
HANDLING MISSING DATA IN
HIGH-DIMENSIONAL SUBSPACE MODELING

By

Laura Kathryn Balzano

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

(ELECTRICAL AND COMPUTER ENGINEERING)

at the

UNIVERSITY OF WISCONSIN – MADISON

2012

Date of final oral examination: 5/10/2012

The dissertation is approved by the following members of the Final Oral Committee:
Robert Nowak, Professor, Electrical and Computer Engineering
Benjamin Recht, Assistant Professor, Computer Science
Barry Van Veen, Professor, Electrical and Computer Engineering
Jordan Ellenberg, Professor, Mathematics
Stark Draper, Assistant Professor, Electrical and Computer Engineering

c© Copyright by Laura Kathryn Balzano 2012

All Rights Reserved

i

To Mira and Miles Balzano, born weeks before the start of my graduate work,

to Emma Balzano, born half-way through,

and to James Lawrence Hall, born weeks before the completion of this dissertation.

I will continue to watch with wonder and joy as you grow.

ii

Abstract

Big data are making a big splash, with everyone from bookstores to stock brokers, hospitals to libraries,

ecologists to military generals looking to capitalize on data collection opportunities. As we digitize the

information in every part of our lives, and spread automatic data collection capabilities throughout our

homes, workplaces, networks, and roads, there is no doubt that the data deluge is here to stay. Along

with massive data comes a new problem for statistical signal processing: updating our modeling tools

in order to address issues with big data.

Big datasets are by definition massive, requiring computationally efficient techniques. Even more con-

sequential is that the data quality is impossible to control. It is truly inevitable that there will be missing

data, corrupted measurements, and large gaps in collection. Most classical statistical techniques im-

plicitly assume that these issues have been “cleaned” away before modeling. This thesis takes a first

step toward modeling the data as-is without heuristic preprocessing steps that may or may not retain

the important information in a collection of measurements.

This thesis focuses in particular on data which are missing uniformly at random. It also focuses on a

particular model, the subspace model. All of the fundamental principles of subspace estimation, such

as residual vectors and the orthogonality principle, have counterparts for when data are missing. We

present these, along with algorithms to estimate and track subspace models when data are missing. The

algorithms operate in an online fashion and are computationally very efficient. We also present algo-

rithms to estimate unions of subspaces, a generalization of the subspace model that can approximate

modeling with non-linear manifolds.

iii

Acknowledgements

In the course of pursuing my Ph.D., I have been so blessed to have many people giving me endless

support and encouragement.

First and foremost I thank my parents, Ed and Linda Balzano, and my brother Geoff, for their

support from day one. My parents always understood that I loved pursuing education and knowledge,

and they gave me every resource to help me do that, including their full hearts. And I can still remember

the look on my brother’s face in the moment when I clarified that I would be pursuing not a Master’s

degree but a Ph.D. “Really?” he asked. “Why?” And yet from the next moment he supported me every

step of the way. His question served to always remind me to think about why.

I want to thank Professors Don Johnson and Rich Baraniuk at Rice University for showing me

the true beauty of signal processing and for seeing potential in me. I want to thank Ed Knightly and

Violeta Gambiroza for showing me for the first time how fun and rewarding research could be. Thank

you to John Treichler, the CTO of my employer Applied Signal Technology, for working with me on

interesting questions and for giving me a practical perspective on telecommunications.

My friends have been a constant source of support. My friends Josie Row, Kate Soper, Angi Chau,

and Jenny Tsui deserve special thanks for all the conversations about life, graduate school, and career

choices. And thanks especially to Sheila Hall, my best friend of over a decade, for being the most

amazing listener, cheerleader, and friend.

My Ph.D. wouldn’t be what it is without my exposure to the vast open problem of messy datasets

during my Master’s degree at UCLA. My Master’s advisor, Mani Srivastava, so freely shared his knowl-

edge, criticisms, and vision with me; I certainly wouldn’t have the same perspective without him. Thank

you to Deborah Estrin as well, the head of the Center for Embedded Network Sensing, for being such

iv

an excellent mentor and leader. And with warmth I also want to thank Nabil Hajj Chehade, Sadaf Za-

hedi, Sahar Sedighpour, Murat Ozguc, and Bhama Vemuru, my peers without whom I would not have

learned (nor laughed) nearly as much in my classes at UCLA. Thank you also to Nabil for rooting me

on at the Ph.D. finish line with many reminders to keep writing and practice talks via Skype.

At Wisconsin I have been fortunate to interact with so many sharp people who ask great challeng-

ing questions and are also friendly and fun. I want to thank my math teachers, Andreas Seeger and

Gloria Mari-Beffa, for their brilliance and encouragement. Thank you to my committee members for

thoughtful and insightful discussions: Barry Van Veen, Stark Draper, Jordan Ellenberg. Thank you to

Steve Wright, Vincent Tan, Jun He, and Arthur Szlam for being excellent collaborators. Among my

collaborators I send thanks especially to Matthew Roughan, whom I met at a critical point in my Ph.D.

He asked me some simple questions with a deep curiosity, reminding me what I love about mathematics

and signal processing.

Now for the biggest thank yous. Annie Dillard said, “How you spend your days is how you spend

your life.” These people have been around me daily for the past four years. The first thank you goes to

Ben Recht, my CS advisor whose vast technical knowledge has been an amazing source of education for

me. Ben is a caring and thoughtful advisor, and I thank him for his advice and friendship. The next goes

to my academic siblings who provided daily support at UW: my senior siblings Aarti Singh, Rui Castro,

Jarvis Haupt, Brian Eriksson, and Waheed Bajwa, as well as my junior siblings Matt Malloy, Nikhil

Rao, Gautam Dasarathy, Shirzad Malekpour, and Kevin Jameison. The intellectual climate that has

been fostered in the Nowak group is truly unprecedented; I can remember enlightening conversations

with each person that allowed me to make breakthroughs big and small.

Finally, and sincerely, I want to thank my advisor, Rob Nowak. Ever since the first days when he

taught me digital signal processing at Rice University, Rob has been an outstanding mentor, role-model,

and friend. His enthusiasm for research is inexhaustible and infectious. None of us know how he does

it, but with his students and collaborators he manages to foster the most wonderful environment for

v

intellectual discovery. I think it has something to do with his willingness and capacity to support his

students’ growth and independence– a capacity which is truly unrivaled. If I can have half as much fun

in my job as Rob has, I will consider myself successful. I thank Rob for everything he’s done for me,

and I look forward to many years of collaborations in the future.

vi

Contents

Abstract ii

Acknowledgements iii

1 Introduction 1

1.1 Missing Data . 2

1.1.1 A Note on How Data go Missing . 3

1.2 Subspace Models . 4

1.3 Summary and Outline . 5

2 Survey of Related Work 7

2.1 Subspace Detection . 7

2.2 Subspace Tracking . 8

2.2.1 Linear Algebraic Methods . 9

2.2.2 Descent-based methods . 9

2.3 Low-Rank Matrix Completion . 10

2.4 Robust Principal Component Analysis . 13

2.4.1 Robust Subspace Tracking . 14

3 Subspace Projection with Missing Data 15

3.1 Problem Formulation . 15

3.1.1 Weights of the projection of an incomplete vector 16

3.1.2 Discussion of Incoherence . 17

3.2 Theoretical Analysis . 18

vii

3.2.1 Residual Magnitude Estimation from Incomplete Data 18

3.2.2 Orthogonality Principle and Magnitude of the Projection 20

3.2.3 Angle Estimation from Incomplete Data . 22

3.3 Subspace Assignment . 23

3.3.1 Problem Formulation . 24

3.3.2 Theoretical Analysis . 25

3.4 Matched Subspace Detection . 27

3.4.1 Comparison to a Zero-filling Estimator . 29

3.5 Empirical Analysis . 29

3.6 Proofs . 34

3.6.1 Useful Inequalities . 35

3.6.2 Supporting Lemmas for Theorem 3.1 and Proofs 36

4 Subspace Estimation with Missing Data 43

4.1 Problem Formulation . 43

4.1.1 Relation to Matrix Completion . 45

4.2 Algorithm: Grassmannian Rank-One Update Subspace Estimation 45

4.2.1 Complexity . 48

4.2.2 Comparison to methods that have no missing data 48

4.3 Proof of Convergence with no missing data . 50

4.3.1 Monotonic Increase of the Determinant . 53

4.3.2 Stationary Points . 56

4.3.3 Convergence to the Global Optimal Stationary Point 57

4.4 Discussion of Convergence with missing data . 58

4.4.1 Stationary Points . 58

4.4.2 Monotonic Increase of the Determinant . 59

viii

4.4.3 Empirical Evidence . 61

4.5 Empirical Analysis . 62

4.5.1 Static Subspace Estimation . 62

4.5.2 Static Subspaces and LMS Comparison . 64

4.5.3 Subspace Estimation for Matrix Completion 65

A Details of the GROUSE derivation 70

A.1 Derivative of F . 70

A.2 Update Step Derivation . 73

5 Estimating Unions of Subspaces with Missing Data 75

5.1 Problem Formulation . 76

5.1.1 Connections to Low-Rank Completion . 77

5.1.2 Connections to Subspace Clustering . 77

5.1.3 Related Work . 78

5.2 Algorithm: Estimating a Union of Subspaces from Missing Data 78

5.3 Theoretical Analysis . 80

5.3.1 Local Neighborhoods . 83

5.3.2 Local Subspace Completion . 89

5.3.3 Subspace Refinement . 92

5.3.4 Subspace Assignment . 94

5.4 Algorithm: k-GROUSE for Subspace Clustering with Missing Data 97

5.5 Empirical Analysis . 99

6 Subspace Tracking with Missing Data 104

6.1 Subspace Tracking with GROUSE . 104

6.1.1 Empirical Analysis . 104

ix

6.2 Robust Tracking . 107

6.2.1 Robust Tracking by Outlier Detection . 107

6.2.2 Robust Tracking by GRASTA . 109

7 Column Selection with Missing Data 117

7.1 Problem Formulation . 118

7.1.1 Group Lasso Formulation of Missing Data CSS 119

7.2 Algorithm: Block OMP for Missing Data CSS . 120

7.3 Empirical Analysis . 121

7.3.1 Discussion . 122

8 Future Directions and Conclusions 124

8.1 More General Modeling . 124

8.2 Different Models for Missingness . 125

8.3 Conclusion . 125

Bibliography 127

1

Chapter 1

Introduction

Modern signal processing applications present two main challenges, precipitated by the explosion of

data collection in science, engineering, and business as well as in society at large. The first challenge is

that of massive data: data are collected on every aspect of a system and are sometimes collected nearly

continuously. The second challenge, and the focus of this thesis, is that of missing data: nearly every

data collection effort has issues with missing data and the impossibility of collecting every measure-

ment of interest.

Measurement systems are almost never deployed to simply collect measurements but instead de-

ployed to perform inference, estimation, and prediction, or to aid in analysis and decision making. Thus

we focus not on data imputation but on modeling: we wish to estimate model parameters despite the fact

that data are missing. In particular, we focus on estimating or somehow leveraging low-dimensional

subspace models. While addressing this task, we insist on mindfulness to computational issues that

come with massive data; at the same time we intend to use the massive data to our benefit by leveraging

redundancy that is nearly inevitable in heavily measured systems.

In this thesis, the datasets we consider are real valued and take the form of vectors or matrices. For

example, if n sensors are deployed in a sensor network to take measurements every minute, then at each

time snapshot we can consider a length-n vector of the sensors’ measurements, and if we accumulate

T time snapshots we can consider an n× T data matrix of the data from the sensors.

We focus on estimating subspace models with missing data; a little more precisely, we mean the

following. A data value in the dataset is missing if we do not have the measurement, but we do know

2

its location in the data matrix– e.g., the measurement from sensor i at time t is unknown. Then when

considering the collection of underlying complete data vectors, we are interested in finding a low-

dimensional subspace S ⊂ Rn which models these vectors well. In other words, we are interested in

finding a collection of d vectors, d < n, such that the vectors in our data matrix are well-approximated

by a linear combination of these d vectors.

We first motivate the issues of missing (Section 1.1) data. We then motivate subspace models

(Section 1.2), the modeling focus of this thesis.

1.1 Missing Data

Dealing with missing data is a central issue for modern problems in statistical signal processing and

machine learning. At the University of California, Irvine (UCI) database for machine learning data

sets [41], users upload data sets and documentation for others to test their machine learning algorithms.

One piece of meta-data about each data sets is whether or not there are missing values. Approximately

25% of the data sets have a “Yes” in this category1. Not including the data sets which are marked

“N/A”, approximately 40% of the data sets have missing values. In our own research, we have dealt

with data from the UW Computer network, the Center for Embedded Networked Sensing (CENS) Cold

Air Drainage transect2, data capturing signal strength of the public wifi in Madison, Wisconsin, and

data collected on the climate and ecosystem of the lakes in the state of Wisconsin. In all of these data

sets, data were missing.

Taking another perspective on this issue, sometimes it is not that data go missing, but instead that

all the data cannot possibly be collected. In fact the problem of interest may be to infer a subset of

the data points that we don’t have. For example in recommendation systems like Amazon or Netflix,

the company is interested in predicting what products or movies you would like most, given your
1These percentages were calculated out of all available 199 data sets on April 27, 2011. To the question “Missing values?”,

44 said yes, 69 said no and 75 said N/A.
2The Center for Embedded Networked Sensing at UCLA deployed this set of sensors at James Reserve in 2004. (Check

that)

3

preferences so far. Helping you wade through the vast unknown possibilities is exactly their business

model, and to do that these companies try to model your preferences despite very incomplete user

profiles.

Classical signal processing has handled missing data with the EM algorithm [35]. This approach

is appropriate both when actual measurements are missing and when estimating hidden, unmeasured

variables makes inference much easier. The EM approach is very general and widely applied. However,

this approach hinges on the idea that imputing the missing data is required in order to make appropriate

inferences. The work in this thesis instead considers model estimation without a focus on imputing

missing data (though this is often possible as a side-effect). More importantly, in general the EM

algorithm attempts to maximize a likelihood function, and it can only be guaranteed to converge to

a local maximum. The work in this thesis focuses on algorithms with provable approximation of the

global optimum point.

1.1.1 A Note on How Data go Missing

Data may go missing in a variety of ways. In this thesis, we focus on data which are missing uniformly

at random. This means that:

1. Which data are missing or observed is in no way dependent on the actual values themselves;

2. Which data are missing or observed is in no way dependent on which other values are missing or

observed;

3. The probability that any one data point is missing is equal to that of any other data point being

missing.

Though this is not explored in this thesis, relaxing all three of these assumptions is of great interest.

We briefly discuss other models in the future work Section 8.2.

4

1.2 Subspace Models

The subspace model is used throughout engineering and science as a simple but powerful predictor. The

assumption underlying this model is that each data vector is a linear combination of a small number of

principal component vectors or singular vectors.

Intuitively, this is a reasonable model whenever the data vectors are thought to be generated as

a combination of a small number of factors– for example some number of flows through a network

determine the traffic flow across a particular link, or some small number of characteristics factor in to

one’s assessment of a particular product. This model has also proved powerful simply when coordinates

of a data vector are expected to be correlated, like temperature and humidity values across a valley at a

nature preserve [4].

Best approximating subspaces can be estimated in the presence of additive noise or small corrup-

tions. With a batch of complete data, the best d-dimensional subspace approximation to this batch, for

any d, can be found with the Singular Value Decomposition [44]. Part of our contribution focuses on

algorithms that can provably approximate this best d-dimensional subspace when data are missing or

corrupted.

In applications where measurements are periodically taken at regular time intervals, the dataset

grows with every new measurement. The underlying best d-dimensional subspace will change unless

the data are coming from a single d-dimensional subspace for all time. Consider the example in Fig-

ures 1. This plot was generated using two weeks of data collected on the University of Wisconsin

(UW) computer network. Byte counts were collected every 5 minutes on 67 routers in the network,

both incoming and outgoing, for 134 measurements. In the figure, we have windowed a portion of the

data, for different window sizes, and taken the SVD. Then we found the best-fit subspace using the

top singular vectors. The plot shows the number of singular vectors needed to retain 90% of the signal

energy over time. The fact that that number increases as the window grows implies that the subspace

is changing over time; the fact that each line is (somewhat) flat implies that the subspace dimension

5

Sat Sun Mon Tue Wed Thu Fri Sat10

15

20

25

30

time

nu
m

be
r o

f s
in

gu
la

r v
ec

to
rs

Number of singular vectors needed to capture
90% of the signal energy

UW Network Byte Count Data

Window size 1000
500
300

Figure 1: Window size refers to the size of a batch of vectors for which the SVD is taken.

remains the same over time.

The same type of plot is shown in Figure 2 for our CENS cold air drainage data, ozone data from

the UCI machine learning repository, data on the number of births in each country around the world,

and stock prices of the S&P 500. In all but the ozone data, the subspace varies: over time, or over the

size of the window of data to which we attempt to fit our model, or both.

1.3 Summary and Outline

In this thesis we take many perspectives on estimating the low-dimensional subspace model when

data values are missing. In Chapter 3, we show that the fundamental building blocks for subspace

estimation– the projection operator, the orthogonality principle– have counterparts when data values are

missing. We explore this theory in detail and provide simulations for further intuition. We also consider

the problem of subspace detection with missing data. In Chapter 4, we propose the algorithm GROUSE,

Grassmannian Rank-One Update Subspace Estimation, to perform subspace estimation when data are

6

Tue Sat Mon Fri Mon0

5

10

15

20

time

nu
m

be
r o

f s
in

gu
la

r v
ec

to
rs

Cold Air Drainage Data

Window size 300
150
50

(a)

1970 1980 1990 20000

0.5

1

1.5

2

2.5

3

time

nu
m

be
r o

f s
in

gu
la

r v
ec

to
rs

Yearly World Birth Data

Window size 30
20
10

(b)

Sat Mon Tue Wed Thu Sat0

0.5

1

1.5

2

time

nu
m

be
r o

f s
in

gu
la

r v
ec

to
rs UCI Ozone Data

Window size 300
500
1000

(c)

0 500 1000 1500 20000

10

20

30

40

50

day index

nu
m

be
r o

f s
in

gu
la

r v
ec

to
rs

S&P 500 2004−2011

Window size 1000
500
300

(d)

Figure 2: Note the variability in the number of singular vectors needed across the different window
sizes. The variability among a single window size is also important, but we will not address that issue
in this work.

missing. We examine GROUSE’s performance in theory and in simulation. In Chapter 5 we propose

two algorithms for estimating unions of subspaces with missing data. With the first we have a proof

of success; with the second we have a vast speed improvement over the first which we show with

simulation results. In Chapter 6 we discuss the use of GROUSE for tracking subspaces. We also

propose algorithms for tracking subspaces robustly, in the presence of corrupted data, and evaluate

their performance in simulation. Finally in Chapter 7, we derive an optimization problem for selecting

columns from a matrix with missing data, and propose an algorithm to solve it.

7

Chapter 2

Survey of Related Work

Since there are a great many motivating applications for subspace modeling, there is a great deal of

related work. Subspace models have applications in medical [2] and hyperspectral [60] imaging, com-

munications [73], radar [84], and anomaly detection [97], source localization and target tracking in

radar and sonar [59], and multistatic radar [30]. They are useful in computer vision to do background

subtraction [106] and object tracking [32, 101] and to represent a single scene under varying illumina-

tions [10, 78]. Certain patterns of computer network traffic including origin-destination flows can be

well represented by a subspace model [61]. Environmental monitoring of soil and crop conditions [51],

water contamination [80], and seismological activity [105] have all been demonstrated to be efficiently

summarized by very low-dimensional subspace representations. Subspace representations of signals

from sensor networks have been shown to be useful for sensor calibration [4]. Subspace tracking al-

gorithms could enable rapid detection of traffic spikes or intrusions in computer networks or could

provide efficiency gains in managing energy consumption in a large office building [42].

Table 1 shows an organization of our contributions in relation to research in the area. Here we give

a survey of related work in Subspace Detection and Tracking, Subspace Estimation with missing data

or Low-Rank Matrix Completion, and Robust PCA.

2.1 Subspace Detection

Testing whether a signal lies within a given subspace is a problem arising in a wide range of applications

including medical [2] and hyperspectral [60] imaging, communications [73], radar [84], and anomaly

8

Problem no missing data missing data
Subspace Detection [92, 93] Section 3.4
Subspace Assignment [43] Section 3.3
(Multiple Hypothesis Testing)
Subspace Estimation SVD [44], PCA [55], Low-Rank Matrix

batch Gradient methods [38, 96] Completion [22, 85]
Subspace Estimation Incremental SVD [90, 19], Chapter 4

incremental Gradient methods [31]
Estimating Unions of Subspaces [56, 102, 63, 29, 112] Chapter 5, [47, 104]
Subspace Tracking Gradient methods [31, 110, 109] Section 6.1
Robust PCA [65, 36, 108] [27, 24]

batch
Robust PCA [71, 64, 83] Section 6.2

incremental
Column Subset Selection [15, 49] Chapter 7

Table 1: An organization of the contributions of this dissertation and representative related work.

detection [97]. The classical formulation of this problem is a binary hypothesis test of the following

form. Let v ∈ Rn denote a signal and let x = v +w, where w is a noise of known distribution. We are

given a subspace S ⊂ Rn and we wish to decide if v ∈ S or not, based on x. Tests are usually based

on some measure of the energy of x in the subspace S, and these ‘matched subspace detectors’ enjoy

optimal properties [92, 93].

Compressed matched subspace detection [81] provides a way to perform matched subspace de-

tection with fewer than full measurements; this work differs from the current thesis in that it uses

compressed measurements, or random linear combinations of all vector entries.

2.2 Subspace Tracking

Comon and Golub [31] give an early survey of adaptive methods for tracking subspaces, both coming

from the matrix computation literature, including Lanczos-based recursion algorithms, and gradient-

based methods from the signal processing literature.

9

2.2.1 Linear Algebraic Methods

Many papers have adapted QR and SVD factorizations for the adaptive context. Bischof and Shroff [14]

uses ideas from the rank-revealing QR decomposition. The authors in [75] provide an O(n2) algorithm

for updating the SVD for subspace tracking problems. This algorithm extends a QR update to an

SVD update with diagonalization and orthogonalization. Another linear algebraic method in [98] is

also an O(n2) algorithm and finds a representation “in between” QR and SVD, which they call the

URV decomposition and has some benefits from both decompositions. The work in [14] uses the

rank-revealing QR factorization and incremental condition estimation [13] in order to take a subspace

estimate of data [v1, v2, . . . , vn] and transform it to an estimate for the next window, [v2, . . . , vn, vn+1],

again O(n2). Finally in [19], an algorithm is presented to make modifications, one column at a time,

to the thin SVD of a strictly rank-d n× n matrix in O(n2d) time.

2.2.2 Descent-based methods

Initial work in signal processing for subspace tracking was aimed at estimating from data the largest

eigensubspace for a signal covariance matrix. This is useful, for example, in direction-of-arrival (DOA)

estimation: the well-known work in [89] introduces ESPRIT, a parameter estimation algorithm that

estimates the DOA of plane waves emanating from a target and being received by a sensor array. It was

a follow up to the MUSIC algorithm [94], and it gains computational efficiency for a slight tradeoff in

generality of sensor array design. Both MUSIC and ESPRIT find vectors which are at the intersection

of the signal subspace and the “array manifold” or the set which includes the steering vectors.

Yang and Kaveh [110] introduced an approach that is not based on batch estimation, thus making

it more suitable for adaptive estimation of the signal subspace and covariance matrix. Their approach,

like ours, is based on instantaneous gradient. This work was followed by [72] who presented a similar

algorithm based on Newton’s method. Both of these algorithms find the best-fit eigensubspace using

the Rayleigh quotient as their cost function, as opposed to the Frobenius norm cost function that we

10

have addressed with our work.

Smith [38, 96, 37] thoroughly pursued conjugate gradient descent methods on the Grassmannian

for solving the subspace tracking problem again using the Rayleigh quotient. In [38] the authors give

a very careful definition of the problem, giving a nice survey comparing the applicability of various

approaches. In [37] is an extensive list of subspace tracking references.

Projection Approximation Subspace Tracking, introduced in [109], is an RLS-type subspace track-

ing algorithm developed from the LMS algorithm we have discussed so far. The PAST algorithm adds

exponential weighting to the cost function, so that data far in the past do not have as much an impact

on the current subspace estimate as recent data.

Dimension estimation is an important problem for subspace tracking. In [82] the authors develop a

rank estimation approach with asymptotic minimax optimality. Future work will be to investigate such

a technique for GROUSE as well as cross-validation techniques that have been applied to the similar

problem of sparsity estimation in compressed sensing [107].

2.3 Low-Rank Matrix Completion

Here we survey the current state-of-the-art low-rank matrix completion algorithms. In this section

only, we use the notation that M is the true underlying matrix, perhaps with some noise added, and Ω

is the index set of entries observed; so MΩ are the observed values. Low-rank matrix completion then

attempts to solve the problem

min
Y

rank(Y) (2.1)

subject to ‖MΩ − YΩ‖2F ≤ ε

where ‖ · ‖F refers to the Frobenius norm. The value of ε can be zero in the noise-free case, implying

equality on the observed entries. It has been shown [22, 85] that under incoherence assumptions on the

11

singular vectors of the true matrix M , the following nuclear-norm minimization problem is equivalent

as long as enough observations are observed:

min
Y

n∑
i=1

σi(Y) =: ‖Y ‖∗ (2.2)

subject to ‖MΩ − YΩ‖2F ≤ ε

where σi(Y) is the ith singular value of Y ; i.e. the nuclear norm is the sum of the singular values. The

problem (2.2) can be solved with a semi-definite program [22].

FPCA [68], or Fixed Point Continuation with Approximate SVD, is an algorithm for solving the

nuclear-norm regularized problem ‖M −Y ‖2F +λ‖Y ‖∗; there exists a regularization parameter λ such

that this problem is equivalent to (2.2). FPCA uses continuation to find a good λ; starting with a large

value of λ gives a good starting point for solving the next SDP with a smaller λ.

An accelerated proximal gradient algorithm for solving the nuclear-norm regularized linear least

squares problem is given in [99]. This algorithm is referred to as NNLS (Nuclear-Norm Least Squares)

or APGL (Accelerated Proximal Gradient with Linesearch). Experiments in [99] show that APGL

outperforms FPCA in both number of algorithm iterations as well as matrix completion error, which is

our experience as well.

The authors of [21] seek to approximately yet efficiently solve the problem (2.2). An iteration of

their Singular Value Thresholding (SVT) algorithm sets entries of YΩ closer to those of MΩ, and then

performs an SVD and a non-linear shrinkage operation on the singular values. This algorithm requires

less memory and computational resources than FPCA and APGL.

ADMiRA [62] is a matrix completion algorithm built on the connections between compressed

sensing and low-rank matrix completion; specifically, ADMiRA extends CoSaMP [76] to the problem

of matrix rank minimization.

Jellyfish [87] is a parallel incremental algorithm that breaks the low-rank matrix completion prob-

lem (and a more general class of problems) into partitions so that each can be solved separately. Many

12

parallel programs which write to the same memory require that piece of memory be locked by one

parallel process at a time, meaning the other processes will stall while waiting for that memory to be-

come available. A major benefit of Jellyfish is that it does not require memory locks to be made on the

gradient update, which is being updated simultaneously by each parallel process.

Another parallel algorithm, DFC [69] or Divide-Factor-Combine, also divides a low-rank matrix

completion problem into several smaller problems. This work leverages some of what is known about

random column and row sampling for low-rank matrix approximation in order to recombine the results

of the smaller problems.

Since algorithms for low-rank matrix completion often search for the column and row space for

M , it is natural to look at algorithms constrained to the Grassman manifold, or the space of all d-

dimensional subspaces. Both the OptSpace [58] and SET [33] algorithms do exactly that. OptSpace [58]

searches for both column and row space by performing gradient descent on the Grasmannian. They

prove their algorithm converges, if it starts from a suitable starting point which is derived in a straight-

forward manner from the observed entries MΩ. The SET, or Subspace Evolution and Transfer, algo-

rithm [33] searches for either the column or the row space using gradient descent, while also detecting

problematic points on the manifold and using a “transfer” procedure to find a new point from which to

conduct the search.

By approaching matrix completion as a column space identification problem, our algorithm GROUSE

(Chapter 4) can be applied to solve the low-rank matrix completion problem. GROUSE finds the sub-

space to minimize the error ‖M − Y ‖2F , and naturally results in a low-dimensional subspace because

the search is constrained to the Grasmannian. GROUSE outperforms all of the above algorithms in

computational efficiency, often by an order of magnitude, while performing competitively in terms of

estimate error.

One reason why GROUSE is so computationally efficient is because it avoids the computation of

the SVD altogether. Each iteration of GROUSE for completion of an m× n matrix of rank d requires

13

only O(md + |Ω|d2) flops, where |Ω| is the number of observations per column. If the number of

iterations is a constant multiple of the number of columns of the matrix as we conjecture, then the

overall computational requirement is O(nmd+ n|Ω|d2).

In contrast, with full data the computation of a full SVD of an m × n requires O(mn2 + n3)

flops [44]. More comparable is the the thin-SVD of [19]. Again with full data, if the rank d of the

matrix is restricted to d <
√

min(m,n) then the algorithm in [19] can be used to compute the thin-

SVD in O(nmd+nd3) flops. For GROUSE with full data, we conjecture that we need only a constant

multiple of the dimension in order to converge, resulting in computation time of O(md2 +nd3) for the

left singular vectors only.

2.4 Robust Principal Component Analysis

Principal Components Analysis [55] is a critical tool for data analysis in many fields. Given a pa-

rameter d for the number of components desired, PCA seeks to find the best-fit (in an l2 norm sense)

d-dimensional subspace to data; in other words, it finds the best d vectors, the principal components,

such that the data can be approximated by a linear combination of those d vectors.

