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Abstract

Explicitly using human detection and pose estimation

has found limited success in action recognition problems.

This may be due to the complexity in the articulated mo-

tion human exhibit. Yet, we know that action requires an

actor and intention. This paper hence seeks to understand

the spatiotemporal properties of intentional movement and

how to capture such intentional movement without relying

on challenging human detection and tracking. We conduct a

quantitative analysis of intentional movement, and our find-

ings motivate a new approach for implicit intentional move-

ment extraction that is based on spatiotemporal trajectory

clustering by leveraging the properties of intentional move-

ment. The intentional movement clusters are then used as

action proposals for detection. Our results on three action

detection benchmarks indicate the relevance of focusing on

intentional movement for action detection; our method sig-

nificantly outperforms the state of the art on the challenging

MSR-II multi-action video benchmark.

1. Introduction

Action requires an actor; action requires intention; ac-

tion requires movement [9, 6]. In short, action requires the

intentional movement, or movement to achieve some active

purpose, of an actor, such as a human or animal. Good ac-

tor detection and pose estimation can clearly lead to state

of the art computer vision systems [29]. Jhuang et al. [15],

for example, demonstrate that action-recognition represen-

tations built from accurate actor-pose (from ground-truth)

outperform low- and middle-level feature-based representa-

tions. And, various video understanding problems, such as

surveillance [13, 22], video-to-text [16, 8], and group-based

activity understanding [18, 20], depend explicitly on detect-

ing the actors or humans in the video.

Yet, in works on individual action understanding like ac-

tion recognition and action detection, the explicit use of hu-

man detection and subsequent processing seems not nec-

essary. The highest performing methods, e.g., Peng et al.

[23], do not use any explicit human detection and instead

rely on low-level features like dense trajectories [33] or

banks of templates [26]. The use of human pose estima-

tion and human detection as an explicit measure for under-

standing action in video has only minimally been used, e.g.,

[36, 31, 34]. Why?

Consider action recognition based on human-pose.

Jhuang et al’s [15] strong results rely on ground-truth pose.

When using automatic actor-pose the performance drops or

is comparative to non-pose methods: Xu et al. [36] use a

bag of pose [37] and achieve weak performance unless fus-

ing the pose-based detector with low-level features, Brendel

and Todorovic [3] learn a sparse activity-pose codebook for

yielding then-competitive performance and Wang et al. [31]

optimize the pose estimation and integrate local-body parts

and a holistic pose representation to achieve comparative

performance. Neither of these works are evaluated on the

larger action recognition datasets like HMDB51 [17].

Human-pose estimation is hard; is performance too weak

still? Unfortunately, the picture is similar to the compara-

tively simpler human detection as with pose estimation for

action understanding. Aside from Wang et al. [34] who

develop dynamic-poselets for action detection successfully,

most works completely ignore human detection or find it

underperforms. For example, Chen et al. [6] achieve signif-

icantly better performance for ranking action-regions using

an ordinal random field model on top of low-level features

rather than a DPM-based human detector method [11].

Perhaps the most successful use of human detection in

action understanding to date is the improved dense trajec-

tory work [33] in which human detection is used to filter out

trajectories on human regions when estimating inter-frame

homographies. Ironically, in that work, human detection is

not directly used to drive the recognition performance.

This thorough evidence suggest that direct use of human

detectors and pose-estimators should be avoided for action

recognition, at least until pose estimation methods improve.

A similar argument could be made for action detection: e.g.,

both early action detection methods like ST-DPM [30] and

recent Tubelets [14], do not use any explicit human detec-

tion or tracking. But the evidence is weaker as this is a

newer problem.
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Detection-by-Recognition

Figure 1. Illustration of our method. Given trajectories in a testing video, the spatio-temporal trajectory graph is used to select action

proposals based on our notion of implicit intentional movement. Each cluster on the graph gives rise to an action proposal. The action

classifier trained by videos for the action recognition task can be used to achieve action detection on these proposals, in our action detection-

by-recognition framework.

