Dynamic State Estimation in Distributed Aircraft Electric Control Systems via Adaptive Submodularity

Q. Maillet, H. Xu, N. Ozay, and R. M. Murray
Proc. 52nd IEEE Conference on Decision and Control (CDC) 2013.

We consider the problem of estimating the discrete state of an aircraft electric system under a distributed control architecture through active sensing. The main idea is to use a set of controllable switches to reconfigure the system in order to gather more information about the unknown state. By adaptively making a sequence of reconfiguration decisions with uncertain outcome and by correlating the measurements and prior information to make the next decision, we aim to reduce the uncertainty. A greedy strategy is developed that maximizes the one-step expected uncertainty reduction. By exploiting recent results on adaptive submodularity, we give theoretical guarantees on the worst-case performance of the greedy strategy. We apply the proposed method in a fault detection scenario where the discrete state captures possible faults in various circuit components. In addition, simple abstraction rules are proposed to alleviate state space explosion and to scale up the strategy. Finally, the efficiency of the proposed method is demonstrated empirically on different circuits.

Preprint