The residuals of an l2-norm error function will be Gaussian distributed. Therefore, even with one

outlier data point, the principal components can be arbitrarily far from those without the outlier data

point [54]. Modern data applications– such as those in sensor networks, collaborative filtering, video

surveillance or the network monitoring example just given– will all experience data failures that result

in outliers. Sometimes the outliers are even the signal of interest, as in the case of network anomaly

detection or identifying moving objects in the foreground of a surveillance camera.

A good deal of research is therefore focused on Robust PCA, including [27, 24]. Recent work

focuses on a problem definition which seeks a low-rank and sparse matrix whose sum is the observed

data. The majority of algorithms use SVD (singular value decomposition) computations to perform

Robust PCA. The SVD is too slow for many real-time applications, and consequently many online

14

SVD and subspace identification algorithms have been developed, as we discussed in Section 2.2. We

are therefore motivated to bridge the gap between online algorithms and robust algorithms with the

work in Chapter 6, Section 6.2.

2.4.1 Robust Subspace Tracking

The work of [71] addresses the problem of robust online subspace tracking. They focus on the problem

where outliers are found in a fraction of vectors (that is, some vectors have no outliers), though they do

remark that this can be extended to handle the case where outliers are sparse in every vector. They have

a very nice proposition relating l0-(pseudo)norm minimization to the least trimmed squares estimator.

We note here that GRASTA, the algorithm in Section 6.2, differs from [71] in that it directly focuses

on the case where every vector may have outliers, it operates on the Grassmannian for greater efficiency,

and it can handle missing data. A comparison to [71] is a subject of future investigation.

More online algorithms for robust PCA can be found in [64, 83].

15

Chapter 3

Subspace Projection with Missing Data

Let S ⊂ Rn be a d-dimensional subspace spanned by the columns of the orthonormal matrix U ∈

Rn×d; the projection operator onto S is thus PS = UUT . Let v ∈ Rn be an arbitrary vector in Rn.

Then v can be written as the direct sum of its in-subspace component PSv and its out-of-subspace,

residual, or orthogonal component (I − PS)v. By the orthogonality principle ([50], p 534), the inner

product 〈PSv, (I − PS)v〉 = 0.

We start by looking at what happens to these fundamental facts, the building blocks for subspace

modeling, when the data vectors are incomplete. The contributions of this chapter, and in fact the

whole thesis, revolve around what we call the incomplete data projection: projecting an incomplete

vector only onto the coordinates of the subspace corresponding to the observed coordinates of the

vector.

In this chapter, we build up the foundation for subspace projections with missing data in Section 3.1.

We look at the multiple hypothesis testing problem for subspaces in Section 3.3 and subspace detection

in Section 3.4.

3.1 Problem Formulation

Again let S ⊂ Rn be a d-dimensional subspace spanned by the columns of the orthonormal matrix

U ∈ Rn×d and let v ∈ Rn be an arbitrary vector in Rn. Let Ω ⊂ {1, . . . , n} be the indices of v that

are observed. In most of the theory of this dissertation, we assume that some number of observations

are chosen uniformly with replacement to constitute Ω, so therefore Ω is actually a multiset and not

16

a subset of {1, . . . , n}. Lemma 5.1 in Chapter 5, Section 2.3 in [25], and Proposition 3.1 in [85] all

address translation between probability results various types of random sampling.

Let vΩ be the vector of dimension |Ω| × 1 comprised of the elements vi, i ∈ Ω, ordered lexigraph-

ically, possibly with repetitions; here |Ω| denotes the cardinality of Ω.

Definition 1. The incomplete data projection residual is defined as

vΩ − PSΩ
vΩ (3.1)

where Ω as a subscript indicates restriction to the rows indicated by Ω, and

PSΩ
= UΩ

(
UTΩUΩ

)†
UTΩ = UΩU

†
Ω (3.2)

is the projection operator onto the observed coordinates, where † denotes the pseudoinverse.

In this section we will show that this incomplete data residual preserves both the magnitude (The-

orem 3.1) and angle (Corollary 3.2.3) of the complete data residual v − UUT v, as long as there are

enough observations, where “enough” depends on the dimension of the subspace and the coherence of

the subspace and the given vector. As a result of Theorem 3.1, we show the orthogonality principle is

maintained (Corollary 3.2.2) and we can bound the norm of the projection itself (Corollary 3.2.2).

3.1.1 Weights of the projection of an incomplete vector

In order to build intuition about the incomplete data residual, we make the following initial observation

for the special case of v ∈ S.

Lemma 3.1. Assume x ∈ S and UTΩUΩ is invertible. Then the weights, or the basis projection coeffi-

cients, of the complete-data and incomplete-data projections onto S are equal:

UTx =
(
UTΩUΩ

)−1
UTΩxΩ .

17

Proof. Call a1 = UTx. Since x ∈ S , Ua1 = x, and a1 is in fact the unique solution to Ua = x.

Now consider the equation UΩa = xΩ. The assumption that UTΩUΩ is invertible implies that a2 =(
UTΩUΩ

)−1
UTΩxΩ exists and is the unique solution to UΩa = xΩ. However, UΩa1 = xΩ as well,

meaning that a1 = a2.

As a consequence of the lemma, we have equality of the residuals, (x−UUTx)Ω = xΩ−UΩU
Tx =

xΩ − PSΩ
xΩ = the all-zeros vector. Thus also, ‖xΩ − PSΩ

xΩ‖ = ‖x− UUTx‖ = 0 when x ∈ S.

3.1.2 Discussion of Incoherence

When a vector is subsampled, there is a risk that important entries of that vector will be missed. As an

extreme example, suppose we subsample a vector v = [1 0 . . . 0]T . Unless we sample the first entry,

then without prior knowledge about the signal structure we will believe from our samples that the vector

is all zero. Consider another situation where the subspace S is spanned by the first d euclidean basis

vectors:

U =

1

0

0
...

0
...

0

0

1

0
...

0
...

0

. . .

0
...

0

1

0
...

0

← d

Thus, the projection of a vector v onto S simply selects the first d components. If those components of

the vector are not observed, then the projection operator of 3.2 will be undefined, as
(
UTΩUΩ

)
will not

be invertible, and the problem w = arg mina ‖vΩ − UΩa‖22 will not have a unique solution.

In order to develop general theory that holds in such a scenario, we must have a way to quantify

18

how much information each sample of v provides.

Definition 2. We define the coherence µ(S) of a d-dimensional subspace S ⊂ Rn to be:

µ(S) :=
n

d
max
j
‖PSej‖22 .

The quantity µ(S) measures the maximum magnitude attainable by projecting a standard basis

element onto S . We use the standard basis because we are considering subsampling vectors entry-wise,

so our vectors or the subspace must be incoherent with respect to this sampling operation. Note that

1 ≤ µ(S) ≤ n
d . The minimum µ(S) = 1 can be attained by looking at the span of any d columns

of the discrete Fourier transform. Any subspace that contains a standard basis element will maximize

µ(S). For a vector z, we let µ(z) denote the coherence of the subspace spanned by z. By plugging in

the definition, we have

µ(z) =
n‖z‖2∞
‖z‖22

.

This parameter µ(·) allows us to make generic statements about the incomplete data residual. If the

coherence parameter of a vector v is near 1, then every sample of v is in some sense equally informative;

if the coherence parameter of a subspace S is near 1, then every coordinate dimension is in some sense

equally representative of the entire subspace.

3.2 Theoretical Analysis

3.2.1 Residual Magnitude Estimation from Incomplete Data

To state our first theorem, write v = x + y where x ∈ S and y ∈ S⊥. Let the entries of v be sampled

uniformly with replacement. Again let Ω refer to the set of indices for observations of entries in v,

and denote |Ω| = m. Given these conventions, we have the following result, which shows that the

magnitude of the incomplete data residual is near that of the complete data residual, when scaled by

the fraction of measurements.

19

Theorem 3.1. Let δ > 0 and m ≥ 8
3dµ(S) log

(
2d
δ

)
. Then with probability at least 1− 4δ,

m(1− α)− dµ(S) (1+β)2

(1−γ)

n
‖v − PSv‖22 ≤ ‖vΩ − PSΩ

vΩ‖22

and

‖vΩ − PSΩ
vΩ‖22 ≤ (1 + α)

m

n
‖v − PSv‖22

where α =
√

2µ(y)2

m log
(

1
δ

)
, β =

√
2µ(y) log

(
1
δ

)
, and γ =

√
8dµ(S)

3m log
(

2d
δ

)
.

This result is proved in Section 3.6. It uses the following three lemmas whose proofs can also be

seen in Section 3.6.2; we state them here, as two of them are used in further corollaries.

Lemma 3.2. With the same notations as Theorem 3.1,

(1− α)
m

n
‖y‖22 ≤ ‖yΩ‖22 ≤ (1 + α)

m

n
‖y‖22

with probability at least 1− 2δ.

Lemma 3.3. With the same notations as Theorem 3.1,

‖UTΩ yΩ‖22 ≤ (β + 1)2m

n

dµ(S)
n
‖y‖22

with probability at least 1− δ.

Lemma 3.4. With the same notations as Theorem 3.1,

‖ (UTΩUΩ

)−1 ‖2 ≤ n

(1− γ)m

with probability at least 1− δ, provided that γ < 1.

Discussion of Theorem 3.1

In this section we wish to give some intuition for the lower bound in Theorem 3.1. If the parame-

ters α, β, γ are very near 0 (e.g., as n → ∞ and m is a constant fraction of n), our lower bound is

20

approximately equal to
m− dµ(S)

n
‖v − PSv‖22

For an incoherent subspace, the parameter µ(S) = 1. In this case, for m ≤ d the bound is ≤ 0,

which is consistent with the fact that if |Ω| =: m < d, it is very possible to fit the data such that

‖vΩ − PSΩ
vΩ‖2 = 0. For example consider the case where our subspace has dimension d = 1 and

we have only one measurement from our vector; unless that subspace coordinate corresponding to the

measurement location is 0, it is always possible to fit our vector exactly in the subspace on that one

coordinate.

Oncem ≥ d+1, linear algebraic reasoning tells us that ‖vΩ−PSΩ
vΩ‖2 will be strictly positive with

positive probability; Theorem 3.1 goes further to say the norm is strictly positive with high probability

once m ∼ O(d log d).

The parameters α, β, γ all depend on
√

log
(

1
δ

)
; these parameters grow as δ gets very small. In-

creasing the number of observations m will counteract this behavior for α and γ, but this does not hold

for β. In fact, even if the vector y is incoherent and µ(y) = 1, its minimum value, then β = 2 for

δ ≈ .135. To get β very near zero, δ must be very near one, but this is not a useful regime.

We can see, however, that in simulations these large constants are somewhat irrelevant; The large

deviations analysis needed for the proof is overly conservative in most cases. We investigate this in

more detail in Section 3.5.

3.2.2 Orthogonality Principle and Magnitude of the Projection

As a direct consequence of Lemma 3.4, invertibility of UTΩUΩ, we have that the incomplete data pro-

jection residual is orthogonal to the projection PSΩ
vΩ itself.

Corollary.

〈PSΩ
vΩ, (I − PSΩ

)vΩ〉 = 0 .

21

Proof.

〈PSΩ
vΩ, (I − PSΩ

)vΩ〉 = vTΩUΩ

(
UTΩUΩ

)−1
[
I − (UTΩUΩ

) (
UTΩUΩ

)−1
]
UTΩ vΩ

= 0

since
(
UTΩUΩ

)−1 exists.

The next consequence is therefore that vΩ can be written as the direct sum of PSΩ
vΩ and (I −

PSΩ
)vΩ. Thus ‖vΩ‖22 = ‖vΩ − PSΩ

vΩ‖22 + ‖PSΩ
vΩ‖22 and we have the following corollary.

Corollary. Let δ > 0 and m ≥ 8
3dµ(S) log

(
2d
δ

)
. Then with probability at least 1− 6δ,

(1− αv)m
n
‖v‖22 − (1 + α)

m

n
‖v − PSv‖22 ≤ ‖PSΩ

vΩ‖22 (3.3)

and

‖PSΩ
vΩ‖22 ≤ (1 + αv)

m

n
‖v‖22 −

m(1− α)− dµ(S) (1+β)2

(1−γ)

n
‖v − PSv‖22

where αv =
√

2µ(v)2

m log
(

1
δ

)
, and otherwise we have the same notations as Theorem 3.1.

For intuition here note that as n→∞ andm→ n, the parameters αv, α→ 0 and the left hand side

of Equation 3.3 approaches ‖v‖22 − ‖v − PSv‖22 = ‖PSv‖22. An open question is to develop a result

which reduces to this case when m = n, no matter how large; of course presently we are basing our

results on sampling with replacement, which precludes such a result. Also here we wish to note that

all the results of this section are relative bounds: if ‖PSv‖22 is itself negligible, the result is accordingly

less powerful.

Proof. By Lemma 3.2, we have with probability at least 1− 2δ that

(1− αv)m
n
‖v‖22 ≤ ‖vΩ‖22 ≤ (1 + αv)

m

n
‖v‖22 . (3.4)

Combine this with Theorem 3.1 and we have the result.

22

3.2.3 Angle Estimation from Incomplete Data

Since the residual norm is preserved, then we are also able to estimate the angle between v and its

projection onto S. Define the angle between the vector v and its projection into the subspaces S as θ:

θ = sin−1

(‖v − PSv‖2
‖v‖2

)
(3.5)

and similarly define an estimate of θ given only the observed entries vΩ:

θΩ = sin−1

(‖vΩ − PSΩ
vΩ‖2

‖vΩ‖2

)
(3.6)

As before, let v = x+ y, where x ∈ S, y ⊥ S.

Corollary. Let δ > 0 and m ≥ 8
3dµ(S) log

(
2d
δ

)
. Then with probability at least 1− 6δ,

C(m) sin2(θ) ≤ sin2(θΩ) ≤ 1 + α

1− αv sin2(θ) ,

where

αv =

√
2µ(v)2

m
log
(

1
δ

)
,

and

C(m) =
m(1− α)− dµ(S) (1+β)2

(1−γ)

m(1 + αv)
, (3.7)

where α, β, and γ are defined as in Theorem 3.1 and αv as in Corollary 3.2.2.

Before the proof we point out that C(m)↗ 1 as m→∞.

Proof. Take together Theorem 3.1 and the statement in Equation 3.4 which holds with probability at

least 1− 2δ. Using the union bound we therefore have that with probability at least 1− 6δ,

23

C(m)
‖v − PSv‖22
‖v‖22

≤ ‖vΩ − PSΩ
vΩ‖22

‖vΩ‖22
≤ 1 + α

1− αv
‖v − PSv‖22
‖v‖22

Upon substitution of 3.5 and 3.6, the proof is complete.

3.3 Subspace Assignment

Subspace assignment is the problem of assigning a data vector to one of a collection of subspaces,

i.e. a multiple hypothesis testing problem. This problem arises in any context where data are modeled

not as a single linear subspace but as a union of subspaces, or in other words, as a collection of low-

dimensional linear embeddings. The results in the previous section can be immediately extended to the

problem of subspace assignment with missing data.

Modeling high-dimensional data with a union of subspaces is a useful generalization of subspace

models [67], and has applications in machine learning, imaging, computer vision [32], and system

identification [103]. We discuss estimation of a union of subspaces model with missing data in Chap-

ter 5. An important problem which arises when modeling data with a union of subspaces is subspace

clustering, or clustering vectors into groups that lie in or near the same subspace. The results here will

therefore be useful in Chapter 5 when vectors must be assigned to one of a collection of subspaces.

Many of the subspace clustering algorithms have a subroutine which assigns data vectors to sub-

spaces based on projection residuals [101]. For example, the k-planes clustering algorithm1 [18, 1] is

an alternating minimization algorithm which alternates between estimating subspace parameters given

a clustering of the data and clustering the data using projections to assign the data points to fixed

subspaces.
1This is also called k-subspaces in the literature, and we use the terminology interchangeably.

24

3.3.1 Problem Formulation

The subspace assignment problem can be defined as follows. Given a vector v ∈ Rn and subspaces

S0, . . . ,Sk, we wish to determine the subspace closest to v. With full data, we project v onto each

subspace and choose the subspace with the smallest residual:

argmini‖v − PSiv‖22 , i = 1, . . . , k ,

where PSi is the projection operator onto subspace Si.

The natural question for this thesis is, given an incomplete data vector, how do we determine to

which of k subspaces the vector is closest? We begin by examining the problem of binary subspace

assignment, i.e. k = 2. Let v ∈ Rn and let S0 ⊂ Rn and S1 ⊂ Rn be subspaces of dimension d0 and

d1 respectively. Is v closer to S0 or S1? If we had complete data, we would compare the norm of the

projection residual of v onto both S0 and S1:

‖v − PS0v‖22
S1

≷
S0

‖v − PS1v‖22 . (3.8)

Now consider the situation when we only observe a set or multiset Ω ⊂ {1, . . . , n} of indices of v.

Denote the observed vector as vΩ. Let the columns of an orthonormal matrix U span the d-dimensional

subspace S ∈ Rn. Then we define the projection operator restricted to Ω as

PSΩ
= UΩ

(
UTΩUΩ

)−1
UTΩ . (3.9)

where the notation UΩ denotes a restriction to the rows of U indicated by the multiset Ω. We base our

subspace assignment on this projection residual:

‖vΩ − PS0
Ω
vΩ‖22

?
< ‖vΩ − PS1

Ω
vΩ‖22 . (3.10)

In what follows we show that with enough observations, the subspace assignment based on (3.10) will

be the same as that for (3.8) with high probability.

25

3.3.2 Theoretical Analysis

Define the angle between the vector v and its projection into the two subspaces S0,S1 as θ0 and θ1:

θ0 = sin−1

(‖v − PS0v‖2
‖v‖2

)
(3.11)

and θ1 is defined similarly. Following the notation of [8], let v = x0 + y0 = x1 + y1, where x0 ∈ S0,

y0 ⊥ S0, x1 ∈ S1, and y1 ⊥ S1. Let µ(S) = n
rmaxj‖PSej‖22, where ej is the jth canonical basis

vector. Let m := |Ω| and choose a δ > 0 as a confidence parameter. For notational simplicity and

without loss of generality we focus on the situation when θ0 < θ1 and define

C(m) =
m(1− α1)− d1µ(S1) (1+β1)2

(1−γ1)

m(1 + α0)
, (3.12)

where α1 =
√

2µ(y1)2

m log
(

1
δ

)
, β1 =

√
2µ(y1) log

(
1
δ

)
, γ1 =

√
8d1µ(S1)

3m log
(

2d1
δ

)
, and α0 =√

2µ(y0)2

m log
(

1
δ

)
.

Notice that C(m)↗ 1 as m→∞.

Theorem 3.2. Let δ > 0 and m ≥ 8
3d1µ(S1) log

(
2d1
δ

)
. Assume that

sin2(θ0) < C(m) sin2(θ1) . (3.13)

Then with probability at least 1− 4δ,

‖vΩ − PS0
Ω
vΩ‖22 < ‖vΩ − PS1

Ω
vΩ‖22 .

Before the proof we consider consequences of the theorem. First we consider the situation where

θ0 = 0, i.e., the vector v is in the hypothesized subspace S0. This particular case was proved in [3]. As

long as θ1 6= 0, the ratio sin2(θ0)/ sin2(θ1) = 0. This in turn implies that the number of observations

26

required does not depend on θ1 nor on the relationship of θ0 to θ1, and the condition (3.13) is simply

that C(m) > 0. To guarantee θ1 6= 0 for arbitrary v ∈ S0, we must have that S0 and S1 are linearly

independent2. In other words, if S0 and S1 are linearly independent, and the vector is in either S0 or

S1, the number of observations to guarantee the test works does not depend on the angle of v to the

other subspace. If, on the other hand, S0 and S1 are not linearly independent, there are vectors in the

two subspaces which are arbitrarily close to one another; for any fixed m there exists a vector in S0 for

which the incomplete data projection residual would not be valid.

Now we consider the situation where v is not in the subspace, but is simply closer: 0 < θ0 < θ1.

Thus sin2(θ0)/ sin2(θ1) > 0. As the gap θ1 − θ0 decreases, sin2(θ0)/ sin2(θ1)↗ 1. Consequently, as

this gap narrows, we must increase m to guarantee that the subspace assignment based on (3.10) gives

the same result as that of (3.8).

Proof. From Theorem 1 of [8] and the union bound, the following two statements hold simultaneously

with probability at least 1− 4δ:

‖vΩ − PS0
Ω
vΩ‖22 ≤ (1 + α0)

m

n
‖v − PS0v‖22

and
m(1− α1)− d1µ(S1) (1+β1)2

(1−γ1)

n
‖v − PS1v‖22 ≤ ‖vΩ − PS1

Ω
vΩ‖22 .

Thus if

‖v − PS0v‖22 < C(m)‖v − PS1v‖22 , (3.14)

we have the conclusion of the theorem. But using (3.11), this statement is equivalent to our requirement

that sin2(θ0) < C(m) sin2(θ1), completing the proof.

This result can be directly extended to the situation where there are multiple subspaces. Again
2Two subspaces are linearly independent if the dimension of their union is equal to the sum of their dimensions.

27

without loss of generality we focus on the situation where θ0 < θi, ∀i, and define

Ci(m) =
m(1− αi)− diµ(Si) (1+βi)

2

(1−γi)

m(1 + α0)
,

where αi, βi, and γi are defined as in Equation 3.12 using di, µ(yi) and µ(Si).

Corollary. Let m ≥ 8
3maxi 6=0

(
diµ(Si) log

(
2di
δ

))
for fixed δ > 0. Assume that

sin2(θ0) < Ci(m) sin2(θi) , ∀i 6= 0 .

Then with probability at least 1− 4(k − 1)δ,

‖vΩ − PS0
Ω
vΩ‖22 < ‖vΩ − PSiΩvΩ‖22 , ∀i 6= 0 .

3.4 Matched Subspace Detection

Now we consider a variation on the classical problem of Subspace Detection. Subspace Detection with

missing data is similar to subspace assignment, but in this case we have one subspace S and the null

hypothesis is the orthogonal complement of S (i.e. S⊥). Again we assume that only a small subset or

multiset Ω ⊂ {1, . . . , n} of the elements of v are observed (with or without noise), and based on these

observations we want to test whether v ∈ S.

For example, consider monitoring a large networked system such as a portion of the Internet. Mea-

surement nodes in the network may have software that collects measurements such as upload and

download rate, number of packets, or type of traffic given by the packet headers. In order to monitor

the network, these measurements will be collected in a central place for compilation, modeling and

analysis. The effective dimension of the state of such systems is often much lower than the extrinsic di-

mension of the network itself. Subspace detection, therefore, can be a useful tool for detecting changes

28

or anomalies [61]. The challenge is that it may be impossible to obtain every measurement from every

point in the network due to resource constraints, node outages, etc.

Given a subspace S of dimension d � n, how many elements of v must be observed so that

we can reliably decide if it belongs to S? From Theorem 3.1 we have that the number of required

measurements is O(d log d). This means that reliable matched subspace detectors can be constructed

from very few measurements, making them scalable and applicable to large-scale testing problems.

We have the following detection set up. Our hypotheses are H0 : v ∈ S and H1 : v /∈ S and the

test statistic we will use is

t(vΩ) = ‖vΩ − PSΩ
vΩ‖22

H1

≷
H0

η

In the noiseless case, we can let η = 0; our result in Theorem 3.1 shows for δ > 0, the probability

of detection is PD = P [t(vΩ) > 0|H1] ≥ 1 − 4δ as long as m is large enough, and we also have that

the probability of false alarm is zero, PFA = P [t(vΩ) > 0|H0] = 0 since the projection error will be

zero when v ∈ S.

When we introduce noise we have the same hypotheses, but we compute the statistic on ṽΩ =

vΩ + w where w ∼ N (0, 1) is Gaussian white noise:

t(ṽΩ) = ‖ṽΩ − PSΩ
ṽΩ‖22

H1

≷
H0

ηλ

We choose ηλ to fix the probability of false alarm:

P [t(ṽΩ) > ηλ|H0] ≤ λ = PFA

Then we have from [92] that t(ṽΩ) is distributed as a non-central χ2 with d degrees of freedom and non-

centrality parameter ‖vΩ − PSΩ
vΩ‖22, and that PD is monotonically increasing with the non-centrality

parameter. Putting this together with Theorem 3.1 we see that as m grows, ‖vΩ − PSΩ
vΩ‖22 grows and

thus the probability of detection grows.

29

3.4.1 Comparison to a Zero-filling Estimator

Another heuristic approach that is often used in practice is to fill the vector v with zeros and then project

onto the full subspace S. We will denote the zero-filled vector as v0, i.e. we have an n × 1 vector v0

with elements vi if i ∈ Ω and zero if i 6∈ Ω, for i = 1, . . . , n. We then calculate the projection energy

only on the observed entries:

‖vΩ − (PSv0)Ω ‖22

We now show why the heuristic approach of zero-filling the incomplete vector vΩ does not work.

Even if v ∈ S, the zero-filled vector v0 does not necessarily lie in S.

We calculate the projection energy only on the observed entries:

t0(vΩ) = ‖vΩ − (PSv0)Ω ‖22
H1

≷
H0

η

Simple algebraic consideration reveals that t0(vΩ)|H0 is positive. In fact, even in the absence of noise,

the probability of false alarm can be arbitrarily large as ‖v‖22 increases. The value of t0(vΩ)|H0,

based on noiseless observations, is plotted as a function of the number of measurements in Figure 4 in

Section 3.5.

We note that for unknown noise power or structured interference, these results can be extended

using the GLRT [93].

3.5 Empirical Analysis

Detection First we examine the theory in Section 3.2.1 in simulation. As we said in Section 3.2.1, in

simulations the large constants of the theorem are somewhat irrelevant. This plays out in the simulations

shown in Figure 3, where we see that for very incoherent subspaces, ‖vΩ−PSΩ
vΩ‖2 is always positive

for m > dµ(S) log d. The plots show the minimum, maximum and mean value of ‖vΩ − PSΩ
vΩ‖2

over 100 simulations, for fixed S and fixed v such that ‖v‖22 = 1 and v ∈ S⊥. For each value of

the sample size m, we sampled 100 different instances of Ω without replacement, giving us a realistic

30

100 200 300 400 5000

0.01

0.02

0.03

0.04

0.05
Projection Residual, Incoherent

m

pr
oj

ec
tio

n
re

sid
ua

l

mean of 100 runs
maximum
minimum
r*mu*log(r)

500 1000 15000

0.05

0.1

0.15

Projection Residual, Coherent

m

pr
oj

ec
tio

n
re

sid
ua

l

mean of 100 runs
maximum
minimum
r*mu*log(r)

(a) (b)

Figure 3: These plots show the projection residual ‖vΩ−PSΩvΩ‖22 over 100 simulations. Each of the simulations
has a fixed subspace S, vector v ∈ S⊥ and sample sizem, but different sample set Ω drawn without replacement.
The problem size is n = 10000, d = 50. (a) Incoherent subspace (random Gaussian basis). µ(S) ≈ 1.5,
µ(y) ≈ 13.6. (b) Coherent subspace. µ(S) ≈ 4.1, µ(y) ≈ 47.0.

idea of how much energy of v is captured by m samples. Our simulations for the Fourier basis and a

basis made of orthogonalized Gaussian random vectors always showed the estimate to be positive for

m > dµ(S) log d, even for the worst-case simulation run. For more coherent subspaces, we often (but

not always) see that the norm is positive as long as m > dµ(S) log d.

Assignment Next we illustrate the output of the test given by (3.10) by showing its behavior in sim-

ulation. First we consider the most basic scenario where both subspaces are of the same dimension.

Figure 5 shows the behavior of the comparison of projection residuals depending on the angle differ-

ence, θ0 − θ1. As the angle difference nears zero, even nearly complete vectors do not always result in

the correct subspace being chosen.

Next we consider a scenario where the subspaces are of different dimension. Figure 6 shows the

same plot of means as Figure 5, but the asymmetry is due to the imbalance of the subspace dimensions.

In Figures 7 and 8 we examine the difference of the projection residual as m increases, for unbalanced

subspace dimensions of d0 = 5 and d1 = 20. Both plots have a fixed vector v at a fixed angle to

31

2000 4000 6000 8000 100000

0.05

0.1

0.15

0.2
Zero−Filled Projection, v in S

m

pr
oj

ec
tio

n
re

sid
ua

l

max of 100 runs
minimum
mean
r*mu*log(r)

Figure 4: Simulation results for the zero-filling approach, v ∈ S, ‖v‖22 = 1. The basis used is a random
Gaussian basis, d = 50, n = 10000, µ(S) ≈ 1.5, µ(y) ≈ 17.9. Note that the zero-filled residuals can
be made arbitrarily large by increasing ‖v‖22.

−pi/3 0 pi/3

−0.5

0

0.5

1

Difference in angle (!0 − !1)

D
iff

er
en

ce
 in

 p
ro

je
ct

io
n

re
si

du
al Mean Differences

−pi/6 0 pi/6
−0.1

0

0.1
Differences with 95% error bars, zoomed

−pi/6 0 pi/6
−0.2

0

0.2

−pi/6 0 pi/6
−0.5

0

0.5

m=10
40
90

choose S0

choose S1

S0 correct S1 correct

Figure 5: Simulation results for a binary subspace assignment with n = 100, d0 = 5, d1 = 5.
Projection Residual Difference is defined as ‖vΩ−PS0

Ω
vΩ‖22−‖vΩ−PS1

Ω
vΩ‖22; thus, S0 is the chosen

subspace when the residual is negative. The curves shown are averaged over 100 random sample sets
of various sizes as denoted by the legend. The right three plots are zoomed around θ0 − θ1 = 0; 95%
confidence intervals are shown.