Our goals are twofold. First, we seek to understand the

role that human detection (whether explicit or implicit) can

play in action detection. Second, to improve action detec-

tion performance, we seek to leverage the fact that action

requires intentional motion [9, 6], which is distinct from

the human detection or human mask. For example, various

actions, like running, are detectable when only viewing par-

tial information such as running legs or waving hands as in

Fig. 4 bottom-center.

We achieve these goals in a systematic fashion. First, we

thoroughly quantitatively analyze the properties that dense

trajectories [33] exhibit in space-time video regions of ex-

plicit intentional motion, i.e., regions where a human is per-

forming an action. We find that trajectories from intentional

motion are significantly densely localized in space and time.

Second, we propose a method that leverages this finding

to compute implicit intentional motion, which is a group

of trajectories that obey the properties observed for cases

of explicit intentional motion but for which we have not

explicitly detected or extracted humans; our method clus-

ter a space-time trajectory graph and then performs action

detection-by-recognition on the clusters of this graph (Fig.

1 illustrates this method). Raptis et al. [24] proposed a

similar space-time trajectory clustering, but they compute a

hierarchical clustering on trajectories to yield action parts

and then build detection models based on those parts. In

contrast, we leverage our findings of intentional motion to

directly cluster on the space-time trajectory graph to yield

action proposal clusters. Furthermore, our detection results

significantly outperform theirs.

Third, we thoroughly analyze our proposed method as

well as a human-detection-and-tracking method on the three

recognized action detection benchmarks: UCF Sports [25],

sub-J-HMDB [15], MSRII[17]. Our findings suggest that,

although explicit human-detection-based action detection

has weak performance, our proposed implicit intentional

movement-based representation performs comparably or

superiorly to the state of the art on all three benchmarks.

We discuss the quantitative study of trajectories for in-

tentional movement in Section 2, our proposed implicit in-

tentional movement-based action detection-by-recognition

in Section 3, our experimental findings in Section 4, and

discuss related methods in Section 5.

Table 1. Types of Trajectories with respect to the intentional move-

ment bounding box.

Types Descriptions

AbsPos All trajectory-points lie in the box.

CenPos Center trajectory-point lies in the box.

FstPos First trajectory-point lies in the box.

LstPos At least one trajectory-point lies in the box.

2. Trajectories and Intentional Movement

Trajectories are frequently used in action understand-

ing [33] and motion segmentation [4]. However, the rela-

tionship between trajectories and intentional motion is un-

known. In this section, we systematically quantify this rela-

tionship.

Since we are not aware of a dataset that explicitly labels

intentional versus non-intentional motion, we use the UCF

Sports1 [25] and sub-J-HMDB2 [15] datasets, which both

have detailed annotations on the locations of the humans.

They are action detection datasets and hence we make the

assumption that the annotated humans are the acting ones;

so, this define our proxy for intentional motion. In order to

maintain a consistent labeling, the human masks in the sub-

J-HMDB dataset are extended to human bounding boxes as

in the UCF Sports dataset. We extract improved dense tra-

jectories [33] without human detection for trajectory extrac-

tion on these datasets (using default parameters).

We analyze the spatiotemporal relationship between the

trajectories and the intentional motion region. Consider

four types of such relationships explained in Table 1. The

center point of the trajectory is a virtual point, located at

the arithmetic mean of all trajectory points in space-time.

Our goal in defining FstPos and CenPos types is to study

which point can well represent the spatial and temporal in-

formation of a trajectory. FstPos, AbsPos and LstPos types

will elucidate how well the articulating human motion is

captured by the trajectories. These four types trajectories

include intentional motion in different degrees.

For each of the trajectory types, we compute the percent-

age that each type occupies with respect to the total trajec-

tories in that video. Then, we average those percentages.

1http://crcv.ucf.edu/data/UCF_Sports_Action.php
2http://jhmdb.is.tue.mpg.de/

http://crcv.ucf.edu/data/UCF_Sports_Action.php
http://jhmdb.is.tue.mpg.de/
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Figure 2. The percentages of different types of trajectories in UCF

Sports and sub-J-HMDB datasets. PosVol indicates the ratio of

the positive motion volume to the whole video volume. FstPos,

CenPos, AbsPos and LstPos are four types of defined trajecto-

ries (Table 1).

