MIDAS seminar and new results

Last Friday I gave the MIDAS weekly seminar. You can find the description here, along with the link directly to the recording. I talked about two recent problems I have been working on: First I talked about my work with Ravi Ganti and Rebecca Willett on learning a low-rank matrix that is observed through a monotonic function from partial measurements. This is common in calibration and quantization problems. Follow up work with Nikhil Rao and Rob Nowak in addition generalized this to learning structured single index models. Second, I talked about the work of my student David Hong, co-advised by Jeff Fessler, on the asymptotic performance of PCA with heteroscedastic data. This is common in problems like sensor networks or medical imaging, where different measurements of the same phenomenon are taken with different quality sensing (eg high or low radiation). David has recently posted his paper on arxiv showing predictions of the asymptotic performance; exploiting the structure of these expressions we also showed that asymptotic recovery for a fixed average noise variance is maximized when the noise variances are equal (i.e., when the noise is in fact homoscedastic). Average noise variance is often a practically convenient measure for the overall quality of data, but our results show that it gives an overly optimistic estimate of the performance of PCA for heteroscedastic data.

Speak Your Mind