32

−1.5 −1 −0.5 0 0.5 1 1.5−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Difference in Angle (!0 − !1)

D
iff

er
en

ce
 in

 P
ro

je
ct

io
n

R
es

id
ua

l

Binary Hypothesis testing: n=100, dim(S0)=5, dim(S1)=20

m=10
25
50
90

choose S1

choose S0

S0 correct S1 correct

Figure 6: Simulation results for a binary subspace assignment with n = 100, d0 = 5, d1 = 20.
Projection Residual Difference is defined as ‖vΩ−PS0

Ω
vΩ‖22−‖vΩ−PS1

Ω
vΩ‖22. The curves shown are

averaged over 100 random sample sets of various sizes as denoted by the legend.

both subspaces, but the number of observations m is varied. Figure 7 shows the projection residual

difference for two vectors v; one which is closer to S0 and one which is closer to S1. As is evident, the

vector nearer S1 can be distinguished with a small number of observations. However, the vector closer

to S0 looks as though it may be near either subspace until we have more than 20 observations.

Finally, Figure 8 shows a similar scenario but with a smaller difference in angle and a larger ambient

dimension. Here were highlight the behavior of the residual near the measurement cutoff d1µ1log(d1).

Though the mean residual difference, averaged over many possible sample sets, is almost always below

zero, the worst-case difference ‖vΩ − PS0
Ω
vΩ‖22 − ‖vΩ − PS1

Ω
vΩ‖22 is often positive, in which case we

would incorrectly select S1.

33

0 20 40 60 80 100
−1

−0.5

0

0.5

1

number of measurements, m

D
iff

er
en

ce
 o

f P
ro

je
ct

io
n

R
es

id
ua

l

Binary Subspace Assignment: n=100, dim(S0)=5, dim(S1)=20

mean of 100 runs
minimum
maximum
d0 µ0 log(d0)

S0 correct

choose S0

choose S1

S1 correct

Figure 7: Simulation results for a binary subspace assignment with n = 100, d0 = 5, d1 = 20. The
upper curves represent a case where the angle difference θ0 − θ1 = 1.078 degrees, thus resulting in S1

being the correct choice. The lower curves represent a case where the angle difference θ1− θ0 = 1.083
degrees, thus resulting in S0 being the correct choice.

100 200 300 400

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

number of measurements, m

D
iff

er
en

ce
 o

f P
ro

je
ct

io
n

R
es

id
ua

l

Binary Subspace Assignment: n=500, dim(S0)=5, dim(S1)=20

mean of 100 runs
minimum
maximum
d1 µ1 log(d1)

Figure 8: Simulation results for a binary subspace assignment with n = 500, d0 = 5, d1 = 20. The
angle difference θ1−θ0 = 0.3156 degrees, thus S0 is the correct choice. The approximate measurement
requirement d1µ1 log(d1) is the black line shown; beyond it the worst-case residual difference is in
favor of S0.

34

3.6 Proofs

Proof. In order to prove Theorem 3.1, we split the quantity of interest into three terms and bound

each with high probability. Consider ‖vΩ − PSΩ
vΩ‖22 = ‖yΩ − PSΩ

yΩ‖22 (Note this equality holds by

Lemma 3.1). Let the d columns of U be an orthonormal basis for the subspace S. We want to show

that

‖yΩ − PSΩ
yΩ‖22 = ‖yΩ‖22 − yTΩUΩ

(
UTΩUΩ

)−1
UTΩ yΩ (3.15)

is near mn ‖y‖22 with high probability.

We first apply the three Lemmas of Section 3.2.1 to prove Theorem 3.1, and then we prove the

lemmas in Section 3.6.2. Write the second term of Equation (3.15) as

yTΩUΩ

(
UTΩUΩ

)−1
UTΩ yΩ = ‖WΩU

T
Ω yΩ‖22

where W T
ΩWΩ =

(
UTΩUΩ

)−1. By Lemma 3.4, UTΩUΩ is invertible under the assumptions of our

theorem. Since it is additionally symmetric and positive semidefinite, its inverse is as well, and both

have real eigenvalues. Therefore, the eigenvalues of WΩ are the square roots of the eigenvalues of

W T
ΩWΩ, and in particular the spectral norms are related by ‖W T

ΩWΩ‖2 = ‖WΩ‖22. Hence WΩ has

spectral norm bounded by the square root of the inverse of the smallest eigenvalue of UTΩUΩ. That is,

we have

‖WΩU
T
Ω yΩ‖22 ≤ ‖WΩ‖22‖UTΩ yΩ‖22

= ‖W T
ΩWΩ‖2‖UTΩ yΩ‖22

= ‖ (UTΩUΩ

)−1 ‖2‖UTΩ yΩ‖22 .

‖ (UTΩUΩ

)−1 ‖2 is bounded by Lemma 3.4 and ‖UTΩ yΩ‖2 is bounded by Lemma 3.3. Putting these

two bounds together with the bounds in Lemma 3.2 and using the union bound, we have that with

35

probability at least 1− 4δ

(1 + α)2m

n
‖y‖22 ≥ ‖yΩ‖22 − ‖

(
UTΩUΩ

)−1 ‖2‖UTΩ yΩ‖22

≥ (1− α)2m

n
‖y‖22 −

(β + 1)2dµ(S)
(1− γ)n

‖y‖22

giving us our bound.

3.6.1 Useful Inequalities

We will need the following two large deviation bounds in the proofs of our Lemmas below.

Theorem 3.3 (McDiarmid’s Inequality [74]). Let X1, . . . , Xn be independent random variables, and

assume f is a function for which there exist ti, i = 1, . . . , n satisfying

sup
x1,...,xn,x̂i

|f(x1, . . . , xn)− f(x1, . . . , x̂i, . . . , xn)| ≤ ti

where x̂i indicates replacing the sample value xi with any other of its possible values. Call f(X1, . . . , Xn) :=

Y . Then for any ε > 0,

P [Y ≥ E [Y] + ε] ≤ exp
(−2ε2∑n

i=1 t
2
i

)
(3.16)

P [Y ≤ E [Y]− ε] ≤ exp
(−2ε2∑n

i=1 t
2
i

)
(3.17)

Theorem 3.4 (Noncommutative Bernstein Inequality [46, 85]). Let X1, . . . , Xm be independent zero-

mean square d×d random matrices. Suppose ρ2
k = max{‖E[XkX

T
k]‖2, ‖E[XT

k Xk]‖2} and ‖Xk‖2 ≤

M almost surely for all k. Then for any τ > 0,

P

[∥∥∥∥∥
m∑
k=1

Xk

∥∥∥∥∥
2

> τ

]
≤ 2r exp

(−τ2/2∑m
k=1 ρ

2
k +Mτ/3

)

36

3.6.2 Supporting Lemmas for Theorem 3.1 and Proofs

We now proceed with the proof of Lemmas 3.2, 3.3, and 3.4 which support the proof of Theorem 3.1

in Section 3.2.1. Our analysis is informed by that in [46, 85].

Proof of Lemma 3.2. To prove this we use McDiarmid’s inequality from Theorem 3.3 for the function

f(X1, . . . , Xm) =
∑m

i=1Xi. The resulting inequality is more commonly referred to as Hoeffding’s

inequality.

We begin with the first inequality. SetXi = y2
Ω(i). We seek a good value for ti. Since y2

Ω(i) ≤ ‖y‖2∞
for all i, we have ∣∣∣∣∣∣

m∑
i=1

Xi −
∑
i 6=k

Xi − X̂k

∣∣∣∣∣∣ =
∣∣∣Xk − X̂k

∣∣∣ ≤ 2‖y‖2∞

We calculate E [
∑m

i=1Xi] as follows. Define I{} to be the indicator function, and assume that the

samples are taken uniformly with replacement.

E

[
m∑
i=1

Xi

]
= E

[
m∑
i=1

y2
Ω(i)

]

=
m∑
i=1

E

 n∑
j=1

y2
j I{Ω(i)=j}

 =
m

n
‖y‖22

Plugging into Equation (3.17), the left hand side is

P

[
m∑
i=1

Xi ≤ E

[
m∑
i=1

Xi

]
− ε
]

= P

[
m∑
i=1

Xi ≤ m

n
‖y‖22 − ε

]
and letting ε = αmn ‖y‖22, we then have that this probability is bounded by

exp

(
−2α2

(
m
n

)2 ‖y‖42
4m‖y‖4∞

)

Thus, the resulting probability bound is

37

P
[
‖yΩ‖22 ≥ (1− α)

m

n
‖y‖22

]
≥ 1− exp

(−α2m‖y‖42
2n2‖y‖4∞

)
Substituting our definitions of µ(y) and α shows that the lower bound holds with probability at least

1− δ. The argument for the upper bound is identical after replacing Equation (3.16) instead of (3.17).

The Lemma now follows by applying the union bound.

Proof of Lemma 3.3. We use McDiarmid’s inequality in a very similar fashion to the proof of Lemma 3.2.

Let Xi = yΩ(i)UΩ(i), where Ω(i) refers to the ith sample index. Thus yΩ(i) is a scalar, and the notation

UΩ(i) refers to an d× 1 vector representing the transpose of the Ω(i)th row of U .

Let our function f(X1, . . . , Xm) = ‖∑m
i=1Xi‖2 = ‖UTΩ yΩ‖2. To find the ti of the theorem we

first need to bound ‖Xi‖ for all i.

Observe that since U is orthogonal, and denoting Ω(i) = j,

‖UΩ(i)‖22 = ‖UT ej‖22 = eTj UU
T ej

= eTj UU
TUUT ej

= ‖UUT ej‖22

We also have that ‖UUT ej‖2 = ‖PSej‖2 ≤
√
dµ(S)/n by assumption. Thus,

‖Xi‖2 = ‖yΩ(i)UΩ(i)‖2

≤ |yΩ(i)|‖UΩ(i)‖2

≤ ‖y‖∞
√
dµ(S)/n

Then observe
∣∣∣f(X1, . . . , Xm)− f(X1, . . . , X̂k, . . . , Xm)

∣∣∣ is

38

∣∣∣∣∣∣
∥∥∥∥∥
m∑
i=1

Xi

∥∥∥∥∥
2

−
∥∥∥∥∥∥
∑
i 6=k

Xi + X̂k

∥∥∥∥∥∥
2

∣∣∣∣∣∣ ≤
∥∥∥Xk − X̂k

∥∥∥
2

≤ ‖Xk‖2 + ‖X̂k‖2

≤ 2‖y‖∞
√
dµ(S)
n

.

Here, the first two inequalities follow from the triangle inequality. Next we calculate a bound for

E [f(X1, . . . , Xm)] = E [‖∑m
i=1Xi‖]. Assume again that the samples are taken uniformly with re-

placement. We have
d∑

k=1

U2
jk = ‖Uj‖22 = ‖PSej‖22 ≤

d

n
µ(S) ,

from which we can see that

E

∥∥∥∥∥
m∑
i=1

Xi

∥∥∥∥∥
2

2

 = E
[∥∥UTΩ yΩ

∥∥2

2

]

= E

[
d∑

k=1

m∑
i=1

U{Ω(i),k}yΩ(i)

m∑
l=1

U{Ω(l),k}yΩ(l)

]

=
d∑

k=1

E

 m∑
i=1

n∑
j=1

U2
jky

2
j I{Ω(i)=j}

 (3.18)

=
d∑

k=1

m∑
i=1

n∑
j=1

U2
jky

2
jE
[
I{Ω(i)=j}

]

=
d∑

k=1

m

 n∑
j=1

U2
jky

2
j

 1
n

(3.19)

=
m

n

n∑
j=1

(
d∑

k=1

U2
jk

)
y2
j

≤ m

n

dµ(S)
n
‖y‖22

The step (3.18) follows because the cross terms cancel by orthogonality (UT y = 0 since y ∈ S⊥). The

step (3.19) is because of our assumption that sampling is uniform with replacement.

39

Since E [‖X‖2] ≤ E
[‖X‖22]1/2 by Jensen’s inequality, we have that E

[‖∑m
i=1Xi‖2

] ≤√m
n

√
dµ(S)
n ‖y‖2.

Letting ε = β
√

m
n

√
dµ(S)
n ‖y‖2 and plugging into Equation (3.16), we then have that the probability is

bounded by

exp

(
−2β2m

n
dµ(S)
n ‖y‖22

4m‖y‖2∞ dµ(S)
n

)
Thus, the resulting probability bound is

P
[
‖UΩyΩ‖22 ≥ (1 + β)2mdµ(S)

n2
‖y‖22

]
≤ exp

(−β2‖y‖22
2n‖y‖2∞

)
Substituting our definitions of µ(y) and β shows that the lower bound holds with probability at least

1− δ, completing the proof.

Proof of Lemma 3.4. We use the Noncommutative Bernstein Inequality as follows. Let Xk =

UΩ(k)U
T
Ω(k) − 1

nId, where the notation UΩ(k) is as before, i.e. is the transpose of the Ω(k)th row

of U , and Id is the d× d identity matrix. Note that this random variable is zero mean.

We must compute ρ2
k and M . Since Ω(k) is chosen uniformly with replacement, the Xk are identi-

cally distributed, and ρ does not depend on k. For ease of notation we will denote UΩ(k) as Uk.

Using the fact that for positive semi-definite matrices, ‖A−B‖2 ≤ max{‖A‖2, ‖B‖2}, and re-

calling again that ‖Uk‖22 = ‖UT ek‖22 = ‖PSek‖22 ≤ dµ(S)/n, we have∥∥∥∥UkUTk − 1
n
Id

∥∥∥∥
2

≤ max
{
dµ(S)
n

,
1
n

}
and we let M := dµ(S)/n.

For ρ, we note

∥∥E [XkX
T
k

]∥∥
2

=
∥∥E [XT

k Xk

]∥∥
2

=

∥∥∥∥∥E
[(

UkU
T
k −

1
n
Id

)2
]∥∥∥∥∥

2

=
∥∥∥∥E [UkUTk UkUTk − 2

n
UkU

T
k +

1
n2
Id

]∥∥∥∥
2

=
∥∥∥∥E [UkUTk UkUTk]− 1

n2
Id

∥∥∥∥
2

(3.20)

40

Step (3.20) is achieved as follows. First apply linearity of expectation to the preceding line to get∥∥∥∥E [UkUTk UkUTk]− 2
n

E
[
UkU

T
k

]
+

1
n2
Id

∥∥∥∥
2

.

We can write the middle term as

2
n

E
[
UkU

T
k

]
=

2
n

E

 n∑
j=1

UjU
T
j I{Ω(k)=j}

=

2
n
UTU

1
n

(3.21)

=
2
n2
Id

where step 3.21 follows simply from the definition of Uj as the transpose of the jth row of U .

For the next steps we note that

‖E[Uk(UTk Uk)U
T
k]‖2 =

∥∥E[Uk(‖Uk‖22)UTk]
∥∥

2

= ‖Uk‖22‖E[UkUTk]‖2

≤ dµ(S)
n
‖E[UkUTk]‖2

=
dµ(S)
n2
‖Id‖2 =

dµ(S)
n2

Bringing all this together with the fact that ‖A−B‖2 ≤ max{‖A‖2, ‖B‖2} for positive semi-definite

marices, we have

∥∥E [XkX
T
k

]∥∥
2

=
∥∥∥∥E [UkUTk UkUTk]− 1

n2
Id

∥∥∥∥
2

≤ max
{∥∥E [UkUTk UkUTk]∥∥ , 1

n2

}
≤ max

{
dµ(S)
n
‖E[UkUTk]‖2, 1

n2

}
= max

{
dµ(S)
n2

,
1
n2

}
=

dµ(S)
n2

.

41

Thus we let ρ2 := dµ(S)/n2.

Now we can apply the Noncommutative Bernstein Inequality, Theorem 3.4. First we restrict τ to

be such that Mτ ≤ mρ2 to simplify the denominator of the exponent. Then we get that

2r exp
(−τ2/2
mρ2 +Mτ/3

)
≤ 2r exp

(
−τ2/2

4
3m

dµ(S)
n2

)
and thus

P

[∥∥∥∥∥∑
k∈Ω

(
UkU

T
k −

1
n
Id

)∥∥∥∥∥ > τ

]
≤ 2d exp

(−3n2τ2

8mdµ(S)

)
Now take τ = γm/n with γ defined in the statement of Theorem 3.1. Since γ < 1 by assumption,

Mτ ≤ mρ2 holds and we have

P

∥∥∥∥∥∑
k∈Ω

(
UkU

T
k −

1
n
Id

)∥∥∥∥∥
2

≤ m

n
γ

 ≥ 1− δ

We note that
∥∥∑

k∈Ω UkU
T
k − m

n Id
∥∥

2
≤ m

n γ implies that the minimum singular value of∑
k∈Ω UkU

T
k is at least (1− γ)mn .

To see this, let λi be the ith eigenvalue and consider that

σ2
max

(∑
k∈Ω

UkU
T
k −

m

n
Id

)
= λmax

(∑
k∈Ω

UkU
T
k −

m

n
Id

)T (∑
k∈Ω

UkU
T
k −

m

n
Id

)
= max

i

λi(∑
k∈Ω

UkU
T
k −

m

n
Id

)2
 (3.22)

= max
i

(
λi

(∑
k∈Ω

UkU
T
k

)
− m

n

)2

where Step 3.22 is due to the fact that
∑

k∈Ω UkU
T
k is a symmetric matrix. Then we have that

42

σ2
max

(∑
k∈Ω

UkU
T
k −

m

n
Id

)
= max

i

(
λi

(∑
k∈Ω

UkU
T
k

)
− m

n

)2

≤
(m
n
γ
)2

=⇒
∣∣∣∣∣λi
(∑
k∈Ω

UkU
T
k

)
− m

n

∣∣∣∣∣ ≤ m

n
γ ∀i

=⇒ λi

(∑
k∈Ω

UkU
T
k

)
≥ m

n
(1− γ) ∀i

This in turn implies that
∥∥∥(∑k∈Ω UkU

T
k

)−1
∥∥∥

2
≤ n

(1−γ)m , which completes the proof.

43

Chapter 4

Subspace Estimation with Missing Data

The popular problem of matrix completion [22, 23] can be viewed as static subspace estimation with

missing data. To address this problem using the tools from Chapter 3, we now develop GROUSE

(Grassmannian Rank-One Update Subspace Estimation), a subspace identification and tracking algo-

rithm that builds high quality estimates from very sparsely sampled vectors [6]. GROUSE implements

an incremental gradient procedure with computational complexity linear in dimensions of the problem,

and is therefore scalable to very high-dimensional applications. An additional feature of GROUSE

is that it can be immediately adapted to an ‘online’ version of the matrix completion problem, where

one aims to recover a low-rank matrix from streaming column vectors and from small random subsets

of the entries of those columns. GROUSE is not only remarkably efficient for online matrix com-

pletion, but additionally enables incremental updates as columns are added or entries are incremented

over time. These features are particularly attractive for maintaining databases of user preferences and

collaborative filtering.

In this chapter we explore the theoretical properties of GROUSE as well as its behavior in numerical

simulation.

4.1 Problem Formulation

Using the tools of the incomplete data projection from Chapter 3, we can adapt the classical subspace

estimation and tracking algorithms to deal with missing data. Several classical incremental subspace

estimation algorithms have the vector residual as a centerpiece; in Section 4.2.2 we discuss how our

44

algorithm has relationships to both incremental SVD algorithms and gradient descent subspace estima-

tion algorithms.

We can handle missing data using the tools from Chapter 3; the residual on entries seen is the

indicator of the goodness of fit. It can also indicate what directions are missing from the subspace

estimate, at least on the entries observed.

We aim to estimate an d-dimensional subspace of Rn denoted by S[t]. At every time t, we observe

a vector vt ∈ S[t] at locations Ωt ⊂ {1, . . . n}. The subspace S[t] may evolve over time, and we

address that more specifically in Chapter 6, Section 6.1. We will measure the error of our subspace

using the squared Euclidean distance from our current subspace estimate Sest[t] to the observed vector

vt only on the coordinates revealed in the set in Ωt. We can compute this distance explicitly for any

subspace S using our formulation in Section 3.1.

Let U be any matrix whose columns span S. Let UΩt denote the submatrix of U consisting of the

rows indexed by Ωt. For a vector v ∈ Rn, let vΩt be the vector of only the observed entries of v; that is

vΩt ∈ R|Ωt| has the entries of v indexed by Ωt. Then we have our cost function:

F (S; t) = min
a
‖vΩt − UΩta‖2 (4.1)

We will use this definition in Section 4.2 to derive our algorithm. If the matrix UTΩtUΩt has full

rank, then we must have that a = (UTΩtUΩt)−1UTΩtvΩt achieves the minimum in 4.1. Thus,

F (S; t) = vTΩt(I − UΩt(U
T
ΩtUΩt)

−1UTΩt)vΩt .

In the special case where the subspace is time-invariant, that is S[t] = S0 for some fixed subspace

S0, then it is natural to consider the average cost function

F̄ (S) :=
T∑
t=1

min
a
‖vΩt − UΩta‖2 . (4.2)

The average cost function will allow us to estimate the steady-state behavior of our algorithm. Indeed,

in the static case, our algorithm will be guaranteed to converge to a stationary point of F̄ (S).

45

4.1.1 Relation to Matrix Completion

In the scenario where the subspace does not evolve over time and we only observe vectors on a finite

time horizon, then the cost function 4.2 is identical to the matrix completion optimization problem

studied in [57, 33]. To see the equivalence, let Ω = {(k, t) : k ∈ Ωt 1 ≤ t ≤ T , and let V =

[v1, . . . , vT]. Then

F̄ (S) =
T∑
t=1

min
a
‖vΩt − UΩta‖2

= min
A∈Rd×T

∑
(i,j)∈Ω

(V − UA)2
ij

That is, the global optimization problem can be written as minU,A
∑

(i,j)∈Ω(V − UA)2
ij , which is

precisely the starting point for the algorithms and analyses in [57, 33]. The authors in [57] use a

gradient descent algorithm to jointly minimize both U and A while [33] minimizes this cost function

by first solving forA and then taking a gradient step with respect to U . In the present work, we consider

optimizing this cost function one column at a time. We show that by using our online algorithm, where

each measurement vt corresponds to a random column of the matrix V , we achieve state-of-the-art or

better performance on matrix completion problems (see Section 4.5.3).

4.2 Algorithm: Grassmannian Rank-One Update Subspace Estimation

The set of all subspaces of Rn of dimension d is denoted G(n, d) and is called the Grassmannian. The

Grassmannian is a compact Riemannian manifold, and its geodesics can be explicitly computed [37].

An element S ∈ G(n, d) can be represented by any n×dmatrixU whose columns form an orthonormal

basis for S. Our algorithm derives from an application of incremental gradient descent [11] on the

Grassmannian. We first compute a gradient of the cost function F , and then follow this gradient along

a short geodesic curve in the Grassmannian.

We follow the program developed in [37]. To compute the gradient of F on the Grassmannian, we

46

first need to compute the partial derivatives ofF with respect to the components ofU . From Lemma 3.4,

the matrix UTΩtUΩt has full rank provided with probability 1−δ provided that |Ωt| ≥ 8
3dµ(S) log

(
2d
δ

)
,

and hence the cost function 4.1 is differentiable almost everywhere with the same probability. Let ∆Ωt

be the n× n diagonal matrix which has 1 in the jth diagonal entry if j ∈ Ωt and has 0 otherwise1. We

can rewrite

F (S; t) = min
a
‖∆Ωt(vt − Ua)‖2 ;

taking the derivative of F with respect to the elements of U , as derived in the Appendix A.1, the result

is

dF

dU
= −2(∆Ωt(vt − Uw))wT

= −2v⊥wT (4.3)

where v⊥ := ∆Ωt(vt − Uw) denotes the (zero padded) residual vector and w is the least-squares

solution in 4.1.

Using Equation (2.70) in [37], we can calculate the gradient on the Grassmannian from this partial

derivative

∇F = (I − UUT)
dF

dU

= −2(I − UUT)v⊥wT = −2v⊥wT .

The final equality follows because the residual vector v⊥ is orthogonal to all of the columns of U . This

can be verified from the definitions of v⊥ and w.

A gradient step along the geodesic with tangent vector −∇F is given by Equation (2.65) in [37],

which we repeat here. Let the singular value decomposition of∇F = Y SZT . Then for a step of length

η in the direction of∇F is given by

U(η) = UZ cos(Sη)ZT + Y sin(Sη)ZT .
1We note here that we are now considering Ω to be a subset of {1, . . . , n} and not a multiset. This is meant to be general

for any subset of entries; but to leverage the tools from Chapter 3 we could assume the entries could be sampled without
replacement or with independent Bernoulli random sampling.

47

It is trivial to compute the singular value decomposition of∇F , as it is rank one. The sole non-zero

singular value is σ = 2||v⊥||||w|| and the corresponding left and right singular vectors are v⊥
‖v⊥‖ and w

‖w‖

respectively. Let x2, . . . xd be an orthonormal set orthogonal to v⊥ and y2, . . . , yd be an orthonormal

set orthogonal to w. Then

−2v⊥wT =
[
− v⊥
‖v⊥‖ x2 . . . xd

]
× diag(σ, 0, . . . , 0)×

[
w
‖w‖ y2 . . . yd

]T
forms an SVD for the gradient. Now using (2.65) from [37], we find that for η > 0, a step of length η

in the direction∇F is given by (See Appendix A.2):

U(η) = U +
(cos(ση)− 1)
‖w‖2 UwwT + sin(ση)

v⊥
‖v⊥‖

wT

‖w‖
= U +

(
sin(ση)

v⊥
‖v⊥‖ + (cos(ση)− 1)

v||

‖v||‖
)
wT

‖w‖

where v|| := Uw, the predicted value of the projection of the vector vt onto S.

This geodesic update rule is remarkable for a number of reasons. First of all, it consists only of a

rank-one modification of the current subspace basis U , which involves low computational complexity.

Second, compared to other algorithms for subspace estimation with missing data, GROUSE is highly

computationally efficient is because it avoids the computation of the SVD altogether. Third, the term

sin(ση)
‖v⊥‖‖w‖ = sin(ση)

σ is on the order of η when ση is small. That is, for small values of σ and η this

expression looks like a normal step along the gradient direction −2v⊥wT given by 4.3. Stationary

points exist when σ = 0. That is, there is no update either when ‖v⊥‖ = 0, implying that the data

vector v was already part of the estimated subspace; or when ‖w‖ = 0, implying that the estimated

subspace is orthogonal to vΩt . In Section 4.2.2 we discuss how this iterate relates to more familiar

iterative algorithms from linear algebra which use full information; In Section 4.3, we explore further

insights into this update equation.

48

4.2.1 Complexity

The GROUSE algorithm simply follows geodesics along the gradients of F with a prescribed set of

step-sizes η. The full computation is summarized in Algorithm 1. Each step of GROUSE can be

performed efficiently with standard linear algebra packages. Computing the weights in Step 2 of Al-

gorithm 1 requires solving a least squares problem in |Ωt| equations and d unknowns. Such a system

is solvable in at most O(|Ωt|d2) flops in the worst case. Predicting the component of v that lies in the

current subspace requires a matrix vector multiply that can be computed in O(nd) flops. Computing

the residual then only requires O(|Ωt|) flops, as we will always have zeros in the entries indexed by the

complement of Ωt. Computing the norms of v⊥ and v|| can be done in O(n) flops. The final subspace

update consists of adding a rank one matrix to an n × d matrix and can be computed in O(nd) flops.

Totaling all of these computation times gives an overall complexity estimate of O(nd + |Ωt|d2) flops

per subspace update.

Algorithm 1 Grassmannian Rank-One Update Subspace Estimation

Require: An n × d orthogonal matrix U0. A sequence of vectors vt, each observed in entries Ωt. A
set of stepsizes ηt.

1: for t = 1, . . . , T do
2: Estimate weights: w = arg mina ‖∆Ωt(vt − Uta)‖2
3: Predict full vector: v|| = Utw
4: Compute residual: v⊥ = ∆Ωt(vt − v||)
5: Update subpace:

Ut+1 = Ut +
(

(cos(σηt)− 1) v||
‖v||‖

+ sin(σηt) v⊥
‖v⊥‖

)
wT

‖w‖
where σ = ‖v⊥‖‖v||‖

6: end for

4.2.2 Comparison to methods that have no missing data

We discuss two ways to interpret the GROUSE algorithm in relation to well-known algorithms: incre-

mental update of the SVD and subspace tracking using an LMS algorithm. Other related work can be

found in Section 2.

49

Linear Algebraic View

GROUSE can be understood as an adaptation of an incremental update to a QR or SVD factorization.

Most batch subspace identification algorithms that rely on the eigenvalue decomposition, the singular

value decomposition, or their more efficient counterparts such as the QR decomposition or the Lanczos

method, can be adapted for on-line updates and tracking of the principal subspace. A comprehensive

survey of these methods can be found in [31].

Suppose we fully observe the vector v at each increment. Given an estimated basis, Uest for the

unknown subspace S, we would update our estimate for S by computing the component of v that is

orthogonal to U . We would then append this new orthogonal component to our basis U , and use an

update rule based on the magnitude of v that does not lie in the span of U . Brand [19] has shown

that this method can be used to compute an efficient incremental update of an SVD using optimized

algorithms for computing rank one modifications of matrix factorizations [48].

In lieu of being able to exactly compute the component of vt that is orthogonal to our current

subspace estimate, GROUSE computes this component only on the entries in Ωt. In Section 3.2.1 we

had indications that the estimate for v⊥ computed by Algorithm 1 in a single iteration is a good proxy

for full-data residual. One can also verify that the GROUSE update rule corresponds to forming the

matrix [U, v⊥] and then truncating the last column of the matrix

[U, v⊥]Rη

where Rη denotes the (d+ 1)× (d+ 1) rotation matrix

Rη =

 I − ww′

‖w‖ (1− cos(ησ)) − w
‖w‖ sin(ησ)

w
‖w‖ sin(ησ) cos(ησ)

 .
That is, our algorithm computes a mixture of the current subspace estimate and the incomplete data

residual. This mixture is determined both by the stepsize and σ = ‖v⊥‖‖v||‖.

50

Gradient-descent based methods

Here we discuss in particular the least-mean-square (LMS)-type algorithm derived in [110, 109] and

studied in [34]. In Section 2 we also discuss the regularized least-squares (RLS)-type2 variant called

Projection Approximation Subspace Tracking [109].