Fig. 2 shows these averages for each type of trajectory.

From these statistics, we can summarize several points.

First, the trajectories are tracked well in regions of inten-

tional motion. In the UCF Sports dataset, there are 54%

FstPos trajectories and 43% AbsPos trajectories. Around

80% of the FstPos trajectories stick on the human actor, and

roughly 20% of FstPos trajectories drift from human agent

to background. There are 67% LstPos trajectories in UCF

Sports dataset, which indicates that 28% non-FstPos trajec-

tories drift from the background to the human. This drift

is one source of error in a method relying on trajectories

to isolate the human prior to an action understanding pro-

cess. A similar situation is observed on the sub-J-HMDB

dataset. Although not intended as such, this quantitative

scoring could serve as an evaluation metric for trajectory

extraction.

Second, the statistical results of FstPos and CenPos tra-

jectories are similar (less than 1% on both datasets), which

implies that when a trajectory is participating in the inten-

tional motion, it is not articulating to a high degree. We

note that the CenPos statistics are dependent on the trajec-

tory length as well as the articulation of the motion since

the arithmetic mean of the trajectory points need not lie on

the trajectory itself.

Third and most importantly, the trajectories extracted by

the IDT method [33] include intentional motion informa-

tion. LstPos trajectories occupy more than 67% of all the

trajectories in UCF Sports and sub-J-HMDB datasets. Since

these two datasets have only one action per video, the Lst-

Pos statistics imply that action and hence intentional motion

is the main source of the trajectories.

Finally, we compute PosVol, the ratio of the volume of

the actor-acting to the volume of the whole video. Fig.

2 plots this value with respect to the other values indicat-

ing that although more than 67% of the trajectories merely

touch the action-box, less than 17% of the whole video vol-

ume is in the action-box.

Hence, intentional movement is characterized by a high-

density of trajectories that, in the majority, will remain a

part of the action through their duration. Although this re-

sult is intuitive, we have quantified it and in the next section,

drive an action proposal approach inspired by it.

3. Method

Our intentional movement analysis provides the ratio-

nale for a new action detection approach that seeks to find

dense clusters of trajectories in novel videos and then in-

spect these for actions. Inspired by earlier work in clus-

tering on trajectories for object segmentation [4] and dis-

covering action parts [24], we propose a method that con-

structs a space-time trajectory graph to capture the interre-

lations among trajectories, partitions the graph into clusters

and then uses action recognition methods on each cluster

for detection.

3.1. Spacetime Trajectory Graph

For a video V, denote the set of m trajectories extracted

from it as T = {T 1, . . . Tm}. Each trajectory T i, lasts

n continuous frames and includes n points {pi
1
, . . . pi

n}
where n is common across all T. The kth point in trajec-

tory i, denoted pi
k, is a vector [xi

k, f
i
k]

T ∈ Z
3 indicating the

2D spatial point location x and the temporal frame f in the

video.

We generate the trajectory graph G for a video, G =
{T,E}, where trajectory in T becomes a vertex in this tra-

jectory graph. Edge set E captures the relationship among

pairs of trajectories; we define a novel distance between tra-

jectories to emphasize the spatiotemporal overlap as moti-

vated by our intentional movement analysis. The distance

dij between from trajectory T i and trajectory T j is defined

as

dij =

{

∑

k‖x
i
k − x

j

k−oij
‖2 0 ≤ oij < n

∞ otherwise
(1)

where k is the index of the point in a trajectory and the offset

oij is computed once for the pair by

oij = min
ô

(

n−
∑

k

1

[

f i
k = f

j
k−o

]

)

