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ABSTRACT

This paper considers the problem of using wireless LAN location-
sensing for security applications. Recently, Bayesian methods have
been successfully used to determine location from wireless LAN
signals, but such methods have the drawback that a model must
first be built from training data. The introduction of model error can
drastically reduce the robustness of the location estimates and such
errors can be actively induced by malicious users intent on hiding
their location. This paper provides a technique for increasing ro-
bustness in the face of model error and experimentally validates
this technique by testing against unmodeled hardware, modulation
of power levels, and the placement of devices outside the trained
workspace. Our results have interesting ramifications for location
privacy in wireless networks.
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1 INTRODUCTION

IEEE 802.11b wireless LAN (WLAN) has been enthusiastically
adopted in business offices, homes, hotels, cafés, and other spaces,
both public and private, for wireless local network connectivity.
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WLAN has become a standard feature on laptop computers and is
starting to appear in special-purpose consumer electronic devices.
With this widespread deployment comes a danger when the net-
work is abused. If an intruder connects to a traditional, wired net-
work and begins transmitting packets, those packets can usually be
physically traced to the port where they entered, and the rogue ma-
chine can be physically located and disconnected. In the wireless
case, however, we only know that the rogue machine is associating
with a given base station. This rarely provides enough information
to physically locate the rogue machine. Moreover, wireless net-
work technologies such as 802.11b are subject to additional classes
of attacks that may be exploited by such a rogue machine [3], re-
gardless of whether the network is using common forms of wireless
encryption [25, 7, 17]. Because of this, determining the location of
the rogue machine is a priority for administrators.

This problem of finding a rogue machine on a wireless network
is a special case of the general wireless localization problem. The
field of location-aware mobile computing and the field of mobile
robot localization are both generally concerned with techniques to
help various agents (whether human or machine) locate their posi-
tion on a map. A wide variety of techniques have been designed to
accomplish this, both using custom hardware devices, such as sonar
or infrared sensors, and using the limited signal-strength measure-
ments that can be performed by existing WLAN cards. Such a lo-
cation sensing system has the potential to trump the inherent stealth
advantage that intruders on wireless networks currently enjoy.

However, a rogue machine may desire not to be found. As a
result, the localization must be performed by other agents in the
system, such as customized base stations. The localizing agents do
not know what WLAN hardware the rogue machine is using, and
they do not know the power level at which the rogue machine is
broadcasting. Indeed, the rogue machine could vary its broadcast
power for every transmitted packet. In order to track such a target,
a location sensing system must be sufficiently independent of the
differences among mobile device configurations and must be able
to overcome active interference by the intruder.

This paper presents a server-side indoor location-sensing system
in which unmodeled variations in hardware and transmission power
can be handled without significant degradation in localization pre-
cision. Our technique does not require any modifications to the
hardware or software on the client being tracked. Our location-
sensing system has been tested with a client which varies its trans-
mission power, a possible evasive tactic for a rogue machine. Our
experiments also demonstrate robustness against model error due
to time-dependent variation in the quality of the wireless channel.

We begin with a discussion of related work in the field of wire-
less location-sensing. In Section 2, we discuss the methodology we



employed for determining a device’s location. We describe the re-
sults from tracking experiments in Section 3. Section 4 contains a
discussion of our results and future work. In Section 5, we present
our conclusions.

1.1 Background
The field of location-aware computing [15, 10] deals with two prin-
cipal tasks: determining and tracking the position of a mobile de-
vice, and providing useful user functionality based on a localiza-
tion primitive. WLAN location sensing can determine the position
of any laptop, PDA, or other device with WLAN hardware.

Our system and others like it use the signal strength readings
from WLAN cards as a sensor and implement the Markov localiza-
tion algorithm commonly used in various robotics applications [5,
11, 13, 26]. Following this technique, conditional probability dis-
tributions are built correlating sensor readings to position space by
sampling these sensor readings at known positions in the building.
This off-line phase is referred to as training or learning.

During the on-line phase, measurements are integrated and a
probability distribution is built over position space. A maximum
likelihood estimate is then used to determine position. A sequence
of estimates can be integrated over time using various sensor fusion
techniques. A Hidden Markov Model (HMM) can be used for this
purpose [20, 18]. A general survey on probabilistic methods can
be found in a comprehensive paper by Thrun [26]. Some interest-
ing developments are discussed in a recent paper which compares
several techniques experimentally [14]. A brief overview of these
techniques as they relate to WLAN location sensing can be found
in our original work [20].