The author of [109] first introduces the LMS algorithm using exactly the same cost function as given

in Equation 4.1 but with full data and not requiring orthonormality of the column space. Equation (A3)

of [109] gives the gradient, which we now repeat here, using notation W for the subspace variable;

the columns of W span the subspace but have no orthogonality constraint. Substituting the correlation

matrix C = E[vvT] with its instantaneous estimate Ĉ = vvT , they derive the gradient as

1
2
∇F = [−2vvT + vvTWW T +WW T vvT]W .

If W were orthogonal, we could use GROUSE notation U instead, and this would in fact be equivalent

to the gradient we have derived for GROUSE: 2[−vvTU+UUT vvTU] = (−v+Uw)wT = −2v⊥wT .

The LMS update is given in [34] as Equation (5) as Wt+1 = Wt + λt[−2vtvTt + vtv
T
t WtW

T
t +

WtW
T
t vtv

T
t]Wt with step-size λt, and [34] proves that even without the orthogonality constraint, Wt

will converge to a matrix with orthonormal columns that span the subspace when λ = λ(t) t→∞−→ 0 for

stationary signals (i.e. when the subspace is static).

4.3 Proof of Convergence with no missing data

Now we prove that the GROUSE algorithm for subspace estimation converges to the true subspace in

the asymptotic limit, with no missing data and no noise.

Let Strue represent the true d-dimensional subspace of Rn, and let Utrue ∈ Rn×d be an orthonor-

mal matrix whose columns span Strue. We receive a sequence of vectors v1, v2, . . . , vt, · · · ∈ Strue,
2LMS and RLS are terms used in signal processing and adaptive filtering. See [91] Chapters 10-14 and Section 2.2.2.

51

and from that, using Algorithm 1, we generate a sequence of matrices U0, U1, . . . , Ut, . . . , which cor-

respond3 to subspace estimates S0,S1, . . . ,St, We are interested in proving that this sequence

converges to Strue. Precisely, let the columns of orthonormal matrix Ut ∈ Rn×d span the subspace St.

Then we are interested in showing that

lim
t→∞

det
(
UTtrueUtU

T
t Utrue

)
= 1 . (4.4)

In this section we analyze Algorithm 2, the full-data version of Algorithm 1, with respect to this cri-

terion. To see why this is equivalent to convergence of a sequence of subspaces, consider the following

Lemma.

Lemma 4.1. The following three statements are equivalent, and are equivalent to 4.4.

lim
t→∞

UtU
T
t = UtrueU

T
true (4.5)

lim
t→∞

∑
i

σi(UTt Utrue)
2 = d (4.6)

lim
t→∞

∑
i

λi(UTtrueUtU
T
t Utrue) = d . (4.7)

Proof. We start by considering the meaning of 4.5. Since projection matrices uniquely define sub-

spaces, then the entry-wise convergence of these matrices is a precise characterization of convergence

of the corresponding subspaces.

Next note that for i = 1, . . . , d, the singular values σi(UTt Utrue) ∈ [0, 1]. This can be seen with

the fact that for two n× n projection matrices A and B, ‖AB‖2 ≤ ‖A‖2‖B‖2 = 1; i.e. the maximum

singular value of the product of projection matrices is 1, and thus all the singular values are between

zero and one.
3We remind the reader that the subspace which is spanned by the orthonormal columns of Ut is uniquely identified by

the projection matrix UtU
T
t . Any two (non-unique) orthonormal matrices whose columns span St will have the same unique

resulting projection matrix.

52

The proof of the fact that Equations 4.5 and 4.6 are equivalent can be found using [28, 45]. Then 4.6

and 4.7 are equivalent by the relationship of singular values and eigenvalues, and 4.4 is equivalent by

the definition of the determinant as the product of the eigenvalues.

Algorithm 2 Full-data GROUSE for analysis purposes only

Require: An n× d orthogonal matrix U0 such that all principal angles between U0 and Utrue are less
than π/2. A sequence of vectors vt ∈ Strue ⊂ Rn. A set of stepsizes ηt.

1: for t = 1, . . . , T do
2: Estimate weights: w = arg mina ‖Uta− vt‖2
3: Predict full vector: v|| = Utw

4: Rewrite the basis: Let the first column of a new matrix Ũt be v||/‖v||‖, and fill out the rest of
the columns using Gram-Schmidt such that Ũt is orthonormal and spans the same subspace as
Ut.

5: Re-estimate weights: w̃(1) = ‖w‖2, and w(i) = 0 for i 6= 1.
6: Compute residual: v⊥ = vt − v||
7: Update subpace: Ut+1 = Ũt +

(
(cos(γηt)− 1) v||

‖v||‖
+ sin(γηt) v⊥

‖v⊥‖

) ewT
‖ ew‖

where γ = ‖v⊥‖‖v||‖
8: end for

This algorithm given in 2 is equivalent to Algorithm 1 when all data are observed. Steps 4 and 5

are new, and Step 7 uses Ũt and w̃ as opposed to Ut and w. However, since Ut and Ũt span the same

subspace, these changes do not change the algorithm. In fact it is unnecessary to execute steps 4 and 5,

so one would not do this in practice, we are just writing it like this for purposes of analysis. Also

note v|| = Utw = Ũtw̃. Finally, note that we changed notation to γ = ‖v⊥‖‖v||‖, so as to avoid any

confusion with the singular values σi(UTt Utrue).

Let y =
(

cos(γηt)
v||
‖v||‖

+ sin(γηt) v⊥
‖v⊥‖

)
and use Ũ(i) to denote the ith column of Ũ . Then the

update step is simply

Ut+1 = Ũt −
v||w̃

T

‖v||‖‖w̃‖
+ y

w̃T

‖w̃‖ (4.8)

Since w̃(i) = 0 for i 6= 1, we have ewT
‖ ew‖ = [1 0 . . . 0]T . This means that the update in Step 7 is simply

replacing the first column of Ũt:

53

Ut+1 =

| | |

0 Ũt(2) · · · Ũt(d)

| | |

+

| | |

y 0 · · · 0

| | |

 (4.9)

or written slightly differently:

Ut+1(i) =

 y i = 1

Ũt(i) i 6= 1
. (4.10)

4.3.1 Monotonic Increase of the Determinant

We use Equation 4.4 and show that det
(
UTtrueUtU

T
t Utrue

)
increases with every step of Algorithm 2.

Note that det
(
UTtrueUtU

T
t Utrue

)
= det

(
UTt Utrue

)2. We therefore wish to show that, except when

Ut = Ut+1,

∣∣det
(
UTt+1Utrue

)∣∣ > ∣∣det
(
UTt Utrue

)∣∣ .

We re-write Utrue in the same way that we did for Ut in Step 4 of Algorithm 2 by orthonormalizing

around vt. That is, the first column of Ũtrue is vt/‖vt‖, and the rest of the columns are populated using

Gram-Schmidt such that Ũtrue is orthonormal and spans the same subspace as Utrue. We can then look

at UTt Ũtrue instead to show equivalently that:

∣∣∣det
(
UTt+1Ũtrue

)∣∣∣ > ∣∣∣det
(
ŨTt Ũtrue

)∣∣∣ .

We first state a Lemma that we will need for to prove this inequality holds.

This Lemma examines the relationship of
∣∣∣yT vt

‖vt‖

∣∣∣ and
∣∣∣∣ vT||‖v||‖ vt

‖vt‖

∣∣∣∣. We wish to show that
∣∣∣∣ vT|| vt

‖v||‖‖vt‖

∣∣∣∣ <∣∣∣yT vt
‖vt‖

∣∣∣; i.e. that y is closer to vt than is v||. In the illustration in Figure 9, the shaded region gives

the range for y (equivalently γηt) which will guarantee this inequality is satisfied. Let ψ be the an-

gle between y and vt, and choose γηt ∈ (φ − π/2, φ + π/2) to restrict ψ ∈ (0, π/2). Note that the

54

Figure 9: The relationship of various vectors and angles in the update and proofs. As the step size γηt
is swept from 0 to 2π, the vector y traces out the unit circle that contains both v⊥/‖v⊥‖ and v||/‖v||.
The shaded region shows the range for y, i.e. for γηt, that will result in increasing the determinant in
Theorem 4.1.

constraint we will impose in the Lemma that ηt ∈
(

0, 2
‖vt‖2

)
is more restrictive than this. Therefore

yT vt
‖vt‖ > 0, and we can drop the absolute value signs. Let φ be the angle between v|| and vt, that is

cos(φ) =
vT|| vt

‖v||‖‖vt‖
. Note also φ ∈ (0, π/2) since v|| is the projection of vt, and so also

vT|| vt

‖v||‖‖vt‖
> 0.

Lemma 4.2. Restrict ψ ∈ (0, π/2). Then 0 < ηt <
2
‖vt‖2 implies

vT|| vt

‖v||‖‖vt‖
< yT vt

‖vt‖ .

Proof. It is sufficient to prove that φ > ψ: this implies cos(φ) < cos(ψ) and
vT|| vt

‖v||‖‖vt‖
< yT vt

‖vt‖ .

In order to prove φ > ψ, it is equivalent to prove that γηt < 2φ (See Figure 9).

First consider φ ∈ [π4 ,
π
2). For φ = π

4 , we have ‖v⊥‖ = ‖v‖‖ =
√
‖vt‖2

2 and thus γ = ‖v⊥‖‖v‖‖ =

‖vt‖2
2 . And for φ > π

4 , γ < ‖vt‖2
2 . So by the assumption of the Lemma, we have that

ηt <
2
‖vt‖2 <

π

‖vt‖2 <
π

2γ
<

2φ
γ
.

Now consider φ ∈ [0, π4). In this region, sin(φ) < φ. Note that sin(φ) = ‖v⊥‖
‖vt‖ .

2φ
γ
>

2 sin(φ)
γ

=
2

‖v⊥‖‖v‖‖
‖v⊥‖
‖vt‖ >

2
‖vt‖2 > ηt ,

where we use that ‖v‖‖ < ‖vt‖ and again use the assumption of the Lemma.

55

Now we are able to state our Theorem of monotonic increase of the determinant.

Theorem 4.1. Let ηt ∈
(
0, 2/‖vt‖2

)
. Then unless Ut = Ut+1,

∣∣∣det
(
UTt+1Ũtrue

)∣∣∣ > ∣∣∣det
(
ŨTt Ũtrue

)∣∣∣ .

Proof. We start by writing the products ŨTt Ũtrue and UTt+1Ũtrue as follows.

ŨTt Ũtrue =

| | |

v||/‖v||‖ Ũt(2) · · · Ũt(d)

| | |

T

| | |

vt/‖vt‖ Ũtrue(2) · · · Ũtrue(d)

| | |

UTt+1Ũtrue =

| | |

y Ũt(2) · · · Ũt(d)

| | |

T

| | |

vt/‖vt‖ Ũtrue(2) · · · Ũtrue(d)

| | |

Let At be the matrix

[
Ũt(2) · · · Ũt(d)

]
, and let B be the matrix

[
Ũtrue(2) · · · Ũtrue(d)

]
. Then

ŨTt Ũtrue =
[
v||/‖v||‖ At

]T [vt/‖vt‖ B] and UTt+1Ũtrue = [y At]
T [vt/‖vt‖ B], and our block

matrices are:

ŨTt Ũtrue =

v||
‖v||‖

T vt
‖vt‖

v||
‖v||‖

T
B

0 ATt B

 (4.11)

UTt+1Ũtrue =

yT vt
‖vt‖ yTB

0 ATt B

56

The bottom left corner is 0 because vt ⊥ At by definition of the projection of vt on Ũt.

det
(
ŨTt Ũtrue

)
=

∣∣∣∣∣∣∣∣∣∣∣

vT||
‖v||‖

vt
‖vt‖

vT||
‖v||‖

B

0 ATt B

∣∣∣∣∣∣∣∣∣∣∣
= det

(
ATt B

)
det

(
vT||

‖v||‖
vt
‖vt‖ −

vT||

‖v||‖
B(ATt B)−1 · 0

)

= det(ATt B)
vT||

‖v||‖
vt
‖vt‖

and equivalently

det
(
UTt+1Ũtrue

)
= det(ATt B)yT

vt
‖vt‖

From here we use the result of Lemma 4.2 that ηt < 2/‖vt‖2 implies that
∣∣∣yT vt

‖vt‖

∣∣∣ > ∣∣∣∣ vT||‖v||‖ vt
‖vt‖

∣∣∣∣,
completing the proof.

4.3.2 Stationary Points

We seek stationary points for which the update step will have Ut = Ut+1 for all t > T for some finite

T . We require that the data vectors vt are generated from the true subspace in such a way that there

exists a τ so that for every collection of τ consecutive vectors vt+1, . . . , vt+τ ,

span (vt+1, . . . , vt+τ) = Strue . (4.12)

This will hold, for example, with probability 1 for τ = d if the vectors vt are drawn i.i.d. from an

absolutely continuous distribution on Strue.

Lemma 4.3. Let U be a stationary point of Algorithm 2; i.e., Ut = Ut+1 = U for τ consecutive

updates. Then either

57

det(UTUtrue) = 0 ,

or

det(UTUtrue) = 1 (4.13)

and note that all U which satisfy 4.13 span the subspace Strue.

Proof. Stationary points exist wherever Ut+1 = Ut with our assumption in 4.12 whenever Ut+1 = Ut

for some consecutive vectors vt+1, . . . , vt+τ . This is true when w = 0 or v|| = vt for vt+1, . . . , vt+τ .

For our global optimal point, v|| = vt for vt+1, . . . , vt+τ . Thus all the eigenvalues of UTUtrue are

one and det(UTUtrue) = 1.

The next obvious collection of stationary points are those where w = 0 for all vt+1, . . . , vt+τ ;

that is, U ⊥ Utrue. Finally, the remaining stationary points are those where v|| = vt for some of

vt+1, . . . , vt+τ and w = 0 for the others. For all these non-optimal stationary points, at least one vector

or component of span(U) is orthogonal to Strue. In this case, at least one eigenvalue of UTUtrue will

be zero.

4.3.3 Convergence to the Global Optimal Stationary Point

As long as U0 is initialized in such a way that the eigenvalues of UT0 Utrue are all non-zero, then

Theorem 4.1 and Lemma 4.3 imply that Algorithm 2 converges to the global optimal stationary point.

This will hold if U0 is drawn randomly from any distribution with zero measure on the stationary points

of Lemma 4.3, which includes is any uniform distribution on the Grassmannian.

Theorem 4.2. Algorithm 2 (and therefore Algorithm 1 with Ωt = {1, . . . , n}, ∀t) converges to the

global optimum point where det(UTt Utrue) = 1.

Proof. We know from [12] that, being a gradient method, Algorithm 2 will converge to a stationary

58

point, as long as the step sizes are diminishing but not summable:

ηt → 0,
∑
t

ηt =∞ .

Since det(UT0 Utrue) > 0, and the determinant is monotonically increasing, then we are guaranteed

that the algorithm converges to the one stationary point with nonzero determinant, the global optimal

point.

4.4 Discussion of Convergence with missing data

We conjecture that GROUSE also converges with missing data under certain assumptions on the sam-

pling. Obviously it is at least necessary that there exists a finite τ such that 0 < ‖vΩt − PSΩt
vΩt‖2 <

‖vΩt‖2 for at least one vector in every consecutive τ vectors, or else no GROUSE update would occur

in that window. Whether this is sufficient, and what distributions on the data and the observation sets

achieve such a condition, remains a crucial open question.

We could potentially extend the reasoning of the previous section in order to address whether the

general GROUSE algorithm in Algorithm 1 converges with missing data. We could use the same final

argument of Section 4.3.3 as long as we can similarly identify the stationary points of the missing-

data cost function and show the monotonic increase of the GROUSE update step. Here we discuss

our understanding of the potential extension of the previous arguments, and potential obstacles when

addressing each of these issues.

4.4.1 Stationary Points

We start by considering the stationary points of the missing-data cost function. Again we require for a

stationary point that Ut = Ut+1 for some τ consecutive vectors. We must have some way of requiring

“enough” observations in our data vectors.

With missing data, it is possible that v|| = vt for all the data vectors even when the estimate given

59

by GROUSE is not the global optimal point. For example, consider an example where d = 1 and the

number of samples |Ωi| = 1 for every vector vi. Then it is possible to fit every vector to any randomly

initialized subspace U0, and the algorithm will never update. In this example any randomly drawn

initial subspace is a stationary point of the algorithm with v|| = vt.

It is also difficult to characterize the non-optimal stationary points where w = 0 when there are

missing data. It is technically possible that the data vectors, on their observed coordinates, are all

orthogonal to the estimated subspaceUt for τ consecutive vectors, even when the fully-observed vectors

would not be orthogonal. This creates new stationary points which could trap the algorithm. Despite

this, we see that with enough measurements the algorithm always does well in simulation; we believe

there may be some simple assumptions under which this will not happen.

4.4.2 Monotonic Increase of the Determinant

Here we can analyze the algorithm with missing data using exactly the same approach as before; how-

ever, when we write our block matrices as in Equation 4.12 we have a slightly less simple expression.

With missing data our vector y is the vector from Algorithm 1:

y = cos(σηt)
v||

‖v||‖
+ sin(σηt)

v⊥
‖v⊥‖

where v⊥ = 0 on Ωc.

The block matrices are thus:

60

ŨTt Ũtrue =

v||
‖v||‖

T vt
‖vt‖

v||
‖v||‖

T
B

ATt
vt
‖vt‖ ATt B

 (4.14)

UTt+1Ũtrue =

yT vt
‖vt‖ yTB

ATt
vt
‖vt‖ ATt B

The bottom left corner is no longer 0, because vΩt ⊥ At after the projection, but the same cannot be

said for vt. Continuing we have that

det
(
ŨTt Ũtrue

)
=

∣∣∣∣∣∣∣∣∣∣∣

vT||
‖v||‖

vt
‖vt‖

vT||
‖v||‖

B

ATt
vt
‖vt‖ ATt B

∣∣∣∣∣∣∣∣∣∣∣
= det

(
ATt B

)
det

(
vT||

‖v||‖
vt
‖vt‖ −

vT||

‖v||‖
B(ATt B)−1ATt

vt
‖vt‖

)

and equivalently

det
(
UTt+1Ũtrue

)
= det

(
ATt B

)
det
(
yT

vt
‖vt‖ − y

TB(ATt B)−1ATt
vt
‖vt‖

)
.

Defining Dt = vt
‖vt‖ −B(ATt B)−1ATt

vt
‖vt‖ , we have

det
(
ŨTt Ũtrue

)
= det

(
ATt B

)
det

(
vT||

‖v||‖
Dt

)
(4.15)

det
(
UTt+1Ũtrue

)
= det

(
ATt B

)
det
(
yTDt

)
. (4.16)

These expressions provide a starting point for future investigation into requirements that will guarantee

convergence with missing data.

61

0 1000 2000 3000 4000
10−15

10−10

10−5

100

105

iteration

su
bs

pa
ce

 e
rro

r

0 1 2 3 4
x 104

10−15

10−10

10−5

100

105

iteration

su
bs

pa
ce

 e
rro

r

Figure 10: Missing data convergence for an incoherent subspace. For both, the inherent dimension
d = 5 and the number of samples per vector |Ω| = 20. On the left n = 100, on the right n = 1000.

4.4.3 Empirical Evidence

In conclusion, we provide two empirical results which are representative and which motivate further

work on the question of convergence. In both we have plotted the Frobenius norm of the difference

between the projection matrices (i.e. as in Equation 4.5 as opposed to the determinant), and so we

expect to see the cost function decrease to zero.

In Figure 10, we have simulated a true subspace using orthonormalized Gaussian vectors, and

therefore the resulting subspace is incoherent. The ambient dimension n = 100 (left) and n = 1000

(right), inherent dimension d = 5, and the number of samples per vector |Ω| = 20. We see the cost

function decreasing quickly to numerical precision. In Figure 11, the true subspace is a 5-dimensional

subspace made of the first five coordinate vectors, i.e. the standard basis vectors. In this case, it takes

many vectors before convergence; however we conjecture that we are still guaranteed convergence of

the algorithm since the measurements are drawn uniformly, and thus over time the true subspace is

properly sampled.

62

0 1 2 3 4 5 6 7 8 9 10
x 106

10−10

10−5

100

iteration

su
bs

pa
ce

 e
rro

r

Figure 11: Missing data convergence when the true subspace is the first five standard basis vectors.
n = 100, d = 5, |Ω| = 20.

4.5 Empirical Analysis

GROUSE is implemented in Matlab using only basic operations. A single update of a 10 dimensional

subspace of R100000 from a measurement density 10−3 takes less than two hundredths of a second on a

MacBook laptop.

4.5.1 Static Subspace Estimation

We first consider the problem of identifying a fixed subspace. In all of the following experiments, the

full data dimension is n = 700, the rank of the underlying subspace is d = 10, and the sampling density

is 0.17 unless otherwise noted.

We generated a series of iid vectors vt according to generative model:

vt = Utrueα+ β

where Utrue is an n × d matrix whose d orthonormal columns spam the subspace, α is a d × 1 vector

whose entries are realizations of iid N (0, 1) random variables, and β is an n× 1 vector whose entries

63

101 102 103 10410−15

10−10

10−5

100

no
rm

al
ize

d
fro

be
ni

us
 s

ub
sp

ac
e

er
ro

r

diminishing step size

0
2.6e−8
2.6e−4

10
1

10
2

10
3

10
42000

4000

6000

8000

10000

12000

14000

diminishing step size parameter

Ite
ra

tio
n

nu
m

be
r

(a) (b)

10−3 10−2 10−1 10010−15

10−10

10−5

100

105

no
rm

al
ize

d
fro

be
ni

us
 s

ub
sp

ac
e

er
ro

r

constant step size

0
2.6e−8
2.6e−4

10
−3

10
−2

10
−1

10
0

10
1

2000

4000

6000

8000

10000

12000

14000

constant step size parameter

Ite
ra

tio
n

nu
m

be
r

(c) (d)

Figure 12: (a) Performance sensitivity to noise for a diminishing stepsize policy ηt = C/t. Results are displayed
for three values of the noise magnitude, ω. (b) The number of iterations required to achieve an error of 10−6 as
a function of C. (c) and (d) are the same except that the stepsize policy is here ηt = C.

are iidN (0, ω2). HereN (0, ω2) denotes the Gaussian distribution with mean zero and variance ω2 > 0

which governs the SNR of our data.

We implemented GROUSE (see Algorithm 1 above) with a stepsize rule of ηt := C/t for some

constant C > 0. Figure 12(a) shows the steady state error of the tracked subspace with varying values

of C and the noise variance. All the data points reflect the error performance at t = 14000. We see that

GROUSE converges for C ranging over an order of magnitude, however with additive noise the smaller

stepsizes yield smaller errors. When there is no noise, i.e., ω2 = 0, the error performance is near the

level of machine precision and is flat for the whole range of converging stepsizes. In Figure 12(b) we

64

show the number of input vectors after which the algorithm converges to an error of less than 10−6.

The results are consistent with Figure 12(a), demonstrating that smaller stepsizes in the suitable range

take fewer vectors until convergence. We only ran the algorithm up to time t = 14000, so the data

points for the smallest and the largest few stepsizes only reflect that the algorithm did not yet reach the

desired error in the allotted time. Figures 12(c) and 12(d) repeat identical experiments with a constant

stepsize policy, ηt = C. We again see a wide range of stepsizes for which GROUSE converges, though

the region of stability is narrower in this case.

We note that the norm of the residual ‖v⊥‖ provides an excellent indicator for whether tracking

is successful. A shown in Figure 24(a), the error to the true subspace is closely approximated by

‖v⊥‖/‖vt‖. This confirms the theoretical analysis in [8] which proves that this residual norm is an

accurate estimator of the true subspace error when the number of samples is appropriately large.

4.5.2 Static Subspaces and LMS Comparison

Here we compare GROUSE to the LMS algorithm described in Section 4.2.2. We first compare with

fully observed vectors, and then we alter LMS to use the incomplete data residual. However even

with the smallest amount of data missing, the altered LMS algorithm fails to identify the subspace

appropriately.

Algorithm LMS implements LMS subspace estimation as given in [34], but using the incomplete

data residual; in order to avoid a divergence of the entries of W → ∞, we implemented a low-

complexity column normalization step. We also implemented another version which orthogonalizes

W after every update.

For these simulations, our parameters were n = 100, d = 5, and the number of vectors seen

was T = 5000. No noise was added to the vectors; i.e. all vt ∈ Strue. Results with full data are

seen in Figure 13, which is averaged over 6 random problem instances. These results show that the

performance of the two algorithms are similar until data are missing.

65

10−3 10−2 10−1 100

10−15

10−10

10−5

100

constant step size

fin
al

 s
ub

sp
ac

e
er

ro
r

GROUSE 90%
LMS no orth 90%
LMS orth 90%
LMS no orth 100%
LMS orth 100%

Figure 13: LMS versus GROUSE on subspace error after T = 5000 vectors, for ambient dimension
n = 100 and subspace dimension d = 5. Even with just a small number of entries missing, the
non-orthonormalized version of LMS completely fails.

In order to further investigate the behavior of LMS with missing data, we made the following two

plots. We looked at LMS with fully observed vectors and 90% observed vectors; we also noted that

since LMS does not orthogonalize the matrix W , the implementation of the solution to WΩtw = vΩt

may create different solutions, so we implemented it both with the backslash operator in MATLAB as

well as with the pseudoinverse operator. As can be seen in Figure 14, when W is not orthonormalized

and data are missing, the LMS algorithm fails to converge. Also, interestingly, we can see in Figure 15

that with both 100% and 90% sampling, the smallest singular value of W heads toward one after an

initial dip, but only with 100% sampling does W become orthogonal.

4.5.3 Subspace Estimation for Matrix Completion

As described in Section 4.1.1, matrix completion can be thought of as a subspace identification problem

where we aim to identify the column space of the unknown low-rank matrix. Once the column space is

identified, we can project the incomplete columns onto that subspace in order to complete the matrix.

We have examined GROUSE in this context with excellent results. Our approach is to do descent on the

column vectors in random order, and allow the algorithm to pass over those same incomplete columns

66

0 5000
10−20

10−10

100

orthogonalization

90
%

 s
am

pl
in

g

0 5000
10−2

10−1

100

101

Running Subspace Error, constant step size

no orth, backslash

Su
bs

pa
ce

 F
ro

be
ni

us
 E

rro
r

0 5000
10−2

10−1

100

101

no orth, pinv
0 5000

10−20

10−10

100

grouse

0 5000
10−20

10−10

100

10
0%

 s
am

pl
in

g

0 5000
10−20

10−10

100

0 5000
10−20

10−10

100

0 5000
10−20

10−10

100

Figure 14: LMS versus GROUSE on vector-by-vector subspace error, for ambient dimension n = 100
and subspace dimension d = 5. Note the y-axis scale on the top center two plots is different from the
others. Even with just a small number of entries missing, the non-orthonormalized version of LMS
completely fails.

a few times.

Our simulation set-up aimed to complete 700 × 700 dimensional matrices of rank 10 sampled

with density 0.17. We generated the low-rank matrix by generating two factors YL and YR with i.i.d.

Gaussian entries, and added normally distributed noise with variance ω2. The robustness to step-size

and time to recovery are shown in Figure 16.

In Figure 17 we show a comparison of five matrix completion algorithms and GROUSE (labeled as

Stochastic Gradient). Namely, we compare to the performance of OptSpace [57], FPCA [68], SVT [21],

SDPLR [20, 86], and NNLS [99]. We downloaded each of these MATLAB codes from the original de-

veloper’s websites when possible. We use the same random matrix model as in Figure 16. GROUSE is

faster than all other algorithms, and achieves higher quality reconstructions on many instances. We sub-

sequently compared against NNLS, the fastest batch method, on very large problems. Both GROUSE

67

0 50001

1

1

1

orthogonalization

90
%

 s
am

pl
in

g

0 50000.94

0.96

0.98

1
Smallest Singular Value

no orth, backslash
0 50000.94

0.96

0.98

1

no orth, pinv

0 50001

1

1

1

10
0%

 s
am

pl
in

g

0 50000.98

0.99

1

0 50000.98

0.99

1

Figure 15: Since the LMS matrix variable W does not have to be orthonormal, we looked at the value
of the smallest singular value to ensure numerical stability. We found evidence thatW becomes orthog-
onal in the limit [34] when the vector is fully sampled, but not when there are missing observations.

and NNLS achieved excellent reconstruction, but GROUSE was twice as fast.

68

10−2 10−1 100 10110−20

10−15

10−10

10−5

100

step size

re
la

tiv
e

fro
b−

no
rm

 e
rro

r f
or

 fu
ll m

at
rix

1e−15
1e−5
1e−3

10−10 10−8 10−6 10−4 10−2 10010−10

10−8

10−6

10−4

10−2

100

noise power

re
la

tiv
e

fro
b−

no
rm

 e
rro

r f
or

 fu
ll m

at
rix

5 passes
10
25
50

(a) (b)

Figure 16: (a) Performance sensitivity to noise parameter ω and stepsize for matrix completion. Here we use a
diminishing stepsize η = C/t. (b) Here we plot the time to get to a desired Frobenius norm error on the hidden
matrix. We see that GROUSE converges to the noise floor after at most 10 passes over the columns of the matrix.

!"#$!"#% !"#&
!""

!"!

!"'

!"(

)*++,-./012,03+./143,035678/0*5/167,30060

9
6-
:*
/.
/16
7,
/1-
3,
17
,;
35
67
<8

=0060,4,96-:*/./167,>1-3

,

,

?@AB;=
;CD,E@
FFE;
)D9G
;H>
AD>#;:.53

Figure 17: This figure compares five matrix completion algorithms against GROUSE.