(2)

where 1 is the indicator function. In other words, we com-

pute the distance only for those frames that are overlapping

in time. Distance among other frames for these two tra-

jectories is irrelevant. The overlap o captures the temporal

relationship among the two trajectories and is retained. For

example, if o is 0, then the trajectories exactly align in time;

if o is n it indicates zero overlap in time. n−o is the magni-

tude of their overlap. This distance may seem awkward as

the distance will be greater for trajectories with more over-

lapping frames; however, before we finally cluster on this
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Figure 3. The empirical cardinality distributions of LstPos tra-

jectories, which touch the intentional motion region, and AbsNeg

trajectories, which are the complement of LstPos and do not touch

the intentional motion region. Since the cardinality distribution

is long-tailed, we count the number of neighbors up to 1024 in

UCF Sports and 512 in sub-J-HMDB datasets. When computing

the distributions, the bin sizes for UCF Sports and sub-J-HMDB

datasets are 16 and 8. The spatial threshold τs is 16 pixels and the

temporal threshold τt is 1 frame.

graph, we will explicitly account for this (Eq. 4). Further-

more, our distance function is unique among similar meth-

ods [24, 4] as we temporally align the trajectories and then

compute spatial distance only for aligned frames whereas

other methods directly compute full trajectory distance.

To enforce the spatiotemporal density expected and ob-

served in intentional motion, we add edges among trajectory

pairs based on their spatiotemporal locality. First, candidate

pairs are filtered based on their temporal overlap by enforc-

ing a threshold τt of the minimum number of overlapping

frames. Second, candidate pairs are filtered based on the

mean spatial distance in their overlapping frames against

threshold τs. Finally, the edge set E is defined as

E =

{

Eij : oij > τt ∧
dij

n− oij
< τs

}

. (3)

We now verify the spatiotemporal locality and density

of our graph continuing the analysis from the previous Sec-

tion 2 by comparing the cardinality of trajectories from the

LstPos set and its complement, which we denote AbsNeg.

Recall, LstPos trajectories are those that touch the inten-

tional motion region in at least one frame. Figure 3 shows

the results on the UCF Sports and sub-J-HMDB datasets.

Clearly the modes for these two distributions are different

verifying our implicit intentional motion approach. In both

cases, the cardinality mode for LstPos trajectories more than

doubles that for AbsNeg trajectories. However, we note the

high degree of overlap among these two distributions; the

Bayes error rate would be high if we simply tried to distin-

guish the trajectories based on their cardinality.

3.2. Implicit Intentional Motion Clustering

The space-time trajectory graph has been constructed to

implicitly capture intentional motion. Now, we execute

spectral clustering on the graph to partition it into inten-

tional motion clusters which then serve as action proposals.

We convert the graph G into a similarity matrix S using

the edge set E as follows. First, initialize S to be zeros.

Then, for each edge Eij ∈ E, similarity Sij is

Sij = exp

(

−
dij + (oγ)2

n2σ

)

, (4)

where σ is a scale parameter, which is automatically-tuned

by the spectral clustering method, and γ is the fixed distance

for the trajectory-points that are not aligned in time. The oγ

term accounts for the unaligned points remaining after the

temporal alignment in Eq. 2. Recall that o indicates the

number of frames two trajectories are out of alignment.

Our similarity explicitly incorporates the locations of

points in trajectory and their distance. The length of trajec-

tory and the velocity of each point in trajectory is implicitly

considered since their computation is directly related to the

position of trajectories. In this way, we avoid the noise am-

plification from tracking trajectories. For example, if the

velocities for two trajectories are similar, then the distance

between points will be nearly constant.

We use the efficient spectral clustering method from

Chen et al. [7] to compute the eigen-decomposition of the

normalized Laplacian on S and then subsequently cluster

the projected trajectories with k-means as is standard. De-

spite tens of thousands of trajectories per video, we find the

clustering to be fast and run in less than ten minutes per

video with eight cores.

3.3. Action DetectionbyRecognition

Given the construction of the space-time trajectory

graph, we expect each cluster to contain a candidate action.

The clusters, by construction, are connected sets of trajec-

tories. Our observations on the characteristics of intentional

motion suggest that the spatiotemporal density of trajecto-

ries involved in the action and the way we have computed

distance (Eq. 1) will lead to compact clusters of (implicit)

intentional movement.

