Collin E. Johnson. 2018.
Topological Mapping and Navigation in Real-World Environments.
PhD thesis, Computer Science & Engineering, University of Michigan, 2018.


We introduce the Hierarchical Hybrid Spatial Semantic Hierarchy (H2SSH), a hybrid topological-metric map representation. The H2SSH provides a more scalable representation of both small and large structures in the world than existing topological map representations, providing natural descriptions of a hallway lined with offices as well as a cluster of buildings on a college campus. By considering the affordances in the environment, we identify a division of space into three distinct classes: path segments afford travel between places at their ends, decision points present a choice amongst incident path segments, and destinations typically exist at the start and end of routes.

Constructing an H2SSH map of the environment requires understanding both its local and global structure. We present a place detection and classification algorithm to create a semantic map representation that parses the free space in the local environment into a set of discrete areas representing features like corridors, intersections, and offices. Using these areas, we introduce a new probabilistic topological simultaneous localization and mapping algorithm based on lazy evaluation to estimate a probability distribution over possible topological maps of the global environment. After construction, an H2SSH map provides the necessary representations for navigation through large-scale environments. The local semantic map provides a high-fidelity metric map suitable for motion planning in dynamic environments, while the global topological map is a graph-like map that allows for route planning using simple graph search algorithms.

For navigation, we have integrated the H2SSH with Model Predictive Equilibrium Point Control (MPEPC) to provide safe and efficient motion planning for our robotic wheelchair, Vulcan. However, navigation in human environments entails more than safety and efficiency, as human behavior is further influenced by complex cultural and social norms. We show how social norms for moving along corridors and through intersections can be learned by observing how pedestrians around the robot behave. We then integrate these learned norms with MPEPC to create a socially-aware navigation algorithm, SA-MPEPC. Through real-world experiments, we show how SA-MPEPC improves not only Vulcan's adherence to social norms, but the adherence of pedestrians interacting with Vulcan as well.