69

Problem parameters GROUSE NNLS
nr nc r dens rel.err. passes time rel. err. time (s)

5000 20000 5 0.006 1.10e-4 2 14.8 4.12e-04 66.9
5000 20000 10 0.012 1.5e-3 2 21.1 1.79e-4 81.2
6000 18000 5 0.006 1.44e-5 3 21.3 3.17e-4 66.8
6000 18000 10 0.011 8.24e-5 3 31.1 2.58e-4 68.8
7500 15000 5 0.005 5.71e-4 4 36.0 3.09e-4 62.6
7500 15000 10 0.013 1.41e-5 4 38.3 1.67e-4 68.0

Figure 18: This table gives a comparison of GROUSE and NNLS on large random matrix completion problems.

70

Appendix A

Details of the GROUSE derivation

A.1 Derivative of F

In Section 4.2 we used the derivative of F (S; t) = mina ‖∆Ωt(vt − Ua)‖2 to develop the GROUSE

algorithm. Here we show how to reach the derivative, first using matrix derivative identities [70]

without justification. We then give a complete treatment using the Fréchet derivative.

In Section 4.2, dFdU is given as 2v⊥wT (Equation 4.3). We derive this as follows:

dF

dU
=

d

dU

(
vTΩvΩ − vTΩUΩ

(
UTΩUΩ

)−1
UTΩ vΩ

)
=

d

dU

(
−Trace

(
vTΩUΩ

(
UTΩUΩ

)−1
UTΩ vΩ

))
(A.1)

= − d

dU
Trace

((
UTΣΩU

)−1 (
UTΣΩvv

TΣΩU
))

(A.2)

= 2ΣΩU
(
UTΣΩU

)−1 (
UTΣΩvv

TΣΩU
) (
UTΣΩU

)−1

−2
(
ΣΩvv

TΣΩU
) (
UTΣΩU

)−1
(A.3)

where Step A.1 holds because the Trace of a scalar is itself, Step A.2 uses the cyclic property of the

trace, and Step A.3 is calculated using rules of matrix derivatives which can be found in [70]. Note

also that we have transposed the result to be consistent with derivative notation in [37]. Defining the

projection weights to be

w = (UTΩUΩ)−1UTΩ vΩ =
(
UTΣΩU

)−1
UTΣΩv

we have

71

dF

dU
= 2ΣΩUww

T − 2ΣΩvw
T

=

 2(UΩw − vΩ)wT on Ω

0 otherwise

= 2v⊥wT

where we define v⊥ = (UΩw − vΩ) on Ω and 0 otherwise.

In order to develop Step A.3 above more carefully, here we use the Fréchet derivative. For a

function F (U), the derivative dF
dU is the function such that

〈
dF

dU
,X

〉
=

d

dε
F (U + εX)

∣∣∣∣
ε=0

.

Thus we look at d
dεF (U + εX)

∣∣
ε=0

, and manipulate it such that it is the inner product of some function

g with X , 〈g,X〉. We can read off that function g as the derivative dF
dU .

F (U + εX) = −Tr
(
vTΣΩ(U + εX)

(
(U + εX)TΣΩ(U + εX)

)−1
(U + εX)TΣΩv

)

= −Tr
(
vTΣΩ(U + εX) (A (I −B))−1 (U + εX)TΣΩv

)
where we define A = UTΣΩU and

B = −εA−1XTΣΩU − εA−1UTΣΩX − ε2A−1XTΣΩX .

We continue

72

F (U + εX) = −Tr(vTΣΩ(U + εX)(I −B)−1A−1(U + εX)TΣΩv)

= −Tr(vTΣΩ(U + εX)
∞∑
k=0

BkA−1(U + εX)TΣΩv)

= −Tr(vTΣΩ(U + εX)

(
B0 +B1 +

∞∑
k=2

Bk

)
A−1(U + εX)TΣΩv)

= −Tr(vTΣΩUA
−1UTΣΩv + εvTΣΩUA

−1XTΣΩv + εvTΣΩXA
−1UTΣΩv

+ε2vTΣΩXA
−1XTΣΩv + vTΣΩUBA

−1UTΣΩv + εvTΣΩUBA
−1XTΣΩv

+εvTΣΩXBA
−1UTΣΩv + ε2vTΣΩXBA

−1XTΣΩv

+vTΣΩ(U + εX)
∞∑
k=2

BkA−1(U + εX)TΣΩv)

We rearrange so that all terms with an ε2 or higher are together; we pull out the ε2 and replace the other

variables simply by C. We also replace B with its definition:

= −Tr
(
vTΣΩUA

−1UTΣΩv +εvTΣΩUA
−1XTΣΩv + εvTΣΩXA

−1UTΣΩv

+vTΣΩUBA
−1UTΣΩv + ε2C

)

= −Tr
(
vTΣΩUA

−1UTΣΩv + εvTΣΩUA
−1XTΣΩv + εvTΣΩXA

−1UTΣΩv

−εvTΣΩUA
−1XTΣΩUA

−1UTΣΩv − εvTΣΩUA
−1UTΣΩXA

−1UTΣΩv + ε2C
)

At this point, we can take the derivative with respect to ε:

73

d

dε
F (U + εX) = −Tr(vTΣΩUA

−1XTΣΩv + vTΣΩXA
−1UTΣΩv

−vTΣΩUA
−1XTΣΩUA

−1UTΣΩv

−vTΣΩUA
−1UTΣΩXA

−1UTΣΩv + 2εC) (A.4)

= −Tr(A−1UTΣΩvv
TΣΩX)− Tr(A−1UTΣΩvv

TΣΩX)

+Tr(A−1UTΣΩvv
TΣΩUA

−1UTΣΩX) (A.5)

+Tr(A−1UTΣΩvv
TΣΩUA

−1UTΣΩX)− Tr(2εC) (A.6)

= Tr(
[−2A−1UTΣΩvv

TΣΩ + 2A−1UTΣΩvv
TΣΩUA

−1UTΣΩ

]
X) (A.7)

−Tr(2εC)

Step A.4 and A.7 use linearity of the Trace. Step A.6 also uses that Tr(A) = Tr(AT), the cyclic property

of the Trace, and the fact that A−1 is symmetric. Setting ε = 0, the final term drops off. Taking the

transpose to be consistent with the derivative notation of [37], we can read our derivative from within

the brackets:

d

dU
F (U) =

[−2(UTΩUΩ)−1UTΩ vΩv
T
Ω + 2(UTΩUΩ)−1UTΩ vΩv

T
ΩUΩ(UTΩUΩ)−1UTΩ

]T
=

[
2
(
(UTΩUΩ)−1UTΩ vΩ

) (
vTΩUΩ(UTΩUΩ)−1UTΩ − vTΩ

)]T
= 2v⊥wT

where again we define the projection weights to be w = (UTΩUΩ)−1UTΩ vΩ =
(
UTΣΩU

)−1
UTΣΩv

and v⊥ = (UΩw − vΩ) on Ω and 0 otherwise.

A.2 Update Step Derivation

We have from Section 4.2 that

∇F = −2v⊥wT .

74

We wish to find an update such that we take a geodesic step on the Grassmannian in the direction of

the negative gradient. Let σ = ‖v⊥‖‖w‖ and let the SVD of the negative gradient v⊥wT be written as

in Section 4.2:

v⊥w
T = Y SZT =

[
v⊥
‖v⊥‖ x2 . . . xd

]
× diag(σ, 0, . . . , 0)×

[
w
‖w‖ y2 . . . yd

]T
.

Using (2.65) from [37], we find that for η > 0, a step of length η in the direction v⊥wT is given by

U(η) = UZ cos(Sη)ZT + Y sin(Sη)ZT

= UZ cos(diag(ση, 0, . . . , 0))ZT + Y sin(diag(ση, 0, . . . , 0))ZT

= UZ diag(cos(ση), 1, . . . , 1)ZT + Y diag(sin(ση), 0, . . . , 0)ZT

= UZ [diag(1, 1, . . . , 1) + diag(cos(ση)− 1, 0, . . . , 0)]ZT + Y diag(sin(ση), 0, . . . , 0)ZT

= UZIZT + UZ diag(cos(ση)− 1, 0, . . . , 0)ZT + Y diag(sin(ση), 0, . . . , 0)ZT

= U + (cos(ση)− 1)U
w

‖w‖
wT

‖w‖ + sin(ση)
v⊥
‖v⊥‖

wT

‖w‖

which then gives us the GROUSE update equation

U(η) = U +
(cos(ση)− 1)
‖w‖2 UwwT + sin(ση)

v⊥
‖v⊥‖

wT

‖w‖
= U +

(
sin(ση)

v⊥
‖v⊥‖ + (cos(ση)− 1)

v||

‖v||‖
)
wT

‖w‖

where v|| := Uw, the predicted value of the projection of the vector vt onto the span of U .

75

Chapter 5

Estimating Unions of Subspaces with

Missing Data

The work in this chapter is joint with Brian Eriksson and Robert Nowak [3] and with Arthur Szlam,

Benjamin Recht, and Rob Nowak [7].

Modeling high-dimensional data with a union of subspaces is a useful generalization of subspace

models [67], and has applications in machine learning, imaging, network topology identification [3],

computer vision [32], and system identification [103].

A union of k r-dimensional subspaces itself spans a subspace which has dimension at most kr.

However, the union of subspaces model is often more flexible than the kr-dimensional subspace. Con-

sider the illustration in Figure 19; though the two lines (two one-dimensional subspaces) are a simpler

model than the two-dimensional plane, the set they define is non-convex.

Low Rank Models: Union of subspaces
with Brian Eriksson and Rob Nowak

!"#

Update the SVD:

[X, v] =
[

U v⊥
‖v⊥‖

] [S w
0 ‖v⊥‖

]
︸ ︷︷ ︸

[
V 0
0 1

]T

Diagonalize.

Theorem: Let X be an n × n matrix in a finite field. Fix ε > 0 and let Hi,
i = 1, . . . , k be sparse measurement matrices: Each entry of Hi is non-zero with
probability greater than log(n)/n, with its value drawn uniformly from the non-
zero elements of the field. If k > 2rn − r2 + ε(rn − r2

2), then the probability
that the exhaustive-search minimum rank decoder makes a mistake estimating
X, P(En)→ 0 as n→∞.

Theorem: Let X be an n × N matrix, N = O(np) for p ≥ 2, whose columns
lie in the union of k ' N rank r < n incoherent subspaces which are not “too
close” to one another. Then the matrix X can be perfectly reconstructed from
O(βrN log N) measurements with probability at least 1− 6kN−2(β−1) log2 N .

Theorem: Let X be an n×N matrix whose columns lie in the union of k ' N
rank r incoherent subspaces which are not “too close” to one another, and let
N = O(np) for p ≥ 2. Then the matrix X can be perfectly reconstructed from
O(rN log N) measurements with high probability.

Theorem: If |Ω| = O(µ(S)d log d) and Ω is chosen uniformly with replacement,
then with high probability and ignoring constant factors,

|Ω|− dµ(S)
n

‖v − PSv‖22 ≤ ‖vΩ − PSΩvΩ‖22 ≤
|Ω|
n
‖v − PSv‖22

Full Theorem: If |Ω| ≥ 8
3µ(S)d log(2d/δ) and Ω is chosen uniformly with

replacement, then with probability 1− 4δ,

|Ω|(1− α)− dµ(S) (1+β)2

(1−γ)

n
‖v−PSv‖22 ≤ ‖vΩ−PSΩvΩ‖22 ≤ (1+α)

|Ω|
n
‖v−PSv‖22

where we write v = x + y, x ∈ S, y ∈ S⊥,

α =
√

2µ(y)2

|Ω| log
(

1
δ

)
, β =

√
2µ(y) log

(
1
δ

)
, and γ =

√
8dµ(S)
3|Ω| log

(
2d
δ

)
.

Lemma 1: ‖yΩ‖22 ≥ (1− α) |Ω|
n ‖y‖22

2

Figure 19: Illustration of two 1-d subspaces and one 2-d subspace; though the two pink lines (two one-
dimensional subspaces) are a simpler model than the yellow two-dimensional plane, the set they define is non-
convex.

In this chapter we formulate the problem of estimating a union of subspaces from data vectors

76

which have missing values. We present a methodology in Section 5.2 for solving this problem, and in

Section 5.3 we prove that this methodology will succeed in estimating the union of subspaces with high

probability. We then present another algorithm in Section 5.4 which is more computationally efficient,

and we compare the two in numerical experiments in Section 5.5.

5.1 Problem Formulation

Consider a real-valued n ×N dimensional matrix X . Assume that the columns of X lie in the union

of at most k subspaces of Rn, each having dimension at most r < n and assume that N > kn. We

are especially interested in “high-rank” situations in which the total rank (the rank of the union of the

subspaces) may be n. Our goal is to complete X based on an observation of a small random subset of

its entries. We propose a novel method for this matrix completion problem. In the applications we have

in mind N may be arbitrarily large, and so we will focus on quantifying the probability that a given

column is perfectly completed, rather than the probability that whole matrix is perfectly completed

(i.e., every column is perfectly completed). Of course it is possible to translate between these two

quantifications using a union bound, but that bound becomes meaningless if N is extremely large.

Suppose the entries of X are observed uniformly at random with probability p0. Let Ω denote the

set of indices of observed entries and let XΩ denote the observations of X . Our main result shows

that under a mild set of assumptions each column of X can be perfectly recovered from XΩ with

probability at least 1− 20kn2−2β1/2
log n, β > 1, using a computationally efficient procedure if

p0 ≥ C β r
n

log2(n) (5.1)

where C > 1 is a constant depending on the usual incoherence conditions as well as the geometrical

arrangement of subspaces and the distribution of the columns in the subspaces.

77

5.1.1 Connections to Low-Rank Completion

Low-rank matrix completion theory [85] shows that an n×N matrix of rank r can be recovered from

incomplete observations, as long as the number of entries observed (with locations sampled uniformly

at random) exceeds rN log2N (within a constant factor and assuming n ≤ N). It is also known that,

in the same setting, completion is impossible if the number of observed entries is less than a constant

times rN logN [23]. These results imply that if the rank of X is close to n, then all of the entries are

needed in order to determine the matrix.

Here we consider a matrix whose columns lie in the union of at most k subspaces of Rn. Restricting

the rank of each subspace to at most r, then the rank of the full matrix our situation could be as large

as kr, yielding the requirement krN log2N using current matrix completion theory. In contrast, the

bound in (5.1) implies that the completion of each column is possible from a constant times rN log2 n

entries sampled uniformly at random. Exact completion of every column can be guaranteed by replac-

ing log2 n with log2N is this bound, but since we allow N to be very large we prefer to state our result

in terms of per-column completion. Our method, therefore, improves significantly upon conventional

low-rank matrix completion, especially when k is large. This does not contradict the lower bound in

[23], because the matrices we consider are not arbitrary high-rank matrices, rather the columns must

belong to a union of rank ≤ r subspaces.

5.1.2 Connections to Subspace Clustering

Let x1, . . . , xN ∈ Rn and assume each xi lies in one of at most k subspaces of Rn. Subspace clustering

is the problem of learning the subspaces from {xi}Ni=1 and assigning each vector to its proper subspace;

cf. [101] for a overview. This is a challenging problem, both in terms of computation and inference, but

provably probably correct subspace clustering algorithms now exist [56, 102, 63]. Here we consider

the problem of high rank matrix completion, which is essentially equivalent to subspace clustering

with missing data. This problem has been looked at in previous works [47, 104], but to the best of

78

our knowledge our method and theoretical bounds are novel. Note that our sampling probability bound

(5.1) requires that only slightly more than r out of n entries are observed in each column, so the matrix

may be highly incomplete.

5.1.3 Related Work

The proof of the main result draws on ideas from matrix completion theory, subspace learning and

detection with missing data, and subspace clustering. One key ingredient in our approach is the cele-

brated results on low-rank Matrix Completion [85, 23, 22]. Unfortunately, in many real-world problems

where missing data is present, particularly when the data is generated from a union of subspaces, these

matrices can have very large rank values (e.g., networking data in [40]). Thus, these prior results will

require effectively all the elements be observed to accurately reconstruct the matrix.

Our work builds upon the results of [8], which quantifies the deviation of an incomplete vector

norm with respect to the incoherence of the sampling pattern. While this work also examines subspace

detection using incomplete data, it assumes complete knowledge of the subspaces.

While research that examines subspace learning has been presented in [112, 29], the work in this

chapter differs by the concentration on learning from incomplete observations (i.e., when there are

missing elements in the matrix), and by the methodological focus (i.e., nearest neighbor clustering

versus a multiscale Singular Value Decomposition approach).

5.2 Algorithm: Estimating a Union of Subspaces from Missing Data

We present an algorithm for estimating a union of subspaces from incomplete vectors. It involves sev-

eral relatively intuitive steps, outlined here. We go into detail for each of these steps in Section 5.3.

This work is joint with Brian Eriksson and Rob Nowak [3].

Local Neighborhoods. A subset of columns of XΩ are selected uniformly at random. These are called

79

seeds. A set of nearest neighbors is identified for each seed from the remainder of XΩ. In Section 5.3.1,

we show that nearest neighbors can be reliably identified, even though a large portion of the data are

missing, under the usual incoherence assumptions.

Local Subspaces. The subspace spanned by each seed and its neighborhood is identified using matrix

completion. If matrix completion fails (i.e., if the resulting matrix does not agree with the observed

entries and/or the rank of the result is greater than r), then the seed and its neighborhood are discarded.

In Section 5.3.2 we show that when the number of seeds and the neighborhood sizes are large enough,

then with high probability all k subspaces are identified. We may also identify additional subspaces

which are unions of the true subspaces, which leads us to the next step. An example of these neighbor-

hoods is shown in Figure 20.

Subspace Refinement. The set of subspaces obtained from the matrix completions is pruned to remove

all but k subspaces. The pruning is accomplished by simply discarding all subspaces that are spanned

by the union of two or more other subspaces. This can be done efficiently, as is shown in Section 5.3.3.

Full Matrix Completion. Each column in XΩ is assigned to its proper subspace and completed by

projection onto that subspace, as described in Section 5.3.4. Even when many observations are missing,

it is possible to find the correct subspace and the projection using results from subspace detection with

missing data [8]. The result of this step is a completed matrix X̂ such that each column is correctly

completed with high probability.

The mathematical analysis will be presented in the next few sections, organized according to these

steps. After proving the main result, experimental results are presented in the final section.

80

Figure 20: Example of nearest-neighborhood selecting points on from a single subspace. For illustration,
samples from three one-dimensional subspaces are depicted as small dots. The large dot is the seed. The subset
of samples with significant observed support in common with that of the seed are depicted by ∗’s. If the density
of points is high enough, then the nearest neighbors we identify will belong to the same subspace as the seed. In
this case we depict the ball containing the 3 nearest neighbors of the seed with significant support overlap.

5.3 Theoretical Analysis

We start by describing the key assumptions in our analysis, and giving our main result. The notion of

incoherence plays a key role in matrix completion and subspace recovery from incomplete observations.

Definition 3. The coherence of an r-dimensional subspace S ⊆ Rn is

µ(S) :=
n

r
max
j
‖PSej‖22

where PS is the projection operator onto S and {ej} are the canonical unit vectors for Rn.

Note that 1 ≤ µ(S) ≤ n/r. The coherence of single vector x ∈ Rn is µ(x) = n‖x‖2∞
‖x‖22

, which is

precisely the coherence of the one-dimensional subspace spanned by x. With this definition, we can

state the main assumptions we make about the matrix X .

A1. The columns of X lie in the union of at most k subspaces, with k = o(nd) for some d > 0. The

81

subspaces are denoted by S1, . . . ,Sk and each has rank at most r < n. The `2-norm of each

column is ≤ 1.

A2. The coherence of each subspace is bounded above by µ0. The coherence of each column is

bounded above by µ1 and for any pair of columns, x1 and x2, the coherence of x1 − x2 is

also bounded above by µ1.

A3. Let 0 < ε0 < 1 and Si,ε0 denote the subset of points in Si at least ε0 distance away from any other

subspace. There exists a constant 0 < ν0 ≤ 1, depending on ε0, such that

(i) The probability that a column selected uniformly at random belongs to Si,ε0 is at least ν0/k.

(ii) If x ∈ Si,ε0 , then the probability that a column selected uniformly at random belongs to the

ball of radius ε0 centered at x is at least ν0ε
r
0/k.

Additionally, if x ∈ Si, then the probability that x ∈ Sj , j 6= i is zero.

The value of ν0 depends on the geometrical arrangement of the subspaces and the distribution of

the columns within the subspaces. If the subspaces are not too close to each other, and the distributions

within the subspaces are fairly uniform, then typically ν0 will be not too close to 0. We define three

key quantities, the confidence parameter δ0, the required number of “seed” columns s0, and a quantity

`0 related to the neighborhood formation process (see Algorithm 3 in Section 5.3.1):

δ0 := n2−2β1/2
log n , for some β > 1 , (5.2)

s0 :=
⌈
k(log k + log 1/δ0)

(1− e−4)ν0

⌉
,

`0 :=

⌈
max

{
2k

ν0(ε0√
3
)r
,

8k log(s0/δ0)
nν0(ε0√

3
)r

}⌉
.

We can now state our main result.

Theorem 5.1. Let X be an n×N matrix satisfying A1-A3. Suppose that each entry of X is observed

independently with probability p0. If

p0 ≥ 128βmax{µ2
1, µ0}

ν0

r log2(n)
n

82

and

N ≥ `0n(2δ−1
0 s0`0n)µ

2
0 log p−1

0

then each column of X can be perfectly recovered with probability at least 1− (6 + 15s0) δ0, using the

methodology sketched above (and detailed later in the following sections).

The requirements on sampling are essentially the same as those for standard low-rank matrix com-

pletion, apart from requirement that the total number of columns N is sufficiently large. This is needed

to ensure that each of the subspaces is sufficiently represented in the matrix. The requirement on N is

polynomial in n for fixed p0, which is easy to see based on the definitions of δ0, s0, and `0 (see further

discussion at the end of Section 5.3.1).

Perfect recovery of each column is guaranteed with probability that decreases linearly in s0, which

itself is linear in k (ignoring log factors). This is expected since this problem is more difficult than k

individual low-rank matrix completions. We state our results in terms of a per-column (rather than full

matrix) recovery guarantee. A full matrix recovery guarantee can be given by replacing log2 n with

log2N . This is evident from the final completion step discussed in Lemma 5.8, below. However, since

N may be quite large (perhaps arbitrarily large) in the applications we envision, we chose to state our

results in terms of a per-column guarantee.

The details of the methodology and lemmas leading to the theorem above are developed in the

subsequent sections following the four steps of the methodology outlined above. In certain cases it will

be more convenient to consider sampling the locations of observed entries uniformly at random with

replacement rather than without replacement, as assumed above. The following lemma will be useful

for translating bounds derived assuming sampling with replacement to our situation (the same sort of

relation is noted in Proposition 3.1 in [85]).

Lemma 5.1. Draw m samples independently and uniformly from {1, . . . , n} and let Ω′ denote the

resulting subset of unique values. Let Ωm be a subset of size m selected uniformly at random from

83

{1, . . . , n}. Let E denote an event depending on a random subset of {1, . . . , n}. If P(E(Ωm)) is a

non-increasing function of m, then P(E(Ω′)) ≥ P(E(Ωm)).

Proof. For k = 1, . . . ,m, let Ωk denote a subset of size k sampled uniformly at random from {1, . . . , n},

and let m′ = |Ω′|.

P(E(Ω′)) =
m∑
k=0

P
(
E(Ω′) |m′ = k

)
P(m′ = k)

=
m∑
k=0

P(E(Ωk))P(m′ = k)

≥ P(E(Ωm))
m∑
k=0

P(m′ = k) .

5.3.1 Local Neighborhoods

In this first step, s columns of XΩ are selected uniformly at random and a set of “nearby” columns are

identified for each, constituting a local neighborhood of size n. All bounds that hold are designed with

probability at least 1 − δ0, where δ0 is defined in (5.2) above. The s columns are called “seeds.” The

required size of s is determined as follows.

Lemma 5.2. Assume A3 holds. If the number of chosen seeds,

s ≥ k(log k + log 1/δ0)
(1− e−4)ν0

,

then with probability greater than 1 − δ0 for each i = 1, . . . , k, at least one seed is in Si,ε0 and each

seed column has at least

η0 :=
64βmax{µ2

1, µ0}
ν0

r log2(n) (5.3)

observed entries.

84

Proof. First note that from Theorem 5.1, the expected number of observed entries per column is at least

η =
128βmax{µ2

1, µ0}
ν0

r log2(n)

Therefore, the number of observed entries η̂ in a column selected uniformly at random is probably

not significantly less. More precisely, by Chernoff’s bound we have

P(η̂ ≤ η/2) ≤ exp(−η/8) < e−4 .

Combining this with A3, we have the probability that a randomly selected column belongs to Si,ε0 and

has η/2 or more observed entries is at least ν ′0/k, where ν ′0 := (1− e−4)ν0. Then, the probability that

the set of s columns does not contain a column from Si,ε0 with at least η/2 observed entries is less than

(1 − ν ′0/k)s. The probability that the set does not contain at least one column from Si,ε0 with η/2 or

more observed entries, for i = 1, . . . , k is less than δ0 = k(1 − ν ′0/k)s . Solving for s in terms of δ0

yields

s =
log k + log 1/δ0

log
(

k/ν′0
k/ν′0−1

)
The result follows by noting that log(x/(x− 1)) ≥ 1/x, for x > 1.

Next, for each seed we must find a set of n columns from the same subspace as the seed. This

will be accomplished by identifying columns that are ε0-close to the seed, so that if the seed belongs to

Si,ε0 , the columns must belong to the same subspace. Clearly the total number of columns N must be

sufficiently large so that n or more such columns can be found. We will return to the requirement on

N a bit later, after first dealing with the following challenge.

Since the columns are only partially observed, it may not be possible to determine how close each

is to the seed. We address this by showing that if a column and the seed are both observed on enough

common indices, then the incoherence assumption A2 allows us reliably estimate the distance.

Lemma 5.3. Assume A2 and let y = x1−x2, where x1 and x2 are two columns of X . Assume there is

a common set of indices of size q ≤ n where both x1 and x2 are observed. Let ω denote this common

85

set of indices and let yω denote the corresponding subset of y. Then for any δ0 > 0, if the number of

commonly observed elements

q ≥ 8µ2
1 log(2/δ0) ,

then with probability at least 1− δ0

1
2
‖y‖22 ≤

n

q
‖yω‖22 ≤

3
2
‖y‖22 .

Proof. Note that ‖yω‖22 is the sum of q random variables drawn uniformly at random without replace-

ment from the set {y2
1, y

2
2, . . . , y

2
n}, and E‖yω‖22 = q

n‖y‖22. We will prove the bound under the as-

sumption that, instead, the q variables are sampled with replacement, so that they are independent.

By Lemma 5.1, this will provide the desired result. Note that if one variable in the sum ‖yω‖22 is re-

placed with another value, then the sum changes in value by at most 2‖y‖2∞. Therefore, McDiramid’s

Inequality shows that for t > 0

P
(∣∣∣‖yω‖22 − q

n
‖y‖22

∣∣∣ ≥ t) ≤ 2 exp
(−t2

2q‖y‖4∞

)
,

or equivalently

P
(∣∣∣∣nq ‖yω‖22 − ‖y‖22

∣∣∣∣ ≥ t) ≤ 2 exp
(−qt2

2n2‖y‖4∞

)
.

Assumption A2 implies that n2‖y‖4∞ ≤ µ2
1‖y‖42, and so we have

P
(∣∣∣∣nq ‖yω‖22 − ‖y‖22

∣∣∣∣ ≥ t) ≤ 2 exp
(−qt2

2µ2
1‖y‖42

)
.

Taking t = 1
2‖y‖22 yields the result.

Suppose that x1 ∈ Si,ε0 (for some i) and that x2 6∈ Si, and that both x1, x2 observe q ≥ 2µ2
0 log(2/δ0)

common indices. Let yω denote the difference between x1 and x2 on the common support set. If the

partial distance n
q ‖yω‖22 ≤ ε20/2, then the result above implies that with probability at least 1− δ0

‖x1 − x2‖22 ≤ 2
n

q
‖yω‖22 ≤ ε20.

86

On the other hand if x2 ∈ Si and ‖x1 − x2‖22 ≤ ε20/3, then with probability at least 1− δ0

n

q
‖yω‖22 ≤

3
2
‖x1 − x2‖22 ≤ ε20/2 .

Using these results we will proceed as follows. For each seed we find all columns that have at least

t0 > 2µ2
0 log(2/δ0) observations at indices in common with the seed (the precise value of t0 will be

specified in a moment). Assuming that this set is sufficiently large, we will select `n these columns

uniformly at random, for some integer ` ≥ 1. In particular, `will be chosen so that with high probability

at least n of the columns will be within ε0/
√

3 of the seed, ensuring that with probability at least δ0

the corresponding partial distance of each will be within ε0/
√

2. That is enough to guarantee with the

same probability that the columns are within ε0 of the seed. Of course, a union bound will be needed

so that the distance bounds above hold uniformly over the set of s`n columns under consideration,

which means that we will need each to have at least t0 := 2µ2
0 log(2s`n/δ0) observations at indices

in common with the corresponding seed. All this is predicated on N being large enough so that such

columns exist in XΩ. We will return to this issue later, after determining the requirement for `. For

now we will simply assume that N ≥ `n.

Lemma 5.4. Assume A3 and for each seed x let Tx,ε0 denote the number of columns of X in the ball

of radius ε0/
√

3 about x. If the number of columns selected for each seed, `n, such that,

` ≥ max

{
2k

ν0(ε0√
3
)r
,

8k log(s/δ0)
nν0(ε0√

3
)r

}
,

then P (Tx,ε0 ≤ n) ≤ δ0 for all s seeds.

Proof. The probability that a column chosen uniformly at random from X belongs to this ball is at

least ν0(ε0/
√

3)r/k, by Assumption A3. Therefore the expected number of points is

E[Tx,ε0] ≥
`nν0(ε0√

3
)r

k
.

By Chernoff’s bound for any 0 < γ < 1

P

(
Tx,ε0 ≤ (1− γ)

`nν0(ε0√
3
)r

k

)
≤ exp

(
−γ

2

2

`nν0(ε0√
3
)r

k

)
.

