (CCTA), 217–223. https://doi.org/10.1109/CCTA.2018.8511493
Ongie, G., Hong, D., Zhang, D., & Balzano, L. (2018). Online Estimation of Coherent Subspaces with Adaptive Sampling. 2018 IEEE Statistical Signal Processing Workshop (SSP), 841–845. https://doi.org/10.1109/SSP.2018.8450830
Zhang, D., Katz-Samuels, J., Figueiredo, M. A. T., & Balzano, L. (2018). Simultaneous Sparsity and Parameter Tying for Deep Learning Using Ordered Weighted ℓ1 Regularization. 2018 IEEE Statistical Signal Processing Workshop (SSP), 65–69. https://doi.org/10.1109/SSP.2018.8450819
Zhang, D., Wang, H., Figueiredo, M., & Balzano, L. (2018). Learning to Share: Simultaneous Parameter Tying and Sparsification in Deep Learning. International Conference on Learning Representations (ICLR). https://openreview.net/forum?id=rypT3fb0b
Bower, A., Jain, L., & Balzano, L. (2018). The Landscape of Non-Convex Quadratic Feasibility. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 3974–3978. https://doi.org/10.1109/ICASSP.2018.8461868
Du, Z., Balzano, L., & Ozay, N. (2018). A Robust Algorithm for Online Switched System Identification. IFAC-PapersOnLine, 51(15), 293–298. https://doi.org/10.1016/j.ifacol.2018.09.150
Ongie, G., Murthy, N., Balzano, L., & Fessler, J. A. (2018). A Memory-efficient Algorithm for Large-scale Sparsity Regularized Image Reconstruction. Proceedings of the International Conference on Image Formation in X-Ray Computed Tomography. http://arxiv.org/abs/1904.00423
Balzano, L., Chi, Y., & Lu, Y. M. (2018). Streaming PCA and Subspace Tracking: The Missing Data Case. Proceedings of the IEEE, 1–18. https://doi.org/10.1109/JPROC.2018.2847041
Ledva, G. S., Balzano, L., & Mathieu, J. L. (2018). Real-Time Energy Disaggregation of a Distribution Feeder’s Demand Using Online Learning. IEEE Transactions on Power Systems, 1–1. https://doi.org/10.1109/TPWRS.2018.2800535

2017

Zhang, D., Sun, Y., Eriksson, B., & Balzano, L. (2017). Deep Unsupervised Clustering Using Mixture of Autoencoders. University of Michigan Technical Report. https://deepblue.lib.umich.edu/handle/2027.42/145190
Lipor, J., Wong, B. P., Scavia, D., Kerkez, B., & Balzano, L. (2017). Distance-Penalized Active Learning Using Quantile Search. IEEE Transactions on Signal Processing, 65(20), 5453–5465. https://doi.org/10.1109/TSP.2017.2731323
Pimentel-Alarcón, D., Ongie, G., Balzano, L., Willett, R., & Nowak, R. (2017). Low algebraic dimension matrix completion. 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton), 790–797. https://doi.org/10.1109/ALLERTON.2017.8262820
Ongie, G., Willett, R., Nowak, R. D., & Balzano, L. (2017). Algebraic Variety Models for High-Rank Matrix Completion. PMLR, 2691–2700. http://proceedings.mlr.press/v70/ongie17a.html
Lipor, J., & Balzano, L. (2017). Leveraging Union of Subspace Structure to Improve Constrained Clustering. PMLR, 2130–2139. http://proceedings.mlr.press/v70/lipor17a.html
Pimentel-Alarcón, D., Balzano, L., Marcia, R., Nowak, R., & Willett, R. (2017). Mixture regression as subspace clustering. 2017 International Conference on Sampling Theory and Applications (SampTA), 456–459. https://doi.org/10.1109/SAMPTA.2017.8024386
Eftekhari, A., Balzano, L., & Wakin, M. B. (2017). What to Expect When You Are Expecting on the Grassmannian. IEEE Signal Processing Letters, 24(6), 872–876. https://doi.org/10.1109/LSP.2017.2684784
Zhang, D., & Balzano, L. (2017). Matched subspace detection using compressively sampled data. 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 4601–4605. https://doi.org/10.1109/ICASSP.2017.7953028
Ganti, R., Rao, N., Balzano, L., Willett, R., & Nowak, R. (2017, February 13). On Learning High Dimensional Structured Single Index Models. Thirty-First AAAI Conference on Artificial Intelligence. Thirty-First AAAI Conference on Artificial Intelligence. https://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14480
Gregory Ongie, D. H., & Dejiao Zhang, L. B. (2017). Enhanced Online Subspace Estimation via Adaptive Sensing. Asilomar Confernce on Signals, Systems, and Computers. Asilomar Confernce on Signals, Systems, and Computers. https://pdfs.semanticscholar.org/ba2f/61c45e92ae471552d55a8350f7211b02e6b0.pdf