To evaluate the action detection, we run a standard ac-

tion recognition method on each proposal. We use a non-

linear SVM action classifiers with RBF-χ2 kernel [32] on

trajectory displacement features (a weak feature). Our train-

ing process for the action classifiers is different than con-

vention. Since we rely on the implicit intentional motion

clustering in our work, we discard the bounding boxes in

the training videos. Although we could directly use the

bounding boxes, we make a weaker assumption: each train-

ing video has a single action within it. We hence use tra-

jectories from the dominant action proposal (clustering is

unsupervised) for positive or negative samples depending

on whether the video is positive or negative, respectively.

The whole training process is hence weakly supervised and

bounding box free; our assumption is weaker than compara-

ble state of the art methods, which rely on bounding boxes.



4. Experiments

We extensively evaluate our method to achieve out stated

goals of assessing the role that human detection and inten-

tional motion detection can play in action detection. We use

three standard action detection benchmarks: UCF Sports

[25], sub-J-HMDB [15] and MSR-II [5] datasets.

UCF Sports [25] comprises 150 realistic videos captured

in dynamic and cluttered environments from sports broad-

casts and 10 action categories with one action per video.

The UCF Sports dataset provides the bounding boxes of the

human actors.

Sub-J-HMDB [15] is a subset of HMDB51 dataset [17]

containing 316 videos from 12 categories with one action

per video. This dataset provides the human actor masks.

MSR-II [5] consists of 54 videos recorded in a crowded en-

vironment, with many unrelated objects (people, cars) mov-

ing in the background. There are three types of actions

in the dataset, boxing, hand-clapping and hand-waving,

but each video may contain many instances of the actions.

Bounding sub-volumes of action are provided in the ground

truth. Another challenge for this dataset is that all the posi-

tive training videos come from KTH dataset [27].

Comparisons We compare our proposed implicit inten-

tional motion-based action detection against the state of the

art methods for action detection [30, 19, 34, 14, 5, 33],

against the methodologically similar Raptis et al. [24],

and against a human detection-based baseline. The human

detection-based baseline uses DPM [11] to detect humans

in each video-frame. Then, it links together these detec-

tions in time based on common trajectories they share as

a means of tracking; detection with no trajectories and de-

tections less than five frames are discarded. Each DPM-

based space-time set of detections forms an action proposal

against which we evaluate our action classifier (for a fair

comparison varying only the action proposal mechanism).

This baseline assesses the question of whether direct human

detection should be used in action detection.

Visual Results Fig. 4 shows visual action detection results

from all three datasets using our method.

4.1. One Action Per Video

In the UCF Sports and sub-J-HMDB datasets, there is

one action per video. So, we expect the largest cluster from

the implicit intentional clustering to be this action and ex-

tract it as the sole action proposal. Here, the spatial thresh-

old τs is set to 16 pixels, and the temporal threshold τt is set

to 8 frames.

Category-Independent Action Detection Fig. 5 shows

the quantitative comparisons of our method against base-

lines. In addition to the DPM baseline, in this case, we

Figure 4. Examples of action detection on three datasets. Red color

indicates groud-truth. The first 4 rows are for UCF Sports and

sub-J-HMDB datasets. The detection results are labelled in blue

bounding boxes. The last 4 rows are for MSRII dataset. Blue indi-

cates boxing, yellow indicates hand-clapping and green indicates

hand-waving.

also use the moving background subtraction (MBS) method

from Shiekh et al. [28]. The foreground is assumed as the

action in the video. The IOU scores for the detections are

generated and the overlap threshold varies from 0.1 to 0.6.

On both datasets, our method is above 0.9 when the thresh-

old is 0.1. Because of the limited duration and the complex
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Figure 5. Comparative unsupervised action detection on UCF

Sports and sub-J-HMDB datasets against baselines.
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Figure 6. The average localization scores for the trajectory clusters

on UCF Sports and -sub-J-HMDB datasets.

motion in the video, MBS does not perform well, even when

the threshold is 0.1. DPM performs better than MBS: actor

detection is useful for action detection. But the DPM-based

method is worse than our method likely due to the its lim-

ited ability to deal with pose variability.