Several early location-aware computing schemes used special-
ized hardware such as ultrasound transmitters or cameras to detect
location [27, 23, 19]. Early schemes for wireless location sensing
also relied on specialized transmitters or base stations [28, 16]. A
number of systems have been built using probabilistic techniques
to determine location based on RF signal strength for cellular tele-
phone systems [21, 29]. The first system to use signal strength from
off-the-shelf WLAN cards to detect location was RADAR [2, 1].

Recently, there has been a flurry of activity in applying prob-
abilistic localization techniques to WLAN-based location sens-
ing [9, 20, 30, 24, 31]. At the core of these various methods is the
construction of conditional probability distributions relating sensor
values to positions. This relation is constructed during a training
phase as previously described. All these works reach similar con-
clusions, that robust one- to two-meter accuracy is achievable, that
probabilistic methods effectively combat noise, and that it is dif-
ficult to automate training and parameter tuning. Operator, hard-
ware, and transmission power variation is not discussed in any of
these works.

2 METHODOLOGY

In this section, we discuss our methodology for determining a
user’s location using signal strength readings from WLAN cards.
We begin by describing our experimental setup. We then discuss
our observations of signal propagation properties in an indoor en-
vironment. Finally, we discuss our algorithms for determining a
user’s location.

2.1 System setup
In our prior work on WLAN localization [20], we had a mobile lap-
top measuring the signal strengths from fixed access points (APs).
An initial training phase took measurements at positions spaced
approximately every 1.5 meters on the third floor of Duncan Hall,

the building housing Rice University’s Computer Science depart-
ment. This training data was used to create a Bayesian network that
could take subsequent observations of signal strengths and yield a
probability distribution of where the mobile device might be in the
building.

Our previous implementation measured the signal strengths of
APs as observed by the laptop. This decision is arbitrary; the
location-sensing algorithm we presented can be implemented with
the client as the observer or with the APs as observers. The im-
plementation presented in this paper measures signal strength from
the APs. This server-side architecture has the advantage of allow-
ing us to localize a laptop independent of any specialized hardware
or software on the laptop.

Our system consists of a centralized server and a number of
snoopers. Snoopers provide overlapping coverage for the target
area, much like APs do in a production network. During training
and localization, the server notifies the snoopers of the target media
access control (MAC) address, the channel number, and the listen-
ing period. The snoopers will then record the signal strength of all
packets received that match the server’s query and transmit those
results to the server, which can then infer the physical location of
the target using algorithms described in Section 2.3.

In our current prototype, the server communicates with the
snoopers using our preexisting in-building WLAN. In a future pro-
duction environment, the snooper functionality might be integrated
directly into WLAN APs.

2.1.1 Hardware

Snoopers. Snoopers are responsible for observing the signal
strength of packets transmitted by the target machine. In our experi-
ments, we used five laptops from various manufacturers, all running
Windows XP and using D-Link AirPlus DWL-650+ WLAN PCM-
CIA cards containing the Texas Instruments ACX100 single-chip
802.11b WLAN implementation. We wrote a customized device
driver, allowing us to extract the signal strength, signal-to-noise ra-
tio, and signal-to-interference ratio of each received packet. So far,
we have only used the signal strength, as in our previous work,
although the other information might be useful for increasing lo-
calization accuracy in future work.

The signal strength reading is taken from the receiver’s auto-
matic gain control (AGC) register. The controller updates this 8-
bit register for every individual packet with the signal strength of
the packet’s physical layer header. This packet header is sent at a
constant data rate independent of the transmission data rate of the
packet body. We do not have any concrete understanding of how
the AGC register values map to the actual signal intensities.

Where a normal WLAN AP will only receive packets from “as-
sociated” stations, our customized driver allows our snooper to lis-
ten to all traffic on any given channel. Upon request, it temporarily
switches channel, measures the target station’s signal strength, and
switches back to resume normal network operations. We use this
technique to allow the snoopers to perform tracking and commu-
nicate with the central server through the same WLAN card. A
similar technique was developed for RADAR [1].

