Improving K-Subspaces via Coherence Pursuit

John Lipor, Andrew Gitlin, Bioashuai Tao, and I have a new paper, “Improving K-Subspaces via Coherence Pursuit,” to be published in the Journal of Special Topics in Signal Processing issue “Robust Subspace Learning and Tracking: Theory, Algorithms, and Applications.” In it we present a new subspace clustering algorithm, Coherence Pursuit – K-Subspaces (CoP-KSS). Here is the code for CoP-KSS and for our figures. Our paper considers specifically the PCA step in K-Subspaces, where a best-fit subspace estimate is determined from a (possibly incorrect) clustering. When a given cluster has points from multiple low-rank subspaces, PCA is not a robust approach. We replace that step with Coherence Pursuit, a new algorithm for Robust PCA. We prove that Coherence Pursuit indeed can recover the “majority” subspace when data from other low-rank subspaces is contaminating the cluster. In this paper we also prove — to the best of our knowledge, for the first time — that the K-Subspaces problem is NP-hard, and indeed even NP-hard to approximate within any finite factor for large enough subspace rank.