Jason J. Corso
Publications List
|
[1]
|
S. Kumar, V. Dhiman, P. Koch, and J. J. Corso.
Learning compositional sparse bimodal models.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 40(5):1032--1044, 2018.
[ bib |
DOI |
code ]
|
[2]
|
K. R. Keane and J. J. Corso.
The wrong tool for inference --- a critical view of gaussian
graphical models.
In Proceedings of the 7th International Conference on Pattern
Recognition Applications and Methods, 2018.
[ bib ]
|
[3]
|
L. Zhou, C. Xu, and J. J. Corso.
Towards automatic learning of procedures from web instructional
videos.
In Proceedings of AAAI Conference on Artificial Intelligence,
2018.
[ bib |
code |
data |
http ]
|
[4]
|
L. Zhou, Y. Zhou, J. J. Corso, R. Socher, and C. Xiong.
End-to-end dense video captioning with masked transformer.
In Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, 2018.
[ bib |
code |
.pdf ]
|
[5]
|
X. Sun, R. Szeto, and J. J. Corso.
A Temporally-Aware Interpolation Network for Video Frame
Inpainting.
In Proceedings of Asian Conference on Computer Vision (ACCV),
2018.
[ bib |
code |
project |
http ]
|
[6]
|
L. Zhou, N. Louis, and J. J. Corso.
Weakly-supervised video object grounding from text by loss weighting
and object interaction.
In Proceedings of British Machine Vision Conference, 2018.
[ bib |
.pdf ]
|
[7]
|
R. Szeto, S. Stent, G. Ros, and J. J. Corso.
A dataset to evaluate the representations learned by video prediction
models.
Technical report, ICLR Workshops, 2018.
[ bib |
code |
project |
http ]
|
[8]
|
A. Venkataraman, B. Griffin, and J. J. Corso.
Learning kinematic descriptions using spare: Simulated and physical
ARticulated extendable dataset.
Technical Report 1803.11147, ARXIV, 2018.
[ bib |
http ]
|
[9]
|
V. Dhiman, S. Banerjee, B. Griffin, J. M. Siskind, and J. J. Corso.
A critical investigation of deep reinforcement learning for
navigation.
Technical Report 1802.02274, ARXIV, 2018.
[ bib |
http ]
|
[10]
|
S. Patel, B. Griffin, K. Kusano, and J. J. Corso.
Predicting future lane changes of other highway vehicles using
rnn-based deep models.
Technical Report 1801.04340, ARXIV, 2018.
[ bib |
http ]
|
[11]
|
M. R. Ganesh, E. Hofesmann, B. Min, N. Gafoor, and J. J. Corso.
T-recs: Training for rate-invariant embeddings by controlling speed
for action recognition.
Technical Report 1803.08094, ARXIV, 2018.
[ bib |
http ]
|
[12]
|
E. Hofesmann, M. R. Ganesh, and J. J. Corso.
M-PACT: An open source platform for repeatable activity
classification research.
Technical Report 1804.05879, ARXIV, 2018.
[ bib |
code |
http ]
|
[13]
|
M. El Banani and J. J. Corso.
Adviser networks: Learning what question to ask for human-in-the-loop
viewpoint estimation.
Technical Report 1802.01666, ARXIV, 2018.
[ bib |
code |
http ]
|
|