Jason J. Corso
Publications List
|
tag: activity recognition
[1]
|
H. Huang, L. Zhou, W. Zhang, J. J. Corso, and C. Xu.
Dynamic graph modules for modeling object-object interactions in
activity recognition.
In Proceedings of the British Machine Vision Conference, 2019.
[ bib |
.pdf ]
|
[2]
|
M. R. Ganesh, E. Hofesmann, B. Min, N. Gafoor, and J. J. Corso.
T-recs: Training for rate-invariant embeddings by controlling speed
for action recognition.
Technical Report 1803.08094, ARXIV, 2018.
[ bib |
http ]
|
[3]
|
E. Hofesmann, M. R. Ganesh, and J. J. Corso.
M-PACT: An open source platform for repeatable activity
classification research.
Technical Report 1804.05879, ARXIV, 2018.
[ bib |
code |
http ]
|
[4]
|
T. Han, H. Yao, C. Xu, X. Sun, Y. Zhang, and J. J. Corso.
Dancelets mining for video recommendation based on dance styles.
IEEE Transactions on Multimedia, 19(4), 2017.
[ bib ]
|
[5]
|
Y. Yan, C. Xu, D. Cai, and J. J. Corso.
Weakly supervised actor-action segmentation via robust multi-task
ranking.
In Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, 2017.
[ bib ]
|
[6]
|
C. Xu and J. J. Corso.
Actor-action semantic segmentation with grouping-process models.
In Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, 2016.
[ bib |
data ]
|
[7]
|
J. Lu, R. Xu, and J. J. Corso.
Human action segmentation with hierarchical supervoxel consistency.
In Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, 2015.
[ bib |
.pdf ]
|
[8]
|
C. Xu, S.-H. Hsieh, C. Xiong, and J. J. Corso.
Can humans fly? Action understanding with multiple classes of
actors.
In Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, 2015.
[ bib |
poster |
data |
.pdf ]
|
[9]
|
W. Chen and J. J. Corso.
Action detection by implicit intentional motion clustering.
In Proceedings of IEEE International Conference on Computer
Vision, 2015.
[ bib |
poster |
.pdf ]
|
[10]
|
W. Chen, C. Xiong, R. Xu, and J. J. Corso.
Actionness ranking with lattice conditional ordinal random fields.
In Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, 2014.
[ bib |
poster |
code |
.pdf ]
|
[11]
|
A. Barbu, D. Barrett, W. Chen, N. Siddharth, C. Xiong, J. J. Corso,
C. D. Fellbaum, C. Hanson, S. J. Hanson, S. Hélie, E. Malaia, B. A.
Pearlmutter, J. M. Siskind, T. M. Talavage, and R. B. Wilbur.
Seeing is worse than believing: Reading people's minds better than
computer-vision methods recognize actions.
In Proceedings of European Conference on Computer Vision, 2014.
[ bib |
.pdf ]
|
[12]
|
A. Barbu, N. Siddharth, C. Xiong, J. J. Corso, C. D. Fellbaum,
C. Hanson, S. J. Hanson, S. Hélie, E. Malaia, B. A. Pearlmutter, J. M.
Siskind, T. M. Talavage, and R. B. Wilbur.
The compositional natural of verb and argument representations in the
human brain.
Technical Report 1306.2293, arXiv, 2013.
[ bib |
http ]
|
[13]
|
S. Sadanand and J. J. Corso.
Action bank: A high-level representation of activity in video.
In Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, 2012.
[ bib |
code |
project |
.pdf ]
|
[14]
|
R. Xu, P. Agarwal, S. Kumar, V. N. Krovi, and J. J. Corso.
Combining skeletal pose with local motion for human activity
recognition.
In Proceedings of VII Conference on Articulated Motion and
Deformable Objects, 2012.
[ bib |
slides |
.pdf ]
|
[15]
|
M. A. Bustamante and J. J. Corso.
Using probabilistic ontologies for video exploration.
In Proceedings of the Eighteenth Americas Conference on
Information Systems, 2012.
[ bib ]
|
[16]
|
C. Xiong and J. J. Corso.
Coaction discovery: Segmentation of common actions across multiple
videos.
In Proceedings of Multimedia Data Mining Workshop in Conjunction
with the ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(MDMKDD), 2012.
[ bib |
.pdf ]
|
[17]
|
W. Ceusters, J. J. Corso, Y. Fu, M. Petropoulos, and V. Krovi.
Introducing ontological realism for semi-supervised detection and
annotation of operationally significant activity in surveillance videos.
In Proceedings of the 5th International Conference on Semantic
Technologies for Intelligence, Defense and Security (STIDS), 2010.
[ bib |
.pdf ]
|
|