Trajectory Localization We evaluate the relevance of the

selected trajectories to the action. As in Raptis et al. [24],

each point in a trajectory can be classified as a positive

or negative point based on whether it is located in the ac-

tion bounding box. Then each trajectory can be assigned

a length-normalized score. We count the average number

of trajectories that have length-normalized overlap with the

bounding box higher than a threshold. The results are in

Fig. 6. The trajectories extracted by IDT [33] have higher

quality than the method in [24], but our method performs

better than IDT.

Interest Action Detection Whereas Fig. 5 depicts

category-independent action detection, here, we consider

joint action detection and classification, often called interest

action detection. Here, we use those action proposals from

our implicit intentional motion clustering that contain more

than 150 trajectories. We follow the experimental setting

and the criterion for measurement from Lan et al. [19]. An

instance is considered as detected if the action is correctly

predicted by the classifier and also the detection score is

larger than the threshold based on the IOU criterion. We

compute the AUC with false positive rates varying from 0
to 0.6.

The performance of our method on UCF Sports is shown

in Fig. 7 with the disjoint train-test split suggested in [19].

We compare our approach with several recently published

methods, spatiotemporal deformable part model (SDPM)

[30], figure-centric model (FC) [19], Relational Dynamic-

Poselets model (RDP) [34] and Tubelets [14]. The perfor-

mance of RDP, Tubelets and our method are similar with

variation in ranking as a function of the overlap threshold.

The details of our method on each action class is shown

in the middle. Our method achieves a high detection rate

for many action classes, such as lifting, running, walking,

swing-bench and skating. There is a significant difference

between our method and other methods. For most other

methods, the performance decreases with respect to the in-

creasing of overlap threshold, while our method increases

in several cases. This is because our classifier comes from

action recognition method, a cluster with large overlap with

the ground truth has more chance to be correctly classified.

We show ROC curves of different methods in the right of

Fig. 7. The classifiers in our method have space to improve,

especially when the false positive rate is small, and we note

that we strictly use the trajectory displacement feature for

the classifier in this work.

The performance of our method on J-HMDB dataset is

shown in Fig 7 with the default data split provided in the

dataset. The average AUC and AUC-per-class are shown

in the left and middle part of the figure. Our method

performs better than IDT+FV and RDP methods in most

cases. The ROC curves of these methods are shown in the

right. Although our action classifier is simpler than that

in IDT+FV, our method is significant better than IDT+FV

method, which comes from the higher quality action pro-

posal (IDT+FV simply uses a sliding window strategy).

4.2. Multiple Actions Per Video

The MSR-II dataset has several different kinds of action

in each video and is clearly the more challenging bench-

mark. Furthermore, the training and testing are on different

datasets. We follow the measurement criteria in [5] for eval-

uation. Considering that the resolution of KTH and MSR-II

is low, when extracting the trajectories, the minimum dis-

tance between sampling points for trajectory extraction is

set as 3 pixels.
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Figure 8. MSR-II ground-truth ac-

tions our action proposals cover.

Given the multiple

actions per video, we

need to consider more

than one best action

proposal from our

clustering process. In

total, there are 203

actions in all MSR-II videos, the relationship between

the number of our action proposals (clusters) per video

and the action coverage is shown in Fig. 8. As expected,

with more proposals, more actions will be covered in our

method. But, no single number of proposals achieves best

performance across the whole dataset because the number
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Figure 7. Results on the UCF Sports (top) and sub-J-HMDB (bottom) datasets. Left: We compare our method with other state of the art

methods and the DPM baseline method. Center: We plot the AUC per class of our detection result with a varying overlap thresholds. Right:

ROC curves of all the methods are shown here, when the overlap threshold is set as 0.2.

of proposals is related to spatiotemporal scale. Therefore,

we combine proposals from multiple clustering processes

together (ranging from 16 to 128 clusters) to ensure we can

cover various spatiotemporal scales.

The threshold for the action classifier affects the perfor-

mance of our method. Fig. 9 shows precision-recall curves

when varying the threshold. The AUC under precision-

recall is shown in Fig. 9(a). Increasing the threshold leads

to better performance of our method.