Target machine. For training and testing, we used a Dell Lati-
tude X200 sub-notebook. The X200 has a built-in antenna to sup-
port an internal Mini PCI WLAN card. A normal PCMCIA slot
is also available. Most of our tests and training used a Mini PCI
version of the aforementioned D-Link card with the internal an-
tenna. We used a custom device driver with this card, allowing us
to vary the card’s transmission power. To ensure that our results



Figure 1: Map of the region of the Duncan Hall where we conducted our tests. There are 5 wall-mounted access points (AP1-5)
providing overlapping coverage for this area. We placed one snooper (S1-5) under each AP to measure the signal strength from the
target machine. The x marks on the map are the points where the training took place.

were independent of this particular card, we also used a Linksys
WPC11 PCMCIA card, which has an antenna built into the card.
The Linksys card uses the Intersil Prism2 chipset, a completely dif-
ferent WLAN implementation. Accordingly, it also uses a different
set of software drivers.

Server. The server is a Java program that communicates with the
snoopers to collect signal strength measurements on packets ob-
served from the target machine. The server needs sufficient mem-
ory and processing power to contain the Bayesian network. In prac-
tice, any modern laptop has more than enough power to track a sin-
gle user in real time. In a production environment, the server might
be tracking large numbers of users simultaneously and would need
to run on a dedicated machine.

2.2 In-building RF signal propagation
We conducted our experiments on the third floor of Duncan Hall at
Rice University, using four hallways as shown in Figure 1. Hall-
ways 1 and 2 are narrow long enclosed hallways with fiberglass
ceiling tiles, carpeted concrete floors, and painted sheet rock walls
with occasional concrete structural pillars. Hallways 3 and 4 are
open to the ceiling of the building some 30 feet overhead. Fur-
thermore, hallway 4 is adjacent to an open-air atrium overlooking
the building’s lobby. While the accuracy of our techniques would
certainly differ in other buildings, we believe our building offers a
diversity of materials and architectural styles that provides a signif-
icant challenge to accurate localization.

2.2.1 Channel variations

Our previous work directly used the signal strength histogram ob-
tained at each training point to infer a user’s location, based on

the observation that the signal strength distributions were non-
Gaussian, and thus did not necessarily yield meaningful “average”
values. By doing this, we essentially assumed that the histograms
were not changing over time. However, subsequent experiments,
shown in Figure 2, show that the signal strength histograms vary
noticeably as a function of the time of day, with significantly more
noise while more people are in the building. We also observe that
the histogram from the first night had two modes, while the his-
togram from the second night had only one mode. From these and
other similar measurements, we have concluded that the average
signal strength is the only robust value to use across different days
and times of the day.

2.2.2 Transmission power

A key problem for localizing rogue machines is being robust in
the face of different WLAN implementations and variation in the
transmission power of individual packets. Figure 3 shows how the
observed signal strength changes as transmission power is varied.
We observe that the relative ordering of observed signal strengths
remains constant. Moreover, our experiments suggest that observed
signal strength is linearly proportional to transmission power. Most
importantly, the differences in received signal strengths do not vary
dramatically as the transmission power changes. We will use these
observations to design a filter to improve our localization robust-
ness, as described in Section 2.3.2.

2.3 Algorithms
We tested two different localization algorithms to compare their
suitability in localizing a rogue mobile node. The first, the His-
togram method, is the Bayesian inference algorithm developed in
our prior work [20]. The second, the Difference method, is our new
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Figure 2: Observed signal strength histogram variation over time from a laptop to a fixed AP.

robust localization algorithm. The Difference method is a weight-
ing heuristic loosely based on Bayesian inference.

2.3.1 Histogram method

This section summarizes our original localization method, which
we compare against our new technique. Although the algorithm we
used is unchanged, it was deployed in a slightly different way. As
discussed in Section 2.1, the signal strength of the laptop is now
measured at fixed base stations, instead of vice-versa. In addition,
there are fewer fixed base stations than we had at our disposal in
our original work.

The histogram method uses a Bayesian inference scheme to lo-
cate a WLAN user. We model the world as a finite position space
{p1, . . . , pn} with a finite observation space {o1, . . . ,om}. The sen-
sor model Pr(o j|pi) is a learned model of the conditional probabil-
ity of seeing observation o j at position pi. A position vector π is a
probability vector over the various positions (i.e., πi represents the
probability that position pi is the current position). Given a prior
estimate π, after observing o j we can estimate our new position
vector π′ by calculating the individual conditional probabilities π′

i
for each i ∈ {1, . . . ,n} using Bayes’ rule,

π′
i =

πi ·Pr(o j|pi)
n

∑
α=1

πα ·Pr(o j|pα)

.