2016

Kennedy, R., Balzano, L., Wright, S. J., & Taylor, C. J. (2016). Online algorithms for factorization-based structure from motion. Computer Vision and Image Understanding, 150, 139–152. https://doi.org/10.1016/j.cviu.2016.04.011
Hong, D., Balzano, L., & Fessler, J. A. (2016). Towards a theoretical analysis of PCA for heteroscedastic data. 2016 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton), 496–503. https://doi.org/10.1109/ALLERTON.2016.7852272
Pimentel-Alarcón, D., Balzano, L., & Nowak, R. (2016). Necessary and sufficient conditions for sketched subspace clustering. 2016 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton), 1335–1343. https://doi.org/10.1109/ALLERTON.2016.7852389
Xiao, P., & Balzano, L. (2016). Online sparse and orthogonal subspace estimation from partial information. 2016 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton), 284–291. https://doi.org/10.1109/ALLERTON.2016.7852242
Pimentel-Alarcón, D., Balzano, L., Marcia, R., Nowak, R., & Willett, R. (2016). Group-sparse subspace clustering with missing data. 2016 IEEE Statistical Signal Processing Workshop (SSP), 1–5. https://doi.org/10.1109/SSP.2016.7551734
Zhang, D., & Balzano, L. (2016). Global Convergence of a Grassmannian Gradient Descent Algorithm for Subspace Estimation. Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, 1460–1468. http://jmlr.org/proceedings/papers/v51/zhang16b.html

2015

Lipor, J., & Balzano, L. (2015). Margin-based active subspace clustering. 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 377–380. https://doi.org/10.1109/CAMSAP.2015.7383815
Lipor, J., Balzano, L., Kerkez, B., & Scavia, D. (2015). Quantile search: A distance-penalized active learning algorithm for spatial sampling. 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton), 1241–1248. https://doi.org/10.1109/ALLERTON.2015.7447150
Ledva, G. S., Balzano, L., & Mathieu, J. L. (2015). Inferring the behavior of distributed energy resources with online learning. 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton), 187–194. https://doi.org/10.1109/ALLERTON.2015.7447003
Ganti, R. S., Balzano, L., & Willett, R. (2015). Matrix Completion Under Monotonic Single Index Models. Proceedings of the Conference for Advances in Neural Information Processing Systems, 1864–1872. http://papers.nips.cc/paper/5916-matrix-completion-under-monotonic-single-index-models

2014

Kennedy, R., Taylor, C. J., & Balzano, L. (2014). Online completion of Ill-conditioned low-rank matrices. 2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP), 507–511. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=7032169
Balzano, L., & Wright, S. J. (2014). Local Convergence of an Algorithm for Subspace Identification from Partial Data. Foundations of Computational Mathematics, 1–36. http://link.springer.com/article/10.1007/s10208-014-9227-7
He, J., Zhang, D., Balzano, L., & Tao, T. (2014). Iterative Grassmannian optimization for robust image alignment. Image and Vision Computing, 32(10), 800–813. http://www.sciencedirect.com/science/article/pii/S0262885614000523
Pimentel, D., Nowak, R., & Balzano, L. (2014). On the sample complexity of subspace clustering with missing data. 2014 IEEE Workshop on Statistical Signal Processing (SSP), 280–283. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6884630
Lipor, J., & Balzano, L. (2014). Robust blind calibration via total least squares. 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 4244–4248. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6854402&tag=1
Kennedy, R., Balzano, L., Wright, S. J., & Taylor, C. J. (2014). Online algorithms for factorization-based structure from motion. 2014 IEEE Winter Conference on Applications of Computer Vision (WACV), 37–44. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6836120
Brown, S. G., Russell-Graham, A., Xiao, P., & Balzano, L. (2014). Determination of Trends in Ozone in the Mid-Atlantic Using Non-Negative Matrix Factorization. AGU Fall Meeting Abstracts. http://adsabs.harvard.edu/abs/2014AGUFM.A23E3307B
Jun He, Laura Balzano, & Arthur Szlam. (2014). Online Robust Background Modeling via Alternating Grassmannian Optimization. In Background Modeling and Foreground Detection for Video Surveillance (Vol. 1–0, pp. 16-1-16–26). Chapman and Hall/CRC. http://dx.doi.org/10.1201/b17223-20

