Online Tensor Completion and Tracking

Kyle Gilman and I have a preprint out describing a new algorithm for online tensor completion and tracking. We derive and demonstrate an algorithm that operates on streaming tensor data, such as hyperspectral video collected over time, or chemo-sensing experiments in space and time. Kyle presented his work at the first fully virtual ICASSP, which you can view here. Anyone can register for free to this year’s virtual ICASSP and watch the videos, post questions, and join the discussion. Kyle’s code is also available here. We think this algorithm will have a major impact in speeding up low-rank tensor processing, especially with time-varying data, and we welcome questions and feedback.