We compare the performance of our method to the state

of the art in Table 2, using a threshold of 0.1. Our method

achieves significantly better performance on boxing and

hand-waving actions and comparable best performance on

the hand-clapping action. According to the Fig. 9, when the

threshold of the classifiers is larger than 0.01, the average

performance of our method is better than all the other meth-

ods, which demonstrates the generalization ability of our

method for the action detection task. The precision-recall

curves is shown in Fig. 10.

Failure Modes We have identified two distinct failure

modes of our method. The first failure mode is due to the

strictly motion-based representation of our method; we two

actions occur nearby in space and/or time, it is difficult for

our method to distinguish them from one another. The sec-

ond failure mode is due to our implicit intentional motion

assumptions: when the IDT trajectories violate these as-

sumptions, then our method fails to make the correct action

proposals.

5. Related Work

Action recognition has been extensively studied in re-

cent years [1, 35, 13]. This section only covers the works

related to the action detection task. Early work in action de-

tection focuses on motion information from human labeling

for action modeling. The template-based methods manually

chose templates [2, 10, 12] and apply templates to exhaus-

tively search for the action in the video. The different strate-

gies [38, 21] for combining templates are designed to deal

with the variations of the action. Relying on sliding window

templates that are often manually chosen limits the potential

of these methods in contrast to our approach that directly

seeks action proposals by finding intentional movement. To

overcome this single template approach, the space-time de-

formable parts model [30] automatically learns sets of parts

that can move in space-time. These can clearly capture

greater degrees of space-time articulation. But, the latent

SVM used requires significant computation and data.

Recently, human pose information as a middle level rep-

resentation [34] has been applied for action detection, and

achieves good performance. Inspired by the unsupervised

object proposal in still images, the action proposals are gen-

erated by an extension of the hierarchical clustering method

based on video segmentation [14]. This direction is more

closely related to our approach as it directly incorporates
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Figure 9. Performance of our method on MSR-II dataset with respect to the variation of classifier threshold.
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Figure 10. Results on the MSR-II dataset. We plot the PR curves for the three action classes: boxing, hand-clapping, and hand-waving. We

compare our results with GMM methods with or without adaption [5], SDPM [30], RDP [34] and Tubelets [14]. Best viewed in color.

Table 2. Average precision for MSR-II

Method Boxing Handclapping Handwaving

Cao et al. 17.5 13.2 26.7

SDPM 38.9 23.9 44.4

Tubelets 46.0 31.4 85.8

RDP 41.7 50.2 80.9

DPM 60.5 39.5 59.5

Ours 94.4 73.0 87.7

human pose motion, but the limited accuracy in human pose

estimation is the primary concern for this method whereas

our approach does not require explicit human pose estima-

tion but rather implicitly focuses on intentional motion.

Our work is also related to motion segmentation [4, 24]

for object detection. Just like the importance of the similar-

ity definition for clustering methods, an effective similarity

in spatial and temporal domains for trajectories is needed.

But, these methods have not focused on actions explicitly;

we push the direction further into action.

6. Conclusion

We have systematically assessed the role that human de-

tection can play in action detection and found that explicitly

incorporating human detection performs worse than implic-

itly incorporating information about the intentional move-

ment of the acting human. This implicit intentional move-

ment is the technical contribution of our work. We quan-

tified the relationship between intentional movement and

the spatiotemporal statistics of trajectories within the ac-

tion region. Based on our findings, we developed a new

trajectory distance and clustering method that, when cou-

pled with a simple action classifier, achieves state of the art

performance on challenging action detection benchmarks.

Ultimately, our finding is that implicitly incorporating

information about the acting human by way of customiz-

ing trajectory clustering to seek intentional movement ac-

tion proposals leads to state of the art performance. Fur-

thermore, our proposed method is only weakly supervised

and is bounding box free. In contrast, the other methods

against which we compared all directly use the bounding

boxes. In the future, we plan to focus on further properties

of intentional movement leading to better extraction as well

as improving the classifiers underlying our action detection-

by-classification method.
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