87

Algorithm 3 - Local Neighborhood Procedure
Input: n, k, µ0, ε0, ν0, η0, δ0 > 0.

s0 :=
⌈
k(log k + log 1/δ0)

(1− e−4)ν0

⌉
`0 :=

⌈
max

{
2k

ν0(ε0√
3
)r
,

8k log(s0/δ0)
nν0(ε0√

3
)r

}⌉
t0 := d2µ2

0 log(2s0`0n/δ0)e

Steps:

1. Select s0 “seed” columns uniformly at random and discard all with less than η0 observations

2. For each seed, find all columns with t0 observations at locations observed in the seed

3. Randomly select `0n columns from each such set

4. Form local neighborhood for each seed by randomly selecting n columns with partial distance
less than ε0/

√
2 from the seed

Take γ = 1/2 which yields

P

(
Tx,ε0 ≤

`nν0(ε0√
3
)r

2k

)
≤ exp

(
−
`nν0(ε0√

3
)r

8k

)
.

We would like to choose ` so that
`nν0(

ε0√
3

)r

2k ≥ n and so that exp
(
− `nν0(

ε0√
3

)r

8k

)
≤ δ0/s (so that

the desired result fails for one or more of the s seeds is less than δ0). The first condition leads to the

requirement ` ≥ 2k
ν0(

ε0√
3

)r
. The second condition produces the requirement ` ≥ 8k log(s/δ0)

nν0(
ε0√

3
)r
.

We can now formally state the procedure for finding local neighborhoods in Algorithm 3. Recall

that the number of observed entries in each seed is at least η0, per Lemma 5.2.

Lemma 5.5. If N is sufficiently large and η0 > t0, then the Local Neighborhood Procedure in Algo-

rithm 3 produces at least n columns within ε0 of each seed, and at least one seed will belong to each of

Si,ε0 , for i = 1, . . . , k, with probability at least 1− 3δ0.

Proof. Lemma 5.2 states that if we select s0 seeds, then with probability at least 1− δ0 there is a seed

in each Si,ε0 , i = 1, . . . , k, with at least η0 observed entries, where η0 is defined in (5.3). Lemma 5.4

88

implies that if `0n columns are selected uniformly at random for each seed, then with probability at

least 1 − δ0 for each seed at least n of the columns will be within a distance ε0/
√

3 of the seed. Each

seed has at least η0 observed entries and we need to find `0n other columns with at least t0 observations

at indices where the seed was observed. Provided that η0 ≥ t0, this is certainly possible if N is large

enough. It follows from Lemma 5.3 that `0n columns have at least t0 observations at indices where the

seed was also observed, then with probability at least 1− δ0 the partial distances will be within ε0/
√

2,

which implies the true distances are within ε0. The result follows by the union bound.

Finally, we quantify just how large N needs to be. Lemma 5.4 also shows that we require at least

N ≥ `n ≥ max

{
2kn

ν0(ε0√
3
)r
,

8k log(s/δ0)
ν0(ε0√

3
)r

}
.

However, we must also determine a lower bound on the probability that a column selected uniformly

at random has at least t0 observed indices in common with a seed. Let γ0 denote this probability, and

let p0 denote the probability of observing each entry in X . Note that our main result, Theorem 5.1,

assumes that

p0 ≥ 128βmax{µ2
1, µ0}

ν0

r log2(n)
n

.

Since each seed has at least η0 entries observed, γ0 is greater than or equal to the probability that a

Binomial(η0, p0) random variable is at least t0. Thus,

γ0 ≥
η0∑
j=t0

(
η0

j

)
pj0(1− p0)η0−j .

This implies that the expected number of columns with t0 or more observed indices in common with

a seed is at least γ0N . If ñ is the actual number with this property, then by Chernoff’s bound, P(ñ ≤

γ0N/2) ≤ exp(−γ0N/8). So N ≥ 2`0γ−1
0 n will suffice to guarantee that enough columns can be

found for each seed with probability at least 1− s0 exp(−`0n/4) ≥ 1− δ0 since this will be far larger

than 1− δ0, since δ0 is polynomial in n.

89

To take this a step further, a simple lower bound on γ0 is obtained as follows. Suppose we consider

only a t0-sized subset of the indices where the seed is observed. The probability that another column

selected at random is observed at all t0 indices in this subset is pt00 . Clearly γ0 ≥ pt00 = exp(t0 log p0) ≥

(2s0`0n)2µ2
0 log p0 . This yields the following sufficient condition on the size of N :

N ≥ `0n(2s0`0n/δ0)2µ2
0 log p−1

0 .

From the definitions of s0 and `0, this implies that if 2µ2
0 log p0 is a fixed constant, then a sufficient

number of columns will exist if N = O(poly(kn/δ0)). For example, if µ2
0 = 1 and p0 = 1/2, then

N = O((kn)/δ0)2.4) will suffice; i.e., N need only grow polynomially in n. On the other hand, in the

extremely undersampled case p0 scales like log2(n)/n (as n grows and r and k stay constant) and N

will need to grow almost exponentially in n, like nlogn−2 log logn.

5.3.2 Local Subspace Completion

For each of our local neighbor sets, we will have an incompletely observed n × n matrix; if all the

neighbors belong to a single subspace, the matrix will have rank ≤ r. First, we recall the following

result from low-rank matrix completion theory [85].

Lemma 5.6. Consider an n × n matrix of rank ≤ r and row and column spaces with coherences

bounded above by some constant µ0. Then the matrix can be exactly completed if

m′ ≥ 64 max
(
µ2

1, µ0

)
βrn log2 (2n) (5.4)

entries are observed uniformly at random, for constants β > 0 and with probability≥ 1−6 (2n)2−2β log n−

n2−2β1/2
.

We wish to apply these results to our local neighbor sets, but we have three issues we must address:

First, the sampling of the matrices formed by local neighborhood sets is not uniform since the set is

selected based on the observed indices of the seed. Second, given Lemma 5.2 we must complete not

90

one, but s0 (see Algorithm 3) incomplete matrices simultaneously with high probability. Third, some

of the local neighbor sets may have columns from more than one subspace. Let us consider each issue

separately.

First consider the fact that our incomplete submatrices are not sampled uniformly. The non-

uniformity can be corrected with a simple thinning procedure. Recall that the columns in the seed’s

local neighborhood are identified first by finding columns with sufficient overlap with each seed’s ob-

servations. To refer to the seed’s observations, we will say “the support of the seed.”

Due to this selection of columns, the resulting neighborhood columns are highly sampled on the

support of the seed. In fact, if we again use the notation q for the minimum overlap between two

columns needed to calculate distance, then these columns have at least q observations on the support

of the seed. Off the support, these columns are still sampled uniformly at random with the same

probability as the entire matrix. Therefore we focus only on correcting the sampling pattern on the

support of the seed.

Let t be the cardinality of the support of a particular seed. Because all entries of the entire matrix are

sampled independently with probability p0, then for a randomly selected column, the random variable

which generates t is binomial. For neighbors selected to have at least q overlap with a particular seed,

we denote t′ as the number of samples overlapping with the support of the seed. The probability density

for t′ is positive only for j = q, . . . , t,

P(t′ = j) =

(
t
j

)
pj0(1− p0)t−j

ρ

where ρ =
∑t

j=q

(
t
j

)
pj0(1− p0)t−j .

In order to thin the common support, we need two new random variables. The first is a bernoulli,

call it Y , which takes the value 1 with probability ρ and 0 with probability 1− ρ. The second random

variable, call it Z, takes values j = 0, . . . , q − 1 with probability

P(Z = j) =

(
t
j

)
pj0(1− p0)t−j

1− ρ

91

Define t′′ = t′Y + Z(1− Y). The density of t′′ is

P(t′′ = j) =

 P(Z = j)(1− ρ) j = 0, . . . , q − 1

P(t′ = j)ρ j = q, . . . , t

(5.5)

which equal to the desired binomial distribution. Thus, the thinning is accomplished as follows. For

each column draw an independent sample of Y . If the sample is 1, then the column is not altered. If

the sample is 0, then a realization of Z is drawn, which we denote by z. Select a random subset of size

z from the observed entries in the seed support and discard the remainder. We note that the seed itself

should not be used in completion, because there is a dependence between the sample locations of the

seed column and its selected neighbors which cannot be eliminated.

Now after thinning, we have the following matrix completion guarantee for each neighborhood

matrix.

Lemma 5.7. Assume all s0 seed neighborhood matrices are thinned according to the discussion above,

have rank ≤ r, and the matrix entries are observed uniformly at random with probability,

p0 ≥ 128βmax{µ2
1, µ0}

ν0

r log2(n)
n

(5.6)

Then with probability ≥ 1− 12s0n
2−2β1/2

log n, all s0 matrices can be perfectly completed.

Proof. First, we find that if each matrix has

m′ ≥ 64 max
(
µ2

1, µ0

)
βrn log2 (2n)

entries observed uniformly at random (with replacement), then with probability≥ 1−12s0n
2−2β1/2

log n,

all s0 matrices are perfectly completed. This follows by Lemma 5.6, the observation that

6 (2n)2−2β log n+ n2−2β1/2 ≤ 12n2−2β1/2
log n ,

and a simple application of the union bound.

But, under our sampling assumptions, the number of entries observed in each seed neighborhood

matrix is random. Thus, the total number of observed entries in each is guaranteed to be sufficiently

92

large with high probability as follows. The random number of entries observed in an n × n matrix is

m̂ ∼ Binomial(p0, n
2). By Chernoff’s bound we have P(m̂ ≤ n2p0/2) ≤ exp(−n2p0/8). By the

union bound we find that m̂ ≥ m′ entries are observed in each of the s0 seed matrices with probability

at least 1− exp(−n2p0/8 + log s0) if p0 ≥ 128βmax{µ2
1,µ0}

ν0

r log2(n)
n .

Since n2p0 > rn log2 n and s0 = O(k(log k+ log n)), this probability tends to zero exponentially

in n as long as k = o(en), which holds according to Assumption A1. Therefore this holds with

probability at least 1− 12s0n
2−2β1/2

log n.

Finally, let us consider the third issue, the possibility that one or more of the points in the neigh-

borhood of a seed lies in a subspace different than the seed subspace. When this occurs, the rank of

the submatrix formed by the seed’s neighbor columns will be larger than the dimension of the seed

subspace. Without loss of generality assume that we have only two subspaces represented in the neigh-

bor set, and assume their dimensions are r′ and r′′. First, in the case that r′ + r′′ > r, when a rank

≥ r matrix is completed to a rank r matrix, with overwhelming probability there will be errors with

respect to the observations as long as the number of samples in each column is O(r log r), which is as-

sumed in our case; see [8]. Thus we can detect and discard these candidates. Secondly, in the case that

r′ + r′′ ≤ r, we still have enough samples to complete this matrix successfully with high probability.

However, since we have drawn enough seeds to guarantee that every subspace has a seed with a neigh-

borhood entirely in that subspace, we will find that this problem seed is redundant. This is determined

in the Subspace Refinement step.

5.3.3 Subspace Refinement

Each of the matrix completion steps above yields a low-rank matrix with a corresponding column

subspace, which we will call the candidate subspaces. While the true number of subspaces will not

be known in advance, since s0 = O(k(log k + log(1/δ0)), the candidate subspaces will contain the

true subspaces with high probability (see Lemma 5.4). We must now deal with the algorithmic issue of

93

determining the true set of subspaces.

We first note that, since the points are assumed to be drawn from a continuous distributions on

the subspaces, with probability 1 a set of points of size ≥ r all drawn from a single subspace S of

dimension ≤ r will span S. In fact, any b < r points will span a b-dimensional subspace of the

r-dimensional subspace S.

Assume that r < n, since otherwise it is clearly necessary to observe all entries. Therefore, if

a seed’s nearest neighborhood set is confined to a single subspace, then the columns in span their

subspace. And if the seed’s nearest neighborhood contains columns from two or more subspaces,

then the matrix will have rank larger than that of any of the constituent subspaces. Thus, if a certain

candidate subspace is spanned by the union of two or more smaller candidate subspaces, then it follows

that that subspace is not a true subspace (since we assume that none of the true subspaces are contained

within another).

This observation suggests the following subspace refinement procedure. The s0 matrix completions

yield s ≤ s0 candidate column subspaces; s may be less than s0 since completions that fail are dis-

carded as described above. First sort the estimated subspaces in order of rank from smallest to largest

(with arbitrary ordering of subspaces of the same rank), which we write as S(1), . . . ,S(s). We will

denote the final set of estimated subspaces as Ŝ1, . . . , Ŝk. The first subspace Ŝ1 := S(1), a lowest-rank

subspace in the candidate set. Next, Ŝ2 = S(2) if and only if S(2) is not contained in Ŝ1. Following this

simple sequential strategy, suppose that when we reach the candidate S(j) we have so far determined

Ŝ1, . . . , Ŝi, i < j. If S(j) is not in the span of ∪i`=1Ŝ`, then we set Ŝi+1 = S(j), otherwise we move

on to the next candidate. In this way, we can proceed sequentially through the rank-ordered list of

candidates, and we will identify all true subspaces.

If there is more than one subspace of a particular dimension, these subspaces must be pruned by

combinatorially by looking at which collection of subspaces is minimal, in the sense that the fewest

subspaces are included in the true collection so as to span all the subspaces, both included and excluded.

94

5.3.4 Subspace Assignment

At this point, we have identified the true subspaces, and all N columns lie in the span of one of those

subspaces. For ease of presentation, we assume that the number of subspaces is exactly k. However if

columns lie in the span of fewer than k, then the procedure above will produce the correct number. To

complete the full matrix, we proceed one column at a time. For each column of XΩ, we determine the

correct subspace to which this column belongs, and we then complete the column using that subspace.

We can do this with high probability due to results from [8, 7].

The first step is that of subspace assignment, determining the correct subspace to which this col-

umn belongs. In [7], it is shown that given k subspaces, an incomplete vector can be assigned to its

closest subspace with high probability given enough observations. In the situation at hand, we have

a special case of the results of [7] because we are considering the more specific situation where our

incomplete vector lies exactly in one of the candidate subspaces, and we have an upper bound for both

the dimension and coherence of those subspaces.

Lemma 5.8. Let {S1, . . . ,Sk} be a collection of k subspaces of dimension ≤ r and coherence pa-

rameter bounded above by µ0. Consider column vector x with index set Ω ∈ {1, . . . , n}, and define

PΩ,Sj = U jΩ

((
U jΩ

)T
U jΩ

)−1 (
U jΩ

)T
, where U j is the orthonormal column span of Sj and U jΩ is the

column span of Sj restricted to the observed rows, Ω. Without loss of generality, suppose the column

of interest x ∈ S1. If A3 holds, and the probability of observing each entry of x is independent and

Bernoulli with parameter

p0 ≥ 128βmax{µ2
1, µ0}

ν0

r log2(n)
n

.

Then with probability at least 1− (3(k − 1) + 2)δ0,

‖xΩ − PΩ,S1xΩ‖22 = 0 (5.7)

and for j = 2, . . . , k

‖xΩ − PΩ,SjxΩ‖22 > 0 . (5.8)

95

Proof. We wish to use results from [8, 7], which require a fixed number of measurements |Ω|. By

Chernoff’s bound

P
(
|Ω| ≤ np0

2

)
≤ exp

(−np0

8

)
.

Note that np0 > 16rβ log2 n, therefore exp
(−np0

8

)
< (n−2β)logn < δ0; in other words, we observe

|Ω| > np0/2 entries of x with probability 1 − δ0. This set Ω is selected uniformly at random among

all sets of size |Ω|, but using Lemma 5.1 we can assume that the samples are drawn uniformly with

replacement in order to apply results of [8, 7].

Now we show that |Ω| > np0/2 samples selected uniformly with replacement implies that

|Ω| > max
{

8rµ0

3
log
(

2r
δ0

)
,
rµ0(1 + ξ)2

(1− α)(1− γ)

}
(5.9)

where ξ, α > 0 and γ ∈ (0, 1) are defined as α =
√

2µ2
1
|Ω| log

(
1
δ0

)
, ξ =

√
2µ1 log

(
1
δ0

)
, and γ =√

8rµ0

3|Ω| log
(

2r
δ0

)
.

We start with the second term in the max of (5.9). Substituting δ0 and the bound for p0, one can

show that for n ≥ 15 both α ≤ 1/2 and γ ≤ 1/2. This makes (1+ξ)2/(1−α)(1−γ) ≤ 4(1−ξ)2 ≤ 8ξ2

for ξ > 2.5, i.e. for δ0 < 0.04.

We finish this argument by noting that 8ξ2 = 16µ1 log(1/δ0) < np0/2; there is in fact an

O(r log(n)) gap between the two. Similarly for the first term in the max of (5.9), 8
3rµ0 log

(
2r
δ0

)
<

np0/2; here the gap is O(log(n)).

Now we prove (5.7), which follows from [8]. With |Ω| > 8
3rµ0 log

(
2r
δ0

)
, we have that UTΩUΩ is

invertible with probability at least 1− δ0 according to Lemma 3 of [8]. This implies that

UTx =
(
UTΩUΩ

)−1
UTΩxΩ . (5.10)

Call a1 = UTx. Since x ∈ S, Ua1 = x, and a1 is in fact the unique solution to Ua = x. Now consider

the equation UΩa = xΩ. The assumption that UTΩUΩ is invertible implies that a2 =
(
UTΩUΩ

)−1
UTΩxΩ

96

exists and is the unique solution to UΩa = xΩ. However, UΩa1 = xΩ as well, meaning that a1 = a2.

Thus, we have

‖xΩ − PΩ,S1xΩ‖22 = ‖xΩ − UΩU
Tx‖22 = 0

with probability at least 1− δ0.

Now we prove (5.8), paralleling Theorem 1 in [7]. We use Assumption A3 to ensure that x /∈ Sj ,

j = 2, . . . , k. This along with (5.9) and Theorem 1 from [8] guarantees that

‖xΩ − PΩ,SjxΩ‖22 ≥
|Ω|(1− α)− rµ0

(1+ξ)2

1−γ
n

‖x− PSjx‖22 > 0

for each j = 2, . . . , k with probability at least 1 − 3δ0. With a union bound this holds simultaneously

for all k − 1 alternative subspaces with probability at least 1− 3(k − 1)δ0. When we also include the

events that (5.7) holds and that |Ω| > np0/2, we get that the entire theorem holds with probability at

least 1− (3(k − 1) + 2)δ0.

Finally, denote the column to be completed by xΩ. To complete xΩ we first determine which

subspace it belongs to using the results above. For a given column we can use the incomplete data

projection residual of (5.7). With probability at least 1 − (3(k − 1) + 2)δ0, the residual will be zero

for the correct subspace and strictly positive for all other subspaces. Using the span of the chosen

subspace, U , we can then complete the column by using x̂ = U
(
UTΩUΩ

)−1
UTΩxΩ.

We reiterate that Lemma 5.8 allows us to complete a single column xwith probability 1−(3(k−1)+

2)δ0. If we wish to complete the entire matrix, we will need another union bound over all N columns,

leading to a logN factor in our requirement on p0. Since N may be quite large in applications, we

prefer to state our result in terms of per-column completion bound.

The confidence level stated in Theorem 5.1 is the result of applying the union bound to all the steps

required in the Sections 3, 4, and 6. All hold simultaneously with probability at least

1− (6 + 3(k − 1) + 12s0) δ0 < 1− (6 + 15s0)δ0 ,

which proves the theorem.

97

5.4 Algorithm: k-GROUSE for Subspace Clustering with Missing Data

Though the algorithm in Section 5.2 has provable guarantees, it is clear that the algorithm is not com-

putationally efficient. The GROUSE algorithm [6], or Grassmannian Rank-One Update Subspace Es-

timation, was developed in Section 4.1 as an efficient way to do single subspace estimation with highly

incomplete data vectors. Recall Theorem 3.2.3, which says that from a collection of subspaces we can

find the closest subspace to an arbitrary incomplete vector as long as we have enough measurements

of that vector. With this in mind we can combine k-subspaces and GROUSE to multiple subspace

estimation. The standard k-subspaces algorithm is described in [18, 1], and we also review it in Algo-

rithm 4. Our version, k-GROUSE, is incremental and based on GROUSE to allow for flexibility when

observations are incomplete. This work is joint with Arthur Szlam [7].

In this section we return to the notation where d is the inherent dimension of our subspace, and we

use r to denote the residual vectors.

Algorithm 4 K-Subspaces for Subspace Clustering

Require: An n×T data matrix V made up of sequence of vectors vt, t = 1, . . . , T . An integer number
of subspaces k and dimensions di, i = 1, . . . , k. A maximum number of iterations, maxIter.

1: Initialize Subspaces: Initialize k subspace estimates using data. Find orthonormal matrices Ui,
i = 1, . . . , k whose columns span the k subspaces.

2: for iter = 1, . . . ,maxIter do
3: for t = 1, . . . , T do
4: Calculate Projection Residuals to k subspaces: rt(k) = ‖vt − UiUTi vt‖22, i = 1, . . . , k
5: Select min residual: clusteridt = argminkrt(k)
6: end for
7: for i = 1, . . . , k do
8: Collect vectors assigned to ith subspace. Call this new matrix Vi.
9: Compute SVD: Vi = YiΣiZ

T
i

10: Update subspace: Ui = Yi
11: end for
12: end for

To initialize the subspaces we use a version of probabilistic farthest insertion, as in [79], modified

for missing data by simply zero-filling the unobserved entries in each vector and collecting them in a

matrix V . Specifically, we pick a random point as the first cluster “center,” v0 ∈ V . We then calculate

98

Algorithm 5 k-Subspaces with the GROUSE: batch

Require: An n×T data matrix V made up of sequence of vectors vt, t = 1, . . . , T . An integer number
of subspaces k and dimensions di, i = 1, . . . , k. A maximum number of iterations, maxIter. A step
size η.

1: Initialize Subspaces: Initialize k subspace estimates using data. Find orthonormal matrices Uj ,
j = 1, . . . , k whose columns span the k subspaces.

2: for i = 1, . . . ,maxIter do
3: for t = 1, . . . , T do
4: Calculate projection residuals to k subspaces: rt(k) = ‖vt − UjUTj vt‖22, j = 1, . . . , k
5: Select min residual: clusteridt = argminj rt(j)
6: end for
7: for j = 1, . . . , k do
8: Collect vectors assigned to jth subspace into Vj .
9: Update subspace using the grouse [6]:

Uj = grouse(Uj , Vj , η)
10: end for
11: end for

Algorithm 6 k-subspaces with the GROUSE: incremental

Require: A collection of vectors vΩ(t), t = 1, . . . , T , and the observed indices Ω(t). An integer num-
ber of subspaces k and dimensions di, i = 1, . . . , k. A maximum number of iterations, maxIter. A
fixed step size η.

1: Initialize Subspaces: Zero-fill the vectors and collect them in a matrix V . Initialize k subspace
estimates using probabilistic farthest insertion.

2: Calculate Orthonormal Bases Uj , j = 1, . . . , k.
Let QjΩ = (UTjΩUjΩ)−1UTjΩ

3: for i = 1, . . . ,maxIter do
4: Select a vector at random, vΩ.
5: for j = 1, . . . , k do
6: Calculate projection weights: w(j) = QjΩvΩ.
7: Calculate residual: r(j) = ‖vΩ − UjΩw(j)‖22.
8: end for
9: Select min residual: ĵ = argminj r(j). Set r = r(ĵ) and w = w(ĵ). Define p = v0− r, where

v0 is zero-filled vΩ.
10: Update subspace:

Ubj = Ubj +
(

(cos(ση)− 1) p
‖p‖ + sin(ση) r

‖r‖

)
wT

‖w‖
where σ = ‖r‖‖p‖

11: end for

99

the d + q nearest neighbors to v0, where d := maxi di and q is a nonnegative parameter [112], and

calculate the best fit subspace S0 to the neighborhood of v0. For the next center we choose another

random point with probability proportional to the distance dist(v, S0)2, and find the best fit subspace

S1 of its d + q neighborhood. For jth neighborhood, we pick the center with probability proportional

to min(dist(v, S0)2, ..., dist(v, Sj−1)2).

To refine the initial subspaces, the incremental algorithm k-GROUSE is presented in Algorithm 6.

It is a form of sequential k-means adapted to k subspaces. In each iteration, a single incomplete vector

vΩ is chosen, and the closest subspace is found by using Corollary 3.3.2. Then this closest subspace

is updated via GROUSE with the data vector vΩ. This is repeated several times until some criteria are

met. We note that this algorithm works as written for the case when the data vector is complete.

With matrix completion in mind, one may also consider a batch version of k-subspaces. The batch

version would simply use GROUSE subspace estimation or any other matrix completion algorithm,

such as the one found in [99], in place of the SVD step for subspace estimation used in the standard

k-subspaces algorithm [18, 1, 101]. Given a cluster of vectors, matrix completion would be performed

to get a subspace estimate. Then with these estimates, vectors would be reassigned, and the process

repeated.

As written, k-GROUSE and this suggested batch version both require knowledge of the number

of subspaces k and their dimensions, whereas the algorithm in [3] only requires an upper bound on

both values. Our simulations show scenarios where the subspaces are of the same dimension, but the

algorithms do not require this.

5.5 Empirical Analysis

We begin by examining the success of the first algorithm presented in Section 5.2 as compared to using

low-rank matrix completion. For Figure 21, the key parameters were chosen as follows: n = 100,

N = 5000, k = 10, and d = 5. The k subspaces were d-dimensional, and each was generated by

100

d vectors drawn from the N (0, In) distribution and taking their span. The resulting subspaces are

highly incoherent with the canonical basis for Rn. For each subspace, we generate 500 points drawn

from a N (0, UUT) distribution, where U is a n × d matrix whose orthonormal columns span the

subspace. Our procedure was implemented using d3k log ke seeds. The matrix completion software

called GROUSE (available here [9]) was used in our procedure and to implement the standard low-

rank matrix completions. We ran 50 independent trials of our procedure and compared it to standard

low-rank matrix completion. The results are summarized in the figures below. The key message is that

our new procedure can provide accurate completions from far fewer observations compared to standard

low-rank completion, which is precisely what our main result predicts.

Figure 21: The number of correctly completed columns (with tolerances shown above, 10e-5 or 0.01), versus
the average number of observations per column. As expected, our procedure (termed high rank MC in the plot)
provides accurate completion with only about 50 samples per column. Note that d log n ≈ 23 in this simulation,
so this is quite close to our bound. On the other hand, since the rank of the full matrix is dk = 50, the standard
low-rank matrix completion bound requires m > 50 log n ≈ 230. Therefore, it is not surprising that the standard
method (termed low rank MC above) requires almost all samples in each column.

Next we look at the algorithm of Section 5.2 as compared to Algorithm 6, or k-GROUSE. At

this point we note that if the sum of the dimensions of the subspaces D :=
∑k

j=1 dj is significantly

less than n, a two-stage approach to subspace clustering is to first perform matrix completion on the

101

6 8 10 12 140

50

100

150

200

#v
ec

to
rs

 in
co

rre
ct

ly
clu

st
er

ed
Dependent Subspaces

incremental
batch
d log(d)

6 8 10 12 140

50

100

150

number of observations, m

Orthogonal Subspaces

Figure 22: Simulation results: On the left we have n = 20, d = 5, k = 4 (D = n) and orthogonal
subspaces. On the right we have k = 5 (D > n) and thus linearly dependent subspaces. The error
measure is defined in Equation 5.12. The curves shown are averaged over 100 random observation sets.

data matrix V to recover a rank D matrix and then apply any full-data subspace clustering algorithm.

However, there are two situations when this is not possible. First, it may be that D is actually greater

than or equal to n; we explore this scenario in Figure 22. Second, we may have collected the d log(d)

observations per vector which are sufficient for subspace assignment, but not D log(n) observations

which are sufficient for matrix completion. This is the setup of the simulation of Table 2.

We show the results of three simulation scenarios. In the first, data vectors come from subspaces

which are orthogonal, and the sum of the dimensions of the subspaces is the ambient dimension: D =

n. The left plot of Figure 22 shows the results. The data matrix consists of N = 200 points for the left

plot and N = 300 points for the right point, i.e. 50 vectors per subspace. The parameter for nearest

neighbor subspace estimation is q = 5.

The error is calculated as compared to ground truth. Let Aj , j = 1, . . . , k be sets of indices

corresponding to ground-truth cluster assignments. Let Bj be the cluster assignments chosen by the

algorithm. For l = 1, . . . , k, we find

102

20 40 60 80 1000

500

1000

1500

number of measurements, m

#i
nc

or
re

ct
ly

clu
st

er
ed

 v
ec

to
rs

Small sum of dimensions

incremental
batch
MC+ksub

Figure 23: For this simulation, n = 150, d = 5, k = 6, N = 300, and the dimension of the union of
subspaces is D = 30. Results are averaged over 10 random observation sets.

ĵl = argmaxj |Bj ∩Al| , (5.11)

where | · | denotes the cardinality of a set. Then the error is

k∑
l=1

|Al\{Al ∩Bbjl}| . (5.12)

We note that this error can be minimized trivially by an algorithm which assigns all the vectors to one

cluster; however these algorithms also minimize distance to low dimensional subspaces, and we have

verified that the clusters are about the correct size. Results for D > n can be seen in the right hand

plot of Figure 22. The third scenario is one where sum of the dimensions of the subspaces is less than

the ambient dimension, D < n. Here we compare to the two-stage approach of matrix completion plus

full-data k-planes clustering. Once there are enough measurements to estimate the rank-D matrix, all

the algorithms perform with zero error. However in the low-observation regime, there are still enough

measurements to estimate each of the k subspaces, and both the batch and incremental algorithms

103

outperform the two-stage approach of matrix completion followed by k-planes clustering.