2013

Balzano, L., & Wright, S. J. (2013). On GROUSE and incremental SVD. 2013 IEEE 5th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 1–4. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6713992
He, J., Zhang, D., Balzano, L., & Tao, T. (2013, April). Iterative Online Subspace Learning for Robust Image Alignment. Proceedings of the IEEE Conference on Face and Gesture Recognition. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6553759

2012

Eriksson, B., Balzano, L., & Nowak, R. (2012). High rank matrix completion. Proc. of Intl. Conf. on Artificial Intell. and Stat. http://jmlr.csail.mit.edu/proceedings/papers/v22/eriksson12/eriksson12.pdf 1
Balzano, L., Szlam, A., Recht, B., & Nowak, R. (2012). K-subspaces with missing data. Statistical Signal Processing Workshop (SSP), 2012 IEEE, 612–615. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6319774
Tan, V. Y., Balzano, L., & Draper, S. C. (2012). Rank minimization over finite fields: Fundamental limits and coding-theoretic interpretations. Information Theory, IEEE Transactions On, 58(4), 2018–2039. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6094216
He, J., Balzano, L., & Szlam, A. (2012). Incremental gradient on the Grassmannian for online foreground and background separation in subsampled video. Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference On, 1568–1575. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6247848

2011

Balzano, L., Nowak, R., & Roughan, M. (2011). On the success of network inference using a markov routing model. 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 3108–3111. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5946353
Tan, V. Y., Balzano, L., & Draper, S. C. (2011). Rank minimization over finite fields. Information Theory Proceedings (ISIT), 2011 IEEE International Symposium On, 1195–1199. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6033722

2010

Balzano, L., Nowak, R., & Recht, B. (2010). Online identification and tracking of subspaces from highly incomplete information. Communication, Control, and Computing (Allerton), 2010 48th Annual Allerton Conference On, 704–711. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5706976
Balzano, L., Recht, B., & Nowak, R. (2010). High-dimensional matched subspace detection when data are missing. Information Theory Proceedings (ISIT), 2010 IEEE International Symposium On, 1638–1642. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5513344

2009

Ni, K., Ramanathan, N., Chehade, M. N. H., Balzano, L., Nair, S., Zahedi, S., Kohler, E., Pottie, G., Hansen, M., & Srivastava, M. (2009). Sensor network data fault types. ACM Transactions on Sensor Networks (TOSN), 5(3), 25. http://dl.acm.org/citation.cfm?id=1525863

2008

Balzano, L., & Nowak, R. (2008). Blind Calibration of Networks of Sensors: Theory and Algorithms. In V. Saligrama (Ed.), Networked Sensing Information and Control (pp. 9–37). Springer US. http://link.springer.com.proxy.lib.umich.edu/chapter/10.1007/978-0-387-68845-9_1
Ganeriwal, S., Balzano, L. K., & Srivastava, M. B. (2008). Reputation-based framework for high integrity sensor networks. ACM Transactions on Sensor Networks (TOSN), 4(3), 15. http://dl.acm.org/citation.cfm?id=1362546

2007

Balzano, L., & Nowak, R. (2007). Blind calibration of sensor networks. Proceedings of the 6th International Conference on Information Processing in Sensor Networks, 79–88. http://dl.acm.org/citation.cfm?id=1236372

2004

Gambiroza, V., Yuan, P., Balzano, L., Liu, Y., Sheafor, S., & Knightly, E. (2004). Design, analysis, and implementation of DVSR: a fair high-performance protocol for packet rings. Networking, IEEE/ACM Transactions On, 12(1), 85–102. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1268081

Thesis

Laura Balzano, Handling Missing Data in High-Dimensional Subspace Modeling, May 2012.