We combine these π′
is into the new estimate of our position,

π′. We then choose the most likely position as the representa-
tive position from this position vector. Each position pi is a tuple
(xi,yi,zi,θi) describing a user’s location and orientation. During
the training phase, for each pi, we collect signal strength measure-
ments from the snoopers. This raw data can be reused to train mul-
tiple localization systems, each of which will then define its own
mapping from observations to positions, i.e., the probability distri-
bution Pr(o j|pi).

We define an observation as a vector of signal strength readings
over k snoopers,

o j = (λ1, . . . ,λk) ,

where λρ is the signal strength measured by snooper ρ. We then
define Pr(o j|pi) as

Pr(o j|pi) =
k

∏
ρ=1

Pr(λρ|pi) .
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Figure 5: Cumulative error over the four hallways, using the
same WLAN card for training and for localization.
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Figure 6: Cumulative error over the four hallways, where the
transmission power level is reduced when localization occurs.

This method directly uses the signal strength histogram obtained
from training to get each Pr(λρ|pi), so we call it the Histogram
method or briefly Histo.

As we have shown in Section 2.2.1, the signal strength histogram
changes over time, and so might not be reliable for localization.
As our results in Section 3 show, the Histo method is sensitive to
changes in the model, and performs poorly in the face of model
error.

2.3.2 Difference method

Our Histo method assumes that the trained signal strength his-
togram accurately models the signal strengths that will be later ob-
served. This is not necessarily true when the target client is using
a WLAN card different from the one with which we trained the
system, or when the target client is intentionally altering its trans-
mission power. In order to accommodate such variations, we de-
veloped another localization algorithm based on our observations
in Section 2.2.2. Since lower transmission power tends to cause
linear decreases in all observed signal strengths, we can use the dif-
ferences between the observed signals rather than the raw signals
themselves.

We post-process our training data to be the differences in signal
strength between every pair of snoopers, fitted to the Gaussian dis-
tribution N(µ,σ2) with the average µ being the average difference
in signal strengths. The standard deviation σ was chosen as 12 to
accommodate sampling errors and the variations of average signal
strength over the course of a day, as shown in Figure 2.

During localization, as each snooper receives a packet and re-
ports the signal strength to the localization server, the server com-
putes the difference in signal strength of reports between every pair
of snoopers. During each inference window, the server receives
several packets and can then compute the difference in average sig-
nal strength (λρα −λρβ) for every pair of snoopers ρα and ρβ. The
statistics generated from all packets received during this inference
window define an observation.

We found that using a weighting scheme where the conditional
probability of each difference in signal strength was added to the
probability for that location gave the best accuracy. We again model
the world as a finite position space {p1, . . . , pn}. The weights

W (pi) were computed as follows

W (pi) =
k−1

∑
α=1

k

∑
β=α+1

Pr(λρα −λρβ |pi) .

Once the weights have been calculated for each pi, we choose the
position with the largest weight as our location estimate. We call
this algorithm the Difference method or briefly Diff.

3 RESULTS

In this section, we examine the accuracy of our localization system
in a number of different scenarios. We first evaluate straightforward
localization using the Mini PCI D-Link card with which we trained
the system. We then consider localization of a hypothetical rogue
machine that varies its transmission power to avoid detection. We
also examine localization when using a different WLAN card from
the one which we used to train the system. Finally, we discuss
localization of points outside the training region.

3.1 Experimental setup
We conducted our experiments on the third floor of Duncan Hall
at Rice University, using four hallways as shown on the map in
Figure 1. We placed 5 snoopers (S1 through S5) under the five
APs shown in map. While we could have placed them anywhere,
this allowed us to simulate what our current APs could do if they
were augmented to support snooping. It also represented a perfectly
reasonable distribution to observe all packets on the third floor. Our
snoopers are between 22 and 50 meters away from each other, with
no line of sight between any two snoopers.

During the training phase, we measured signal strengths at posi-
tions every 1.42 meters (56 inches) from one end of each hallway
to the other end facing in both directions. At each training point,
we took a trace at 5 samples per second until the signal strength
histogram converged, sometimes taking as long as one minute per
point. This trace data was all taken using the default transmission
power level, and was used to train both our Histo and Diff systems,
as described in Section 2.3.