The main benefit of k-GROUSE is its speed. The algorithm of Section 5.2 requires that the number

of matrix columnsN = np for some p ≥ 2 in order to guarantee that local neighborhoods can be found

despite missing data. Then distances must be computed betweenO(k log k) seed columns and all these

N columns using a mask, unique for every pair, that identifies the shared observations between those

two columns. Finally, the refinement step can be combinatorial. By contrast, k-GROUSE uses the

rough initialization using zero-filled distances, and then each incremental update only takesO(kmd2 +

nd) time. In Table 2 we show results of simulations run in Matlab on a Dell Precision T5500n with a

Dual Quad Core Intel Xeon 2.53GHz processor and 12 GB of RAM. Clearly k-GROUSE far outpaces

the algorithm in Section 5.2. More importantly, it even performs an order of magnitude faster than the

batch heuristic algorithm.

Computation Time (sec) % successful
Algorithm average std. dev. trials
High Rank Matrix Completion with 3k log k seeds 10395.0 655.8 56
High Rank Matrix Completion with 10k log k seeds 34162.3 2086.5 100 (of 11 trials)
Algorithm 5, batch k-GROUSE 1079.5 17.8 97
Algorithm 6, k-GROUSE 127.6 0.24 93

Table 2: The problem size is n = 50, k = 10, d = 4, (D < n) and N = 40, 000. 60% of the
entries were sampled. Successful trials are those in which the clustering was exactly correct. This
percentage is from 100 trials unless otherwise noted. High Rank Matrix Completion is the algorithm
from Section 5.2, which with 3k log k seeds took more than 2.5 hours on average whereas Algorithm 6
took 2 minutes.

104

Chapter 6

Subspace Tracking with Missing Data

As discussed in Chapter 4, the GROUSE algorithm implements an incremental gradient procedure with

computational complexity linear in dimensions of the problem, and thus it can be immediately adapted

to ‘online’ subspace estimation. In this chapter we explore the tracking capabilities of GROUSE in

numerical simulation.

There are other subspace tracking algorithms which operate on batches of data; these are difficult to

to adapt to the missing-data scenario because of the lack of overlap of the observations from one column

vector to the next. Especially in a highly undersampled regime, there will be very little overlap, and

that is additional motivation for doing subspace updates one vector at a time.

We then discuss the robust extension GRASTA (Grassmannian Robust Adaptive Subspace Tracking

Algorithm), an algorithm which parallels GROUSE but allows robust subspace identification when the

signal has a sparse outlier component. GRASTA was developed by Jun He [52], and in this thesis we

focus on studying the relationship of step-size and iterations with the tracking capabilities of GRASTA.

6.1 Subspace Tracking with GROUSE

6.1.1 Empirical Analysis

In these simulations, we focus on GROUSE’s tracking capabilities.

Subspace Change Detection and Tracking As a first example of GROUSE’s ability to adapt to

changes in the underlying subspace, we simulated a scenario where the underlying subspace abruptly

105

0 5000 10000 15000
0

0.5

1

1.5

of vectors seen

er
ro

r

Subspace error
Incomplete vector residual

2 4 6 8 10 12 14
x 10

4

0.2

0.4

0.6

0.8

1

1.2

1.4

of vectors seen

su
bs

pa
ce

 fr
ob

en
iu

s
er

ro
r

0.001
0.005
Step size 0.1

2 4 6 8 10 12 14
x 10

4

0.5

1

1.5

2

of vectors seen

ve
ct

or
 r

es
id

ua
l e

rr
or

0.001
0.005
Step size 0.1

(a) (b) (c)

Figure 24: (a) Comparison of the distance to the true subspace and the norm of the residual in Step 4 of the
GROUSE algorithm. The residual norm closely tracks the distance to the actual subspace. (b) Using constant
stepsize to track sudden changes in subspace. We plot the transient behavior three constant stepsize policies.
In (c), we again verify that the norm of the residual gives an accurate signature for anomaly detection and for
tracking success.

changes at three points over the course of an experiment with 14000 observations. At each break,

we selected a new subspace S uniformly at random and GROUSE was implemented with a constant

stepsize. As is to be expected, the algorithm is able to re-estimate the new subspace in a time depending

on the magnitude of the constant stepsize.

Rotating Subspace

0 2 4 6

x 10
4

0.06

0.08

0.1

0.12

0.14

0.16

number of samples
0 2 4 6

x 10
4

0.05

0.1

0.15

0.2

0.25

number of samples
0 2 4 6

x 10
4

0.05

0.1

0.15

0.2

0.25

number of samples
0 2 4 6

x 10
4

0.06

0.08

0.1

0.12

0.14

0.16

0.18

number of samples

Figure 25: Tracking a rotating subspace. Here we plot the norm of the projection of four random vectors over
time. The blue curves denote the true values of these norms, and the red curves plot the GROUSE predictions.
Note that except for very early transients, GROUSE fully tracks the subspace.

In this second synthetic experiment, the subspace evolves according to a random ordinary dif-

ferential equation. Specifically, we sample a skew-symmetric matrix B with independent, normally

distributed entries and set

U̇ = BU , U [0] = U0.

106

0 100 200 300 400 5000

0.2

0.4

0.6

0.8

1

0 100 200 300 400 5000

0.2

0.4

0.6

0.8

1

(a) (b)

reconstruction
|Ωt|/n ηt error

0.2 5e-3 0.2530
3e-2 0.1244

0.4 5e-3 0.1797
1e-2 0.1233
3e-2 0.1432

0.7 5e-3 0.1289
7e-3 0.1221
3e-2 0.1684

1 5e-3 0.1253
3e-2 0.2217

Figure 26: (a) Actual sensor readings. (b) Predicted sensor readings from tracked subspace. In these figures we
are displaying the values at sensors 4, 17, 148,158, and159. The table lists errors in tracking the chlorine data
set for varying sampling densities and stepsizes. The error between the data and the best SVD approximation is
0.0704.

The resulting subspace at each iteration is thus U [t] = exp(δtB) where δ is a positive constant. The

resulting subspace at each iteration is thusU [t] = exp(δtB) where δ is a positive constant. In Figure 25,

we show the results of tracking the rotating subspace with δ = 10−5. To demonstrate the effectiveness

of the tracking, we display the projection of four random vectors using both the true subspace (in blue)

and our subspace estimate at that time instant (in red).

Tracking Chlorine Levels

We also analyzed the performance of the GROUSE algorithm on simulated chlorine level monitoring

in a pressurized water delivery system. The data were generated using EPANET 1 software and were

previously analyzed [80]. The input to EPANET is a network layout of water pipes and the output

has many variables including the chemical levels, one of which is the chlorine level. The data we

used is available from [80] 2. This dataset has ambient dimension n = 166, and T = 4610 data

vectors were collected, once every 5 minutes over 15 days. We tracked an d = 6 dimensional subspace

and compare this with the best 6-dimensional SVD approximation of the entire complete dataset. The

results are displayed in Figure 26. The table gives the results for various constant stepsizes and various
1http://www.epa.gov/nrmrl/wswrd/dw/epanet.html
2http://www.cs.cmu.edu/afs/cs/project/spirit-1/www/

107

fractions of sampled data. The smallest sampling fraction we used was 20%, and for that the best

stepsize was 3e-2; we also ran GROUSE on the full data, whose best stepsize was 5e-3. As we can

see, the performance error improves for the smaller stepsize of 5e-3 as the sampling fraction increases;

Also the performance error improves for the larger stepsize of 3e-2 as the sampling fraction decreases.

However for all intermediate sampling fractions there are intermediate stepsizes that perform near the

best reconstruction error of about 0.12. The normalized error of the full data to the best 3-dimensional

SVD approximation is 0.0704. Note that we only allow for one pass over the data set and yet attain,

even with very sparse sampling, comparable accuracy to a full batch SVD which has access to all of

the data.

Figure 26(a) and (b) show the original and the GROUSE reconstructions of five of the chlorine

sensor outputs. We plot the last 500 of the 4310 samples, each reconstructed by the estimated subspace

at that time instant.

6.2 Robust Tracking

Subspace tracking in the presence of outliers is an important extension for modeling of complex sys-

tems with massive and distributed data collection. In this section we provide two approaches to solve

such a problem. The work in this section is joint with Jun He and Arthur Szlam [52, 53].

6.2.1 Robust Tracking by Outlier Detection

In Section 4.1 and Section 6.1 we showed that one can perform subspace tracking of a d-dimensional

subspace of Rn with many fewer than all n measurements. It is natural then to observe that if the

outlier locations are known, we can do subspace tracking in the presence of outliers as well by simply

removing the outliers from the update. For this section we will assume that the initial subspace S0 is

known and used as our initialization point. This can be interpreted as an assumption that there is a

period of data collection at the start when the measurements do not have corruptions.

108

We denote the evolving d-dimensional subspace of Rn as St at time t. As before, let the columns

of an n× d matrix Ut be orthonormal and span St.

At each time step t, we assume that vt is generated by the following model:

vt = Utwt + st + ζt (6.1)

where wt is the d × 1 weight vector, st is the n × 1 sparse outlier vector with support on a set Ot ⊂

{1, . . . , n} whose nonzero entries may be arbitrarily large, and ζt is the n × 1 zero-mean Gaussian

white noise vector with small variance.

To do robust tracking with outlier detection means we wish to find some set Ôt on which to do the

subspace update for time t. We suggest several ways to estimate the sparse support of the outliers.

1. Estimate Ot as the largest residuals of vt − Utw, where w = arg mina ‖vt − Uta‖2.

2. Solve Least Absolute Regression to estimatew = arg mina ‖vt−Uta‖1 and again use the largest

residuals of vt − Utw to estimate Ot.

3. Randomize the subset selection of #1: instead of selecting indices corresponding to the largest

residuals, select an index with probability proportional to its residual. This soft decision avoids

biasing our updated subspace because of one bad choice.

4. If we have the computational resources to do the l1-norm minimization, but are concerned about

sensitivity to change or noise, we can also randomize the subset selection out of the result of #3.

Empirical Analysis

Here we show the various suggested approaches, first in a noise-free simulation with a stationary sub-

space, and then with added noise and with a non-stationary subspace. In Figure 27 we can see that with

a stationary subspace and no noise, the approach #1, 3 do not work because of the sensitivity of l2 to

outliers; both our approaches #2 and #4 achieve oracle tracking performance (as if the outlier set were

109

0 100 200 300 400 500

10−15

10−10

10−5

100

Iteration

Fr
ob

en
iu

s
Su

bs
pa

ce
 E

rro
r

Error with Stationary Subspace

No OD
max l2 resid
max l2 resid w/rand
max l1 resid
max l1 w/rand
oracle

Figure 27: Tracking a stationary subspace. For this simulation, the ambient dimension n = 500, the
inherent dimension d = 5, and the number of corrupted entries is 50.

known). This is also the case with added noise. However when the subspace is rotating as in Figure 29,

randomization is crucial, and #4 is the only successful approach.

6.2.2 Robust Tracking by GRASTA

GRASTA [52] provides a robust extension of GROUSE by replacing the l2-norm cost function with

an l1-norm cost function. For each subspace update, we use the gradient of the augmented Lagrangian

function associated to this cost. GRASTA operates only one data vector at a time, making it faster than

other state-of-the-art algorithms and amenable to streaming and real-time applications.

GRASTA alternates between estimating a low-dimensional subspace S and a triple (s, w, y) which

represent the sparse corruptions in the signal, the weights for the fit of the signal to the subspace, and

the dual vector in the optimization problem. For estimating the subspace S, GRASTA uses gradient

descent on the Grassmannian with (s, w, y) fixed; for estimating the triple (s, w, y), GRASTA uses

ADMM [16].

As an example, we consider using subspaces to detect anomalies in computer networks [61]. A

110

0 100 200 300 400 500

10−6

10−5

10−4

10−3

10−2

10−1

100

Iteration

Fr
ob

en
iu

s
Su

bs
pa

ce
 E

rro
r

Error with noise variance 10−7

No OD
max l2 resid
max l2 resid w/rand
max l1 resid
max l1 w/rand
oracle

Figure 28: Tracking a stationary subspace with ad-
ditive noise on the measurements.

0 100 200 300 400 500

10−6

10−5

10−4

10−3

10−2

10−1

100

Iteration

Fr
ob

en
iu

s
Su

bs
pa

ce
 E

rro
r

Error with Rotating Subspace

No OD
max l2 resid
max l2 resid w/rand
max l1 resid
max l1 w/rand
oracle

Figure 29: Tracking a rotating subspace. Here the
subset choice randomization is critical.

non-robust subspace estimation algorithm like GROUSE would need a special anomaly detection com-

ponent in order to differentiate anomalies and outliers from the underlying subspace of the traffic data.

Often these types of anomaly detection components rely on a lot of parameter tuning and heuristic rules

for detection. This motivates a more principled approach that is robust by design: GRASTA.

We stress here that the GRASTA algorithm was derived by Dr. Jun He and is included here for

completeness. The contribution of the current thesis is the exposition relating this robust extension of

GROUSE.

Problem Formulation

We start with the same measurement model as Equation 6.1, and additionally suppose we observe only

a small subset of entries of vt, denoted by Ωt ⊂ {1, . . . , n}. Conforming to the notation of Section 4.1,

we let UΩt denote the submatrix of Ut consisting of the rows indexed by Ωt; also for a vector vt ∈ Rn,

let vΩtdenote a vector in R|Ωt| whose entries are those of vt indexed by Ωt. Recall that in Section 4.1

we used the natural Euclidean distance, the l2-norm, to measure the subspace error from the subspace

spanned by the columns of Ut to the observed vector vΩt :

111

Fgrouse(S; t) = min
w
‖UΩtw − vΩt‖22 . (6.2)

It was shown in Section3.2.1 that this cost function gives an accurate estimate of the same cost function

with full data (Ω = {1, . . . , n}), as long as |Ωt| > 8
3µ(S)d log(2d/δ), where µ(S) is a measure of

incoherence on the subspace and δ controls the probability of the result. However, if the observed

data vector is corrupted by outliers as in Equation (6.1), an l2-based best-fit to the subspace can be

influenced arbitrarily with just one large outlier; this in turn will lead to an incorrect subspace update

in the GROUSE algorithm, as is demonstrated in [52].

In order to quantify the subspace error robustly, we use the l1-norm as follows:

Fgrasta(S; t) = min
w
‖UΩtw − vΩt‖1 . (6.3)

With UΩt known (or estimated, but fixed), this l1 minimization problem is the classic least absolute

deviations problem; Boyd [16] has a nice survey of algorithms to solve this problem and describes in

detail a fast solver based on the technique of ADMM (Alternating Direction Method of Multipliers)3.

More references can be found therein.

The augmented Lagrangian of this constrained minimization problem is then

L(s, w, y) = ‖s‖1 + yT (UΩtw + s− vΩt) +
ρ

2
‖UΩtw + s− vΩt‖22 (6.4)

where y is the dual vector. Our unknowns are s, y, U , and w. Note that since U is constrained to a non-

convex manifold (UTU = I), this function is not convex (neither is Equation (6.2)). However, note

that if U were estimated, we could solve for the triple (s, w, y) using ADMM; also if (s, w, y) were

estimated, we could refine our estimate of U . This is the alternating approach we take with GRASTA.

We describe the two parts in detail in Section 6.2.2.
3http://www.stanford.edu/˜boyd/papers/admm/

112

Relation to Robust PCA and Robust Matrix Completion

If the subspace S does not evolve over time, this problem reduces to subspace estimation, which can be

related to Robust PCA. For a set of time samples t = 1, . . . , T , we observe a sequence of incomplete

corrupted data vectors vΩ1 , . . . , vΩT . Let the matrix V = [v1, . . . , vT]. Let PΩ(·) denote operator

which selects from each column the corresponding indices in Ω1, . . . ,ΩT ; thus PΩ(V) denotes our

partial observation of the corrupted matrix V . Note that from our model in Equation (6.1), we can

write V as a sum of a sparse matrix S and a low-rank matrix L = UW , where the orthonormal

columns of U ∈ Rn×d span S (which is stationary), and W ∈ Rd×T holds the weight vectors wt as

columns.

The global version of the l1 cost function in Equation (6.3) follows:

F̄ (S) =
T∑
t=1

min
w
‖UΩtw − vΩt‖1 = min

W∈Rd×T

∑
(i,j)∈Ω

|(UW − V)ij | (6.5)

= min
W∈Rd×T

‖PΩ(UW − V)‖1 .

The right hand of Equation (6.5) can be rewritten as the equivalent constrained problem:

min ‖PΩ(S)‖1 (6.6)

s.t. PΩ(UW + S) = PΩ(V)

U ∈ G(d, n)

which is the same problem studied in [95], and the authors propose an efficient ADMM solver for this

problem. Unlike the set-up of [27, 24], this problem is not convex; however it offers much more com-

putationally efficient solutions. GRASTA differs from the algorithm of [95] in two major ways: it uses

incremental gradient to minimize this cost function one column at a time for even greater efficiency,

and it uses geodesics on the Grassmannian to compute the update of U .

113

Algorithm: Grassmannian Robust Adaptive Subspace Tracking

As we have said, GRASTA alternates between estimating the triple (s, w, y) and the subspace U . Here

we discuss those two pieces of our algorithm. First we describe the update of (s, w, y) based on an

estimate Ût for the subspace variable. Then we describe the update of our subspace variable to Ût+1

based on the estimate of (s∗, w∗, y∗) resulting from the first step.

Update of the sparse vector, weight vector, and dual vector Given the current estimated subspace

Ût, the partial observation vΩt , and the observed entries’ indices Ωt, the optimal (s∗, w∗, y∗) of Equa-

tion (6.4) are the minimizers: (s∗, w∗, y∗) = arg mins,w,y L(ÛΩt , s, w, y). These can be efficiently

solved for by ADMM [16]. That is, s, w, and the dual vector y are updated in an alternating fashion:
wk+1 = arg minw L(ÛΩt , s

k, w, yk)

sk+1 = arg mins L(ÛΩt , s, w
k+1, yk)

yk+1 = yk + ρ(ÛΩtw
k+1 + sk+1 − vΩt)

(6.7)

Specifically, these quantities are computed as follows. In this section we always assume that UTΩtUΩt

is invertible, which is guaranteed if |Ωt| is large enough [8]. We have:

wk+1 =
1
ρ

(ÛTΩtÛΩt)
−1ÛTΩt(ρ(vΩt − sk)− yk) (6.8)

sk+1 = S 1
1+ρ

(vΩt − ÛΩtw
k+1 − yk) (6.9)

yk+1 = yk + ρ(ÛΩtw
k+1 + sk+1 − vΩt) (6.10)

where S 1
1+ρ

is the elementwise soft thresholding operator [17]. We discuss this ADMM solver in detail

as Algorithm 8 in Section 6.2.2.

Update of the Subspace Estimate Now to update our subspace estimate, we must take the gradient

of 6.4 with respect to our subspace variable U . As in GROUSE, the gradient of this cost function is

114

rank one. We include the gradient from [52] for reference, first introducing three variables Γ, Γ1, and

Γ2 to simplify the gradient expression:

Γ1 = y∗ + ρ(UΩtw
∗ + s∗ − vΩt) (6.11)

Γ2 = UTΩtΓ1 (6.12)

Γ = χΩtΓ1 − UΓ2 (6.13)

and the gradient OL turns out to be [52]:

OL = Γw∗T (6.14)

Again as derived in [52], given (s∗, w∗, y∗), a gradient step of length η in the direction −OL is given

by

U(η) = U +
(

(cos(ησ)− 1)
Uw∗t
‖w∗t ‖

− sin(ησ)
Γ
‖Γ‖

)
w∗t

T

‖w∗t ‖
. (6.15)

Remarks Here we point out that at each subspace update step, our approach does not remove outliers

explicitly. In fact, we use the gradient of the augmented LagrangianL(U) Equation (6.4) which exploits

the dual vector y∗ to leverage the outlier effect. That is the key to success. Even when the ADMM

solver 6.7 can not identify the outliers due to our current estimated subspace being far away from the

true subspace, with the help of the dual vector y∗ the gradient of the augmented Lagrangian gives us

the right direction at each step which leads us to the right subspace.

We also must point out that since we estimate (s∗, w∗, y∗) at each step using the ADMM solver,

we can not recover the exact subspace with sufficient accuracy if we do not allocate enough iterations

for the ADMM solver [16]. Fortunately, as it also emphasized in [16], only a few tens of iterations per

subspace update step are sufficient to achieve a modest accuracy, which is often acceptable for practical

115

use. Extensive experiments in [52] show that our algorithm is fast and always produces acceptable

results, even when the vectors are noisy and heavily corrupted by outliers.

Algorithm Précis The discussion of Section 6.2.2 can be summarized into the GRASTA algorithm

as follows. For each time step t, when we observe an incomplete and corrupted data vector vΩt , our

algorithm will first estimate the optimal value (s∗, w∗, y∗) from our current estimated subspace Ut via

the l1 minimization ADMM solver 6.7; then compute the gradient of the augmented Lagrangian loss

function L by Equation (6.14); then choose a proper step-size; and finally do the rank one subspace

update via Equation (6.15).

We state our main algorithm GRASTA (Grassmannian Robust Adaptive Subspace Tracking Algo-

rithm) in Algorithm 7. GRASTA consists of two important sub-procedures: the ADMM solver of the

least absolute derivations problem, and the computation of the adaptive step-size.

Algorithm 7 Grassmannian Robust Adaptive Subspace Tracking
[52] Require: An n×d orthogonal matrixU0. A sequence of corrupted vectors vt, each vector observed
in entries Ωt ⊂ {1, . . . , n}. A structure OPTS1 that holds parameters for ADMM. A structure OPTS2
that holds parameters for the adaptive step size computation.
Return: The estimated subspace Ut at time t.

1: for t = 0, . . . , T do
2: Extract UΩt from Ut: UΩt = χTΩtUt
3: Estimate the sparse residual s∗t , weight vector w∗t , and dual vector y∗t from the observed entries

Ωt via Algorithm 8 using OPTS1:
(s∗t , w

∗
t , y
∗
t) = arg minw,s,y L(UΩt , w, s, y)

4: Compute the gradient of the augmented Lagrangian L, OL as follows:
Γ1 = y∗t + ρ(UΩtw

∗
t + s∗t − vΩt), Γ2 = UTΩtΓ1, Γ = χΩtΓ1 − UΓ2

OL = Γw∗t
T

5: Compute step-size ηt according to desired update rule.
6: Update subspace: Ut+1 = Ut + ((cos(ηtσ)− 1)Ut

w∗t
‖w∗t ‖

− sin(ηtσ) Γ
‖Γ‖)

w∗t
T

‖w∗t ‖
where σ = ‖Γ‖‖w∗t ‖

7: end for

Unlike GROUSE, which has a closed form solution for computing the gradient, GRASTA estimates

(s∗t , w
∗
t , y
∗
t) by the ADMM iterated Algorithm 8. Certainly we would have a potential performance bot-

tleneck if Algorithm 8 takes too much time at each subspace update step. However, we see empirically

116

that only a few tens of iterations in Algorithm 8 at each step allows GRASTA to track the subspace

to an acceptable accuracy. In our video experiments with Algorithm 8, we always set the maximum

iteration K around 20 to balance the trade-off between the subspace tracking accuracy and computa-

tional performance. We make a slight modification to the original ADMM sovler presented in [16]:

in addition to returning w∗ we also return the sparse vector s∗ and the dual vector y∗ for the further

computation of the gradient OL. It is easy to verify that in the worst case the ADMM solver needs at

most O(|Ω|d3 +Kd|Ω|) flops.

Algorithm 8 ADMM Solver for Least Absolute Deviations [16, 52]

Require: An |Ωt|×d orthogonal matrix UΩt , a corrupted observed vector vΩt ∈ R|Ωt| , and a structure
OPTS which holds four parameters for ADMM: ADMM step-size constant ρ, the absolute tolerance
εabs, the relative tolerance εrel, and ADMM maximum iteration K.
Return: sparse residual s∗ ∈ R|Ωt|; weight vector w∗ ∈ Rd; dual vector y∗ ∈ R|Ωt|.

1: Initialize s,w,y: s1 = s0, w1 = w0, y1 = y0

(either to zero or to the final value from the last subspace update of the same data vector for a warm
start.)

2: Cache P = (UTΩtUΩt)−1UTΩt
3: for k = 1→ K do
4: Update weight vector: wk+1 = 1

ρP (ρ(vΩt − sk)− yk)
5: Update sparse residual: sk+1 = S 1

ρ+1
(vΩt − UΩtw

k+1 − yk)
6: Update dual vector: yk+1 = yk + ρ(UΩtw

k+1 + sk+1 − vΩt)
7: Calculate primal and dual residuals: rpri = ‖UΩtw

k+1 + sk+1 − vΩt‖, rdual = ‖ρUTΩt(sk+1 −
sk)‖

8: Update stopping criteria: εpri =
√|Ωt|εabs + εrel max {‖UΩtw

k+1‖, ‖sk+1‖, ‖vΩt‖},
εdual =

√
dεabs + εrel‖ρUTΩtyk+1‖

9: if rpri ≤ εpri & rdual ≤ εdual then
10: Converge and break the loop.
11: end if
12: end for
13: s∗ = sk+1, w∗ = wk+1, y∗ = yk+1

117

Chapter 7

Column Selection with Missing Data

The work in this chapter is joint with Waheed Bajwa [5].

The problem of selecting k representative columns from a low-rank m × n matrix Y , or column

subset selection (CSS), arises frequently in data applications involving large data sets. Consider, for

example, the case of an internet traffic measurement system in which a data matrix is constructed by

collecting router traffic loads for various traffic types at different times into columns. In this applica-

tion, CSS is akin to identifying representative routers that can lead to quick tracking down of network

anomalies. Similarly, consider the case of a movie recommendation system in which a data matrix is

constructed by collecting movie ratings of users into columns. In this application, CSS leads to iden-

tification of users who can reliably predict the ratings of newly-released movies. There are numerous

other uses of the CSS problem in data applications and we refer the reader to some of the references

within [15] for further motivation.

The CSS problem has been well-studied in the literature. The main algorithm that is put forth to

solve this problem is rank-revealing QR (RRQR) decomposition [26, 49]. In particular, it has been

shown that RRQR and its variants solve the CSS problem in a near-optimal fashion; see, e.g., [15, 49]

and Table 1 within [15]. Unfortunately, it is nearly impossible in many data applications involving

massive data sets to have access to the complete data. In the case of the internet traffic measurement

system, for example, it is quite common for the routers to lose traffic data at various points in time.

Similarly, in the case of the movie recommendation system, no user can be expected to rate every

movie in the database. Existing formulations of the CSS problem in the literature seem incapable of

118

handling the case of missing data in an intelligible fashion.

In this chapter, we take a unified approach that naturally leads to algorithms for CSS with or without

having access to full data. The problem of CSS is in some sense a detection problem, rather than

an estimation problem, and therefore we expect it to remain well-posed even when a larger fraction

of data is missing. Our main contribution in this regard is that we adapt the original optimization-

based formulation of the CSS problem to accommodate situations when data are missing. The key

distinguishing characteristic of our formulation is that it operates only on the matrix entries that have

been observed, which is justified by the insights of Chapter 3. In addition, the work presented in

here also opens the door to low-complexity CSS algorithms in terms of both computation and memory

requirements for the case when a large fraction of data are missing.

7.1 Problem Formulation

Consider an m× n matrix Y whose n columns represent n sensors or measurement points and whose

m rows represent measurement times. In this paper, we consider that Y is exactly low-rank and we

are interested in choosing a subset of the columns of Y to represent the entire matrix. If we know the

number of columns we would like to select, k, we can state CSS formally by saying that we want to

find a matrix X such that Y = Y X while only k or fewer rows of X are non-zero. This problem

is combinatorial; we may need to check all size-k subsets to find a suitable set. However, there are

greedy algorithms that aim to solve this problem, and the one we use in this paper is Block Orthogonal

Matching Pursuit, or BOMP. Block OMP can refer to an algorithm which solves a problem set up where

dictionary elements are blocked [39]; in our case we have individual dictionary elements (the columns

of our matrix) but require that the support on the dictionary is the same for every other column [100].

Rank-Revealing QR (RRQR) [26, 49] decompositions have been studied extensively in the lit-

erature for CSS [15]. These algorithms aim to find Q,R and a permutation matrix Π such that

Y Π = QR. The permutation matrix essentially permutes the most well-conditioned columns to

119

the front of the matrix; given k, the first k are the selected columns when RRQR is used for column

subset selection.

An adaptation of RRQR for matrices with missing data has not been developed; it is not clear to the

authors whether a non-heuristic algorithm could be developed. A naı̈ve approach would be to simply

fill the matrix with zeros where data are missing. However, zero-filling a column vector changes the

subspace of that vector 3.4.1 and can cause problems in selection, as we show in Section 7.3.

7.1.1 Group Lasso Formulation of Missing Data CSS

Often in applications data are missing and the matrix Y is incomplete. We can manipulate the problem

given above for the situation when not all the data are observed. First we note that ∃X such that

Y = Y X iff ‖Y − Y X‖2F = 0. We now will manipulate this norm for the case where there are

missing entries in Y . This derivation first appeared in [5].

Let Cj = {i : The ith entry of column j of Y is observed} andRj = {i : The ith entry of row j of

Y is observed}. Also let Y ij represent the element in the ith row and jth column of Y . Then we can

look at ‖Y − Y X‖2F considering only elements of Y that have been observed:

n∑
j=1

∑
k∈Cj

Y kj −
∑
i∈Rk

XijY ki

2

. (7.1)

We again note that this norm is zero iff ∃X such that Y = Y X only on the observed entries of Y .

Define the zero-filled version of Y , and indicator function w which indicates observed entries in Y :

Ỹ ij =

 Y ij if Y ij is observed;

0 if Y ij is unobserved.
wij =

 1 if Y ij is observed;

0 if Y ij is unobserved.

Also denote the jth column vector with subscript ∗j and the Hadamard product with ◦. Using these

we can rewrite (7.1) as

120

n∑
j=1

n∑
k=1

wkj

(
Ỹ kj −

n∑
i=1

XijỸ ki

)2

=
n∑
j=1

‖w∗j ◦ Ỹ ∗j −w∗j ◦
(
Ỹ X∗j

)
‖22.

We can manipulate this into matrix-vector form. Let W i be the diagonal matrix with column w∗i

on the diagonal.

n∑
j=1

‖w∗j ◦ Ỹ ∗j −w∗j ◦
(
Ỹ X∗j

)
‖22 =

∥∥∥Ỹ − [W 1Ỹ X∗1,W 2Ỹ X∗2, . . . ,W nỸ X∗n

]∥∥∥2

F
. (7.2)

Now we will use x = vec(X) for the operation of stacking the columns of Xinto a single column

vector; vec−1(x) will be defined to undo this operation. Apply vec to the term inside the norm of

(7.2). We first have vec(Ỹ) = ỹ. Let W i be the diagonal matrix with column w∗i on the diagonal.

Define the block-diagonal matrix

A = diag
(
W 1Ỹ , ...,W nỸ

)
. (7.3)

Thus (7.2) becomes ‖ỹ −Ax‖22. This is 0 iff ∃X such that ỹ = Ax. The problem becomes:

Find X such that vec(Ỹ) = Avec(X), requiring that X has exactly k non-zero rows. (7.4)

7.2 Algorithm: Block OMP for Missing Data CSS

As is the full-data formulation, this problem is combinatorial, but many algorithms can be applied

to solve it efficiently. One possible choice for such an algorithm is Block OMP for column subset

selection with missing data, which would operate as shown in Algorithm 9. In the case where noise

is added to the low-rank matrix Y , the Group Lasso [111] can be used to formulate the problem as

minx ‖ỹ −Ax‖22 + λ
∑n

i=1 ‖xi‖2 where xi is the ith row of X . The parameter λ can then be chosen

in such a way to enforce that k rows of X are non-zero.

121

Algorithm 9 Block OMP for Column Subset Selection with missing data

Require: Samples from an m × n matrix Y and sample locations, from which we construct A as in
(7.3) and vec(Ỹ). An integer k, the number of columns to be selected.

1: Initialize: ỹ0 ← vec(Ỹ) , I ← {}
2: for t = 1, . . . , k do
3: Back-project and devectorize: d = AT vec(ỹ0) and D = vec−1(d).
4: Choose max row norm: it = arg mini ‖Di‖2 where Di refers to the ith row of D.
5: Add index to selected set: I = I ∪ {it}.
6: Fit to the current index set: θ = A†Ivec(Ỹ) where † denotes the pseudo-inverse.
7: Update: ỹ0 = vec(Ỹ)−AIθ
8: end for
9: return I

Our new formulation of the CSS problem in (7.4) operates only on the matrix entries that have been

observed and automatically reduces to the traditional problem formulation for the case when no data

are missing. In this section, we demonstrate the significance of this formulation by numerically com-

paring the performance of the BOMP algorithm proposed for solving (7.4) and the RRQR factorization

run naı̈vely on a zero-filled data matrix. For the sake of this exposition, we implement the RRQR fac-

torization by making use of the implementataion of QR factorization provided in Matlab, which returns

an ordering of matrix columns such that all the diagonal entries of R are decreasing.

7.3 Empirical Analysis

The numerical experiments reported in here correspond to column selection on a low-rank matrix Y

with m = 150, n = 200, and k = 4. In order to built the matrix Y , we first generate four standard

Gaussian column vectors and then orthonormalize them. Next, we generate four sets of columns from

each of these generating vectors such that each column in a set is a random scaling of the corresponding

generating vector. The matrix Y then corresponds to collecting these four sets of columns into a matrix

followed by a random permutation of the locations of these columns. We define success as picking

one column from each of the four sets. The first set of numerical experiments that we carried out

corresponded to the case of complete data (not shown in here). In this case, both BOMP and RRQR

122

picked exactly the same columns in every run: the largest-norm column from each set. This remained

true over numerous runs regardless of the cardinality of the sets of columns.

Next, we carried out numerical experiments corresponding to the case of missing data. For this

purpose, we randomly erased 10% to 90% of the mn entries of Y and also varied the cardinality of the

column set sizes. We varied the first set from 0.05n to 0.75n, and then we split the remaining columns

evenly among the three remaining sets. The results of these experiments, shown in Fig. 30, demonstrate

that our problem formulation together with BOMP outperforms RRQR run on a zero-filled data matrix,

especially for the case when 30% to 60% of the data are missing, as long as no more than ∼ 70% of

the columns are explained by a single column in the matrix.

Two remarks are now in order concerning the insights gained from the numerical experiments and

our proposed approach to CSS in the case of missing data. First, note that it is reasonable to expect that

for the case when a single column describes a very large fraction of other columns along with missing

data, BOMP would perform worse than RRQR with zero-filled matrix. This is because of the greedy

nature of Step 4 in the BOMP algorithm that picks columns that best describe the “residual” energy in

the remaining columns. Missing data would always leave some residual energy in the columns, which

can accumulate to overshadow the energy in other sets if one single set gets too large. Second, the

fact that RRQR with a zero-filled matrix significantly underperforms our problem formulation together

with BOMP for the case of 30% to 60% missing data and comparable cardinality of column sets is

completely in line [8], which shows that it is important to work only with observed data for subspace

detection with missing data, since zero-filling the data in that case leads to false detection of energy

outside the true subspace.

7.3.1 Discussion

We conclude this discussion by pointing out that it is indeed possible to envision alternative, sophis-

ticated approaches to the problem of CSS in the absence of complete data. One immediate choice in

123

0.2 0.4 0.6
0

0.5

1
S

u
c
c
e

s
s
 r

a
te

10%

0.2 0.4 0.6
0

0.5

1 20%

0.2 0.4 0.6
0

0.5

1 30%

0.2 0.4 0.6
0

0.5

1 40%

0.2 0.4 0.6
0

0.5

1
50%

0.2 0.4 0.6
0

0.5

1

60%

Sampling rate

0.2 0.4 0.6
0

0.5

1

70%

0.2 0.4 0.6
0

0.5

1

80%

Size of first set as percentage of all columns

BOMP

RRQR

Figure 30: This simulation was done with n = 200, m = 150, rank of Y = 4. Success is defined as
choosing exactly one column from each of the four sets.

this regard could be a two-stage CSS procedure that involves preprocessing of the available data to

impute the missing data followed by the RRQR factorization. However, this adds an extra layer of

processing that increases the computational complexity of the problem. On the other hand, we have

from Figure 30 that perfect CSS can be carried out in the absence of complete data without having to

impute the missing data. In addition, it is also easy to see that one-stage CSS procedures could in fact

take advantage of the missing data to reduce their computational complexity and memory requirements,

whereas a two-stage CSS procedure which started with full-matrix imputation would be incapable of

doing that. In this regard, the BOMP algorithm proposed in here for solving (7.4) validates the idea

of CSS without missing data imputation. In the future, we plan on making use of our formulation in

(7.4) to devise fast algorithms that are not only uniformly better than RRQR with a zero-filled matrix,

but also take advantage of the missing data to reduce overall computational complexity and memory

requirements. It is not hard to imagine that this could eventually lead us to situations where one would

intentionally throw away data to reduce complexity and storage without sacrificing performance.

124

Chapter 8

Future Directions and Conclusions

A great many very interesting questions have arisen from this thesis work. The subspace model is

arguably one of the most powerful fundamental models of signal processing. However, there are many

other very useful models that are not addressed here and are of great interest: autoregressive models

and dynamical models, to name just two. We hope that the work here may inspire future work in

estimating other models with missing data; for example the unions of subspaces model can be used to

approximate non-linear manifold models.

8.1 More General Modeling

In some applications, linear subspace models are not enough to capture the richness of correlations

in data. A very exciting popular research direction is to explore the generalization to manifolds: a

topological space which is locally Euclidean. A smooth manifold is one that looks linear for a small

neighborhood around any given point. If data are sampled densely enough from a smooth manifold, a

point and its closest neighbors will lie on a “locally linear patch of the manifold” [88]. Often smooth

manifolds can be approximated to a desired approximation error by a union of linear subspaces. Very

little (if any) work has been done on estimating manifolds when data are missing.

Another generalization that offers interesting problems is that of permutation spaces. If measure-

ments come in the form of rankings as opposed to real numbers, we can consider problems of inference

over these rankings as functions on permutation spaces.

125

8.2 Different Models for Missingness

As we mentioned in the introduction Section 1.1.1, this thesis made a very specific assumption that data

are missing uniformly at random. It is of great interest to find a theoretical formulation under which

one can analyze more structured missing data.

Social Sciences In the social sciences, analysis of surveys has always been an area where data go

missing; some survey questions go unanswered by the survey takers. Often particular questions do not

get answered, or sensitive questions may not get answered depending on the true response. Related to

this, in [66], the authors define three types of missingness which provide food for thought.

Missing Completely At Random: This describes data which are missing independent of the all

actual data values, both observed and missing. However, the missingness itself does not have to have a

uniformly random or even a random pattern.

Missing At Random: This describes data which are missing independent of the missing data values

themselves, but it may be dependent on the observed data.

Not Missing At Random: This describes data which are missing dependent on the missing data

values themselves.

Hardware faults In sensor networks, data are missing or corrupted depending on the value of the

sensor itself– for example if the true temperature is out of range of the sensor, that measurement will

be clipped. When a measurement collection point fails, all the measurements are lost. An excellent

taxonomy of sensor network failures can be found in [77].

8.3 Conclusion

In this thesis, we examined many classical statistical signal processing and linear algebra problems

in subspace estimation from the modern perspective of big and messy datasets. Using tools from

126

probability theory, random matrix theory, statistical signal processing, adaptive filtering, and linear

algebra, we were able to thoroughly explore the problem of subspace modeling when vector or matrix

observations are missing.

Yet indeed, with this thesis we have only scratched the surface for what needs to be done to bring

statistical modeling techniques up to date for the key applications of the 21st century. Big data ap-

plications inevitably have missing and corrupted data, and there are schools of modeling techniques

that need to be altered to work provably well with missing data: for time-series models, autoregressive

models, dynamical models (linear and non-linear), graphical models, just to name a few, little to noth-

ing is known on how to estimate them when data are missing. That means there is a lot of work left to

be done.

127

Bibliography

[1] Pankaj K. Agarwal and Nabil H. Mustafa. k-Means projective clustering. In Proceedings of

ACM SIGMOD-SIGACT-SIGART Symposium on Principles of database systems, 2004.

[2] B.A. Ardekani, J. Kershaw, K. Kashikura, and I. Kanno. Activation detection in functional MRI

using subspace modeling and maximum likelihood estimation. IEEE Transactions on Medical

Imaging, 18(2), February 1999.

[3] Laura Balzano, Brian Eriksson, and Robert Nowak. High rank matrix completion and subspace

clustering with missing data. In Proceedings of the conference on Artificial Intelligence and

Statistics (AIStats), 2012.

[4] Laura Balzano and Robert Nowak. Blind calibration of sensor networks. In Proceedings of

Information Processing in Sensor Networks, April 2007.

[5] Laura Balzano, Robert Nowak, and Waheed Bajwa. Column subset selection with missing data.

In NIPS workshop on Low-Rank Methods for Large-Scale Machine Learning, December 2010.

[6] Laura Balzano, Robert Nowak, and Benjamin Recht. Online identification and tracking of sub-

spaces from highly incomplete information. In Proceedings of the Allerton conference on Com-

munication, Control, and Computing, 2010.

[7] Laura Balzano, Robert Nowak, Arthur Szlam, and Benjamin Recht. k-Subspaces with missing

data. In IEEE Statistical Signal Processing Workshop (SSP), August 2012.

[8] Laura Balzano, Bejamin Recht, and Robert Nowak. High-dimensional matched subspace detec-

tion when data are missing. In Proceedings of ISIT, June 2010.

[9] Laura Balzano and Benjamin Recht, 2010. http://sunbeam.ece.wisc.edu/grouse/.

128

[10] R. Basri and D. Jacobs. Lambertian reflectance and linear subspaces. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 25(2):218–233, February 2003.

[11] Dimitri P. Bertsekas. Incremental gradient, subgradient, and proximal methods for convex op-

timization: A survey. Technical Report LIDS-P-2848, MIT Lab for Information and Decision

Systems, August 2010.

[12] Dimitri P. Bertsekas and John N. Tsitsiklis. Gradient convergence in gradient methods with

errors. SIAM Journal of Optimization, 10(3):627–642, 2000.

[13] Christian H. Bischof. Incremental condition estimation. SIAM Journal on Matrix Analysis and

Applications, 11(2):312–322, 1990.

[14] Christian H. Bischof and Gautam M. Shroff. On updating signal subspaces. IEEE Transactions

on Signal Processing, 40(1), January 1992.

[15] C. Boutsidis, M. W. Mahoney, and P. Drineas. An improved approximation algorithm for the

column subset selection problem. In Proceedings of the Symposium on Discrete Algorithms,

pages 968–977, 2009.

[16] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical

learning via the alternating direction method of multipliers. Foundations and Trends in Machine

Learning, 3(1):1–123, 2011.

[17] S.P. Boyd and L. Vandenberghe. Convex optimization. Cambridge University Press, 2004.

[18] Paul S. Bradley and Olvi L. Mangasarian. k-Plane clustering. Journal of Global Optimization,

16:23–32, 2000.

[19] M Brand. Fast low-rank modifications of the thin singular value decomposition. Linear Algebra

and its Applications, 415(1):20–30, 2006.

129

[20] Samuel Burer and R. D. C. Monteiro. Local minima and convergence in low-rank semidefinite

programming. Mathematical Programming, 103(3):427–444, 2005.

[21] Jian-Feng Cai, Emmanuel J. Candès, and Zuowei Shen. A singular value thresholding algorithm

for matrix completion. SIAM Journal on Optimization, 20(4):1956–1982, 2008.

[22] E. Candès and B. Recht. Exact matrix completion via convex optimization. Foundations of

Computational Mathematics, 9(6):717–772, December 2009.

[23] E. Candès and T. Tao. The power of convex relaxation: Near-optimal matrix completion. IEEE

Transactions on Information Theory, 56(5):2053 –2080, May 2010.

[24] E. J. Candès, X. Li, Y. Ma, and J. Wright. Robust principal component analysis? Journal of the

ACM, 58(1):1–37, 2009.

[25] E. J. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: exact signal reconstruc-

tion from highly incomplete frequency information. IEEE Transactions on Information Theory,

52(2):489–509, 2006.

[26] T. F. Chan. Rank revealing QR factorizations. Linear Algebra and its Applications, 88-89:67–82,

April 1987.

[27] V. Chandrasekaran, S. Sanghavi, P.A. Parrilo, and A.S. Willsky. Rank-sparsity incoherence for

matrix decomposition. SIAM Journal on Optimization, 21:572, 2011.

[28] Francoise Chatelin. Eigenvalues of matrices, pages 14–18. Wiley, Chichester, 1993.

[29] G. Chen and M. Maggioni. Multiscale Geometric and Spectral Analysis of Plane Arrangements.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Colorado Springs,

CO, June 2011.

130

[30] Victor S. Chernyak. Fundamentals of Multisite Radar Systems: Multistatic Radars and Mul-

tistatic Radar Systems. Gordon and Breach Science Publishers, Amsterdam, The Netherlands,

1998.

[31] Pierre Comon and Gene Golub. Tracking a few extreme singular values and vectors in signal

processing. Proceedings of the IEEE, 78(8), August 1990.

[32] Joao Paulo Costeira and Takeo Kanade. A multibody factorization method for independently

moving objects. International Journal of Computer Vision, 29, 1998.

[33] Wei Dai and Olgica Milenkovic. SET: An algorithm for consistent matrix completion. In IEEE

International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2010.

[34] J.-P. Delmas and J.-F. Cardoso. Performance analysis of an adaptive algorithm for tracking

dominant subspaces. Signal Processing, IEEE Transactions on, 46(11):3045 –3057, nov 1998.

[35] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incomplete data via the

em algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39(1):1–38,

1977.

[36] Xinghao Ding, Lihan He, and L. Carin. Bayesian robust principal component analysis. Image

Processing, IEEE Transactions on, 20(12):3419 –3430, dec. 2011.

[37] Alan Edelman, Tomas A. Arias, and Steven T. Smith. The geometry of algorithms with orthog-

onality constraints. SIAM Journal on Matrix Analysis and Applications, 20(2):303–353, 1998.

[38] Alan Edelman and Steven T. Smith. On conjugate gradient-like methods for eigen-like problems.

BIT Numerical Mathematics, 36:494–508, 1996. 10.1007/BF01731929.

[39] Y.C. Eldar, P. Kuppinger, and H. Bolcskei. Block-sparse signals: uncertainty relations and

efficient recovery. IEEE Transactions on Signal Processing, 58:3042–3054, June 2010.

131

[40] Brian Eriksson, Paul Barford, Joel Sommers, and Robert Nowak. DomainImpute: Inferring

Unseen Components in the Internet. In Proceedings of IEEE INFOCOM Mini-Conference, pages

171–175, Shanghai, China, April 2011.

[41] A. Frank and A. Asuncion. UCI machine learning repository, 2010.

[42] Neil Gershenfeld, Stephen Samouhos, and Bruce Nordman. Intelligent infrastructure for energy

efficiency. Science, 327(5969):1086–1088, February 2010.

[43] Fulvio Gini, Alfonso Farina, and Maria Greco. Radar detection and preclassification based on

multiple hypothesis. Aerospace and Electronic Systems, IEEE Transactions on, 40(3):1046 –

1059, july 2004.

[44] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns Hopkins University Press,

1996.

[45] Gene H. Golub and Hongyuan Zha. Linear Algebra for Signal Processing, volume 69, chapter

“The canonical correlations of matrix pairs and their numerical computation”, pages 29–49.

Springer-Verlag, 1995.

[46] David Gross. Recovering low-rank matrices from few coefficients in any basis. IEEE Transac-

tions on Information Theory, 57(3):1548 –1566, march 2011.

[47] A. Gruber and Y. Weiss. Multibody factorization with uncertainty and missing data using the em

algorithm. In Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision

and Pattern Recognition (CVPR), volume 1, 2004.

[48] M. Gu and S. Eisenstat. A stable and efficient algorithm for the rank-one modification of the

symmetric eigenproblem. SIAM Journal on Matrix Analysis and Applications, 15(4):1266–1276,

October 1994.

132

[49] Ming Gu and Stanley C. Eisenstat. Efficient algorithms for computing a strong rank-revealing

qr factorization. SIAM Journal on Scientific Computing, 17:848–869, July 1996.

[50] John A. Gubner. Probability and Random Processes for Electrical and Computer Engineers.

Cambridge University Press, Cambridge, UK, 2006.

[51] Jayant Gupchup, Randal Burns, Andreas Terzis, and Alex Szalay. Model-based event detection

in wireless sensor networks. In Proceedings of the Workshop on Data Sharing and Interoper-

ability (DSI), 2007.

[52] Jun He, Laura Balzano, and John C.S. Lui. Online robust subspace tracking from partial infor-

mation. Preprint available at http://arxiv.org/pdf/1109.3827v2., 2011.

[53] Jun He, Laura Balzano, and Arthur Szlam. Incremental gradient on the grassmannian for online

foreground and background separation in subsampled video. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), June 2012.

[54] Peter J. Huber and Elvezio M. Ronchetti. Robust Statistics. Wiley, 2009.

[55] I. Jolliffe. Principal Component Analysis. Springer-Verlag, 1986.

[56] K. Kanatani. Motion segmentation by subspace separation and model selection. In Proceedings

of the Eighth IEEE International Conference on Computer Vision (ICCV), volume 2, pages 586–

591, 2001.

[57] Raghunandan H. Keshavan, Andrea Montanari, and Sewoong Oh. Matrix completion from a

few entries. IEEE Transactions on Information Theory, 56(6):2980–2998, June 2010.

[58] R.H. Keshavan, A. Montanari, and S. Oh. Matrix completion from noisy entries. Journal of

Machine Learning Research, 11:2057–2078, July 2010.

133

[59] H. Krim and M. Viberg. Two decades of array signal processing research: the parametric ap-

proach. Signal Processing Magazine, IEEE, 13(4):67–94, July 1996.

[60] H. Kwon and N.M. Nasrabadi. Kernel matched subspace detectors for hyperspectral target de-

tection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(2), February 2006.

[61] Anukool Lakhina, Mark Crovella, and Christophe Diot. Diagnosing network-wide traffic anoma-

lies. In Proceedings of SIGCOMM, 2004.

[62] Kirung Lee and Yoram Bresler. ADMiRA: Atomic decomposition for minimum rank approxi-

mation. IEEE Transactions on Information Theory, 56(9):4402 – 4416, Sep. 2010.

[63] Gilad Lerman and Teng Zhang. Robust Recovery of Multiple Subspaces by Lp Minimization.

Annals of Statistics, 39(5):2686–2715, 2011.

[64] Yongmin Li. On incremental and robust subspace learning. Pattern Recognition, 37(7):1509–

1518, 2004.

[65] Z. Lin, M. Chen, L. Wu, and Y. Ma. The augmented lagrange multiplier method for exact re-

covery of corrupted low-rank matrices. Technical Report UILU-ENG-09-2215, UIUC, October

2009. Arxiv preprint arXiv:1009.5055.

[66] Roderick J.A. Little and Donald B. Rubin. Statistical Analysis with Missing Data. Wiley-

Interscience, 2002.

[67] Yue M. Lu and Minh N. Do. A theory for sampling signals from a union of subspaces. IEEE

Transactions on Signal Processing, 56(6), June 2008.

[68] Shiqian Ma, Donald Goldfarb, and Lifeng Chen. Fixed point and Bregman iterative methods for

matrix rank minimization. Mathematical Programming, 128:321–353, 2011. 10.1007/s10107-

009-0306-5.

134

[69] Lester Mackey, Ameet Talwalkar, and Michael I. Jordan. Divide-and-conquer matrix factor-

ization. In Proceedings of the Conference on Neural Information Processing Systems (NIPS),

2011.

[70] Jan R. Magnus and Heinz Neudecker. Matrix Differential Calculus with Applications in Statistics

and Econometrics. John Wiley and Sons, 1999.

[71] Gonzalo Mateos and Georgios B. Giannakis. Sparsity control for robust principal component

analysis. In Proceedings of 44th Asilomar Conference on Signals, Systems, and Computers,

Pacific Grove, CA, November 2010.

[72] G Mathew, Vellenki Reddy, and Soura Dasgupta. Adaptive estimation of eigensubspace. IEEE

Transactions on Signal Processing, 43(2), February 1995.

[73] M.L. McCloud and L.L. Scharf. Interference estimation with applications to blind multiple-

access communication over fading channels. IEEE Transactions on Information Theory, 46(3),

May 2000.

[74] C. McDiarmid. On method of bounded differences. Surveys in Combinatorics, 141:148–188,

1989.

[75] Marc Moonen, Paul Van Dooren, and Joos Vandewalle. An SVD updating algorithm for sub-

space tracking. SIAM Journal of Matrix Analysis and Applications, 13:1015–1038, 1992.

[76] D. Needell and Joel Tropp. CoSaMP: Iterative signal recovery from incomplete and inaccurate

samples. Applied and Computational Harmonic Analysis, 26(3):301–321, 2009.

[77] Kevin Ni, Nithya Ramanathan, Nabil Hajj Chehade, Laura Balzano, Sheela Nair, Sadaf Zahedi,

Eddie Kohler, Greg Pottie, Mark Hansen, and Mani B. Srivastava. Sensor network data fault

types. ACM Transactions on Sensor Networks, 5(3), 2009.

135

[78] N.M. Oliver, B. Rosario, and A.P. Pentland. A bayesian computer vision system for modeling hu-

man interactions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8):831–

843, 2000.

[79] Rafail Ostrovsky, Yuval Rabani, Leonard J. Schulman, and Chaitanya Swamy. The effectiveness

of lloyd-type methods for the k-means problem. In In 47th IEEE Symposium on the Foundations

of Computer Science (FOCS), pages 165–176, 2006.

[80] Spiros Papadimitriou, Jimeng Sun, and Christos Faloutsos. Streaming pattern discovery in mul-

tiple time-series. In Proceedings of VLDB Conference, 2005.

[81] J.L. Paredes, Zhongmin Wang, G.R. Arce, and B.M. Sadler. Compressive matched subspace

detection. In Proceedings of the European Signal Processing Conference (EUSIPCO), Glasgow,

Scotland, August 2009.

[82] Patrick O. Perry and Patrick J. Wolfe. Minimax rank estimation for subspace tracking. IEEE

Journal of Selected Topics in Signal Processing, 4(3):504–513, June 2010.

[83] Chenlu Qiu and Namrata Vaswani. ReProCS: A missing link between recursive robust pca and

recursive sparse recovery in large but correlated noise. Available at http://arxiv.org/

abs/1106.3286, 2011.

[84] M. Rangaswamy, F.C. Lin, and K.R. Gerlach. Robust adaptive signal processing methods for

heterogeneous radar clutter scenarios. Signal Processing, 84:1653–1665, September 2004.

[85] Benjamin Recht. A simpler approach to matrix completion. Journal of Machine Learning

Research, 12:3413–3430, 2011.

[86] Benjamin Recht, Maryam Fazel, and Pablo Parrilo. Guaranteed minimum rank solutions of

matrix equations via nuclear norm minimization. SIAM Review, 52(3):471–501, 2010.

136

[87] Benjamin Recht and Christopher Re. Parallel stochastic gradient algorithms for large-scale ma-

trix completion. Submitted for publication. Available at http://pages.cs.wisc.edu/

˜brecht/papers/11.Rec.Re.IPGM.pdf, 2011.

[88] Sam T. Roweis and Lawrence K. Saul. Nonlinear dimensionality reduction by locally linear

embedding. Science, 290(5500):2323–2326, 2000.

[89] R Roy and T Kailath. ESPRIT – estimation of signal parameters via rotational invariance tech-

niques. IEEE Transactions on Acoustics, Speech, and Signal Processing, 37(7):984–995, July

1989.

[90] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Incremental svd-based al-

gorithms for highly scalable recommender systems. In Proceedings of the 5th International

Conference on Computer and Information Technology (ICCIT), 2002.

[91] Ali H. Sayed. Adaptive Filters. John Wiley & Sons, Hoboken, New Jersey, 2008.

[92] L.L. Scharf. Statistical Signal Processing. Addison-Wesley, Reading, MA, 1991.

[93] L.L. Scharf and B. Friedlander. Matched subspace detectors. IEEE Transactions on Signal

Processing, 42(8):2146–2157, August 1994.

[94] Ralph O. Schmidt. Multiple emitter location and signal parameter estimation. IEEE Transactions

on Antennas and Propagation, AP-34(3):276–280, March 1986.

[95] Y. Shen, Z. Wen, and Y. Zhang. Augmented lagrangian alternating direction method for matrix

separation based on low-rank factorization. TR11-02, Rice University, 2011.

[96] Steven T. Smith. Geometric Optimization Methods for Adaptive Filtering. PhD thesis, Harvard

University, 1993.

137

[97] D.W.J. Stein, S.G. Beaven, L.E. Hoff, E.M. Winter, A.P. Schaum, and A.D. Stocker. Anomaly

detection from hyperspectral imagery. IEEE Signal Processing Magazine, January 2002.

[98] G. W. Stewart. An updating algorithm for subspace tracking. IEEE Transactions on Signal

Processing, 1992.

[99] Kim-Chuan Toh and Sangwoon Yun. An accelerated proximal gradient algorithm for nuclear

norm regularized least squares problems. Pacific Journal of Optimization, 6:615–640, 2010.

[100] J.A. Tropp, A.C. Gilbert, and M.J. Strauss. Algorithms for simultaneous sparse approximation,

Part I: Greedy pursuit. Signal Processing, special issue on Sparse approximations in signal and

image processing, 86:572–588, April 2006.

[101] René Vidal. A tutorial on subspace clustering. IEEE Signal Processing Magazine, 28(2):52–68,

2011.

[102] René Vidal, Yi Ma, and Shankar Sastry. Generalized Principal Component Analysis (GPCA).

IEEE Transactions on Pattern Analysis and Machine Intelligence, 27, December 2005.

[103] René Vidal, Stefano Soatto, Yi Ma, and Shankar Sastry. An algebraic geometric approach to the

identification of a class of linear hybrid systems. In Proceedings of the Conference on Decision

and Control, pages 167–172, 2003.

[104] René Vidal, Roberto Tron, and Richard Hartley. Multiframe motion segmentation with missing

data using powerfactorization and GPCA. International Journal of Computer Vision, 79:85–105,

2008.

[105] Gregory S. Wagner and Thomas J. Owens. Signal detection using multi-channel seismic data.

Bulletin of the Seismological Society of America, 86(1A):221–231, February 1996.

[106] Lu Wang, Lei Wang, Ming Wen, Qing Zhuo, and Wenyuan Wang. Background subtraction

138

using incremental subspace learning. In Proceedings of the International Conference on Image

Processing (ICIP), 2007.

[107] Rachel Ward. Compressed sensing with cross validation. IEEE Transactions on Information

Theory, 55:5773–5782, December 2009.

[108] Huan Xu, C. Caramanis, and S. Sanghavi. Robust pca via outlier pursuit. Information Theory,

IEEE Transactions on, 58(5):3047 –3064, may 2012.

[109] Bin Yang. Projection approximation subspace tracking. IEEE Transactions on Signal Process-

ing, 43(1), January 1995.

[110] Jar-Ferr Yang and Mostafa Kaveh. Adaptive eigensubspace algorithms for direction or frequency

estimation and tracking. IEEE Transactions on Acoustics, Speech, and Signal Processing, 36(2),

February 1988.

[111] M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables.

Journal of the Royal Statistical Society, Series B, 68:49–67, 2007.

[112] Teng Zhang, Arthur Szlam, Yi Wang, and Gilad Lerman. Randomized hybrid linear modeling

by local best fit flats. In The Twenty-Third IEEE Conference on Computer Vision and Pattern

Recognition, San Francisco, CA, June 2010.