As an example of the training data we obtained, Figure 4 shows
the average signal strength recorded for each training point in hall-
way 1. Although we actually captured the full histogram of signal
strengths observed from each location, we present the average of
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Figure 7: Cumulative error over the four hallways, where the
transmission power level changes for every packet transmitted.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Error distance (meters)

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

Diff method
Histo method

Figure 8: Cumulative error over the four hallways, where dif-
ferent WLAN cards were used for localization and training.

those values to simplify the graph. This graph shows a clear trend
in signal strength variation as we moved from one end of the hall-
way to the other, and it also shows that changing orientation yields
different signal measurements.

Each experiment consisted of walking around the loop formed by
the four hallways of our test area in a counterclockwise direction,
down hallways 1, 3, 2, and 4 in that order. At each training point
and between every two training points, we took a 15-second trace of
data, which was input into the Histo and Diff localization inference
engines to generate a series of position estimations.

3.2 Basic localization
When we localized using the same WLAN card as we had used in
training, our accuracy was quite high. Over the four hallways, the
localization error was at most 2 meters 61% of the time for the Diff
method. The Histo method only achieved 2 meter accuracy 47% of
the time. These results are illustrated in Figure 5.

Figures 9 through 12 show cumulative error for the four hallways
individually. For all hallways except the third, the Histo method
and the Diff method are nearly indistinguishable in terms of accu-
racy. The Histo method has an error of at most 2 meters for 51%,
70%, and 56% of sampled positions, respectively, for hallways 1,
2, and 4. The Diff method has an error of at most two 2 meters
for 54%, 66%, and 51% of positions, respectively, for the same
hallways.

For hallway 3, Diff turns in one of its best performances, with
an error of at most 2 meters at 64% of sampled positions. Histo,
by contrast, turns in its worst accuracy, with fewer than 15% of
location estimates being within 2 meters and fewer than 39% of es-
timates even within 15 meters (this on a hallway 17 meters long). In
our experimental configuration, Histo frequently reports hallway 3
as hallway 1, while Diff correctly distinguishes the two hallways.
Indeed, while Diff consistently performs very well on hallway 3,
Histo consistently performs extremely poorly.

3.3 Varying transmission power level
The robustness of Diff relative to Histo becomes evident when lo-
calizing a transmitter which transmits at a reduced power level.
Our results show the Diff method achieving nearly the same ac-
curacy (2 meters, 59% of the time) with lower-power transmission
as it achieved with default-power transmission. The Histo method

achieved 2 meter accuracy only 33% of the time. The results are
illustrated in Figure 6.

We ran another test in which we varied the transmission power
randomly for each transmitted packet. We achieved accuracy of 2
meters 40% of the time using our Diff method. The Histo method
achieved 2 meters accuracy only 15% of the time. The results show
that while an attacker may have some success varying her transmis-
sion power, the Diff method vastly improves our ability to detect
her. The results are illustrated in Figure 7. Causing the transmis-
sion power of the WLAN card to vary wildly is also stressful on the
card itself, and we lost one card to burn-out because of this.

3.4 Varying transmitter
We next experimented with localizing our laptop using a Linksys
WLAN card, having a different antenna and different chipset from
the D-Link card used in training. We achieved comparable accu-
racy between Diff and Histo. With Diff, an error of at most 2 me-
ters was achieved at 49% of the sampled positions. Histo achieved
this accuracy for 40% of the sampled positions. These results are
illustrated in Figure 8.

3.5 Untrained poses
Any localization method which relies on training can only local-
ize targets to points within the trained area. Neither the Diff nor
the Histo method will correctly localize a mobile device anywhere
outside of the four hallways. Furthermore, small deviations from
the trained positions can confuse a training-based localization sys-
tem. We tested how the two algorithms compared when localizing
a laptop in untrained positions.

We first ran two traces of untrained positions along the training
hallways. The first trace involved localizing a laptop which was
very close to the wall in a trained hallway; the original training
data was taken in the center. Diff achieves an accuracy of 2 me-
ters at 49% of sampled points (versus 60% in the center). This is
similar accuracy to other cases which break the model, including
the low-power and varying transmitter tests. By comparison, Histo
performed as well as in the simple localization case, achieving an
accuracy of 2 meters at 46% of sampled points. The results are
illustrated in Figure 13.

We also tried to localize a laptop which was facing perpendicular
to a trained direction. The results are comparable to the earlier
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Figure 9: Cumulative error for hallway 1, using the same
WLAN card for training and for localization.
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Figure 10: Cumulative error for hallway 2, using the same
WLAN card for training and for localization.
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Figure 11: Cumulative error for hallway 3, using the same
WLAN card for training and for localization.
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Figure 12: Cumulative error for hallway 4, using the same
WLAN card for training and for localization.

results for localizing close to a wall. Diff localized to within 2
meters 50% of the time, and Histo localized to within 2 meters
46% of the time. These close results show that Histo is more robust
against certain forms of model variation, but that Diff outperforms
Histo, regardless. The results are shown in Figure 14.

Finally, we wanted an idea of how these algorithms performed
when the target is not even in one of the trained hallways. To de-
termine this, we took measurements at a number of sample points
outside of our training area. We sampled at seven test positions on
the third floor, four positions in rooms along the trained hallways
and three positions in nearby hallways. In all of those seven tests,
the Diff method estimated the location a nearby position within the
training area. The Histo method estimated most of the positions
correctly, but at two positions, one in an adjacent room and one in
a hallway, it guessed the wrong side of the building.

We also tested several positions on the second floor of Duncan
Hall. For position below hallways 3 and 4, the Diff method local-
ized to the correct respective hallways, although not always directly
above. The Histo method correctly identified hallway 4, but missed
hallway 3. For positions below hallway 1, by comparison, most of
the Diff method’s estimates were off by a large distance, while the
Histo method localized to hallway 1 for most of the samples.

Although there is no hallway on the second floor directly below
hallway 2, there is a hallway parallel to hallway 2 on the south side
of the building that is open on one side to the open area that cuts
across the middle of the building. Attempting to localize positions
on that hallway, the Diff method concluded that we were on hallway
3. Although we were physically closer to hallway 2, we had line-
of-sight with hallway 3, so this conclusion is not surprising. The
Histo method, by contrast, consistently concluded that we were on
hallway 1. This is understandable, considering Histo’s tendency to
confuse hallways 1 and 3, as we discussed in Section 3.2.

Of course, no training-based method will return locations outside
of its training set. However, as these results show, we can often de-
rive points in the original training set that are meaningfully “close”
to the target’s actual location. Therefore, in practice, it should be
sufficient to train exclusively in major hallways and open areas to
yield useful localization results, even if the target machine is actu-
ally in a side office.

3.6 Variations on Diff
There are a number of ways to calculate weights based on relative
signal strength. We evaluated a total of three. In the first method,
which is described in Section 2.3.2, the difference in signal strength
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Figure 13: Cumulative error over the four hallways when the
target is very close to a wall along the training hallways.
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Figure 14: Cumulative error over the four hallways when the
target is facing at 90◦ to the direction of the hallway (an un-
trained direction).
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Figure 15: Cumulative error for the three Diff methods over the
four hallways, where the target machine and WLAN card are
the same as used in training.
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Figure 16: Cumulative error for the three Diff methods over the
four hallways, where the transmission power level changes for
every packet transmitted.

between every pair of base stations is used in the localization algo-
rithm. A second scheme we tried was to use the difference between
each base station signal strength reading and the minimum signal
strength reading in the localization algorithm. The final scheme we
evaluated was computing the difference in signal strength between
each base station and the base station after it taken in the order that
the base stations appear in the trace.

Figure 15 shows the cumulative error for localization performed
with the same card as trained. All the Diff variants are very close.
The test of using a different transmitter from training to localiza-
tion shows similar results. Figure 16 shows the cumulative error for
localization performed with the transmitter varying its power level.
In this test, while all of the Diff variants have very similar accu-
racy, the original Diff method edges out the others. The low-power
localization test shows similar results.

4 DISCUSSION

This section discusses a number of issues and implications of wire-
less location systems, both as we have designed and in general.

4.1 Accuracy versus robustness
We have presented two methods for wireless localization, Histo and
Diff. The former uses a rigorous and fairly well-understood model
for inferring location from sensor data. When Histo works, it works
well. Histo is also fairly robust when the pose of the target node
varies from what was trained.

However, Histo is very sensitive to other aspects of the training
model. In particular, since Histo depends on the accuracy of the
signal strength histograms, when an attacker varies the broadcast
power on each packet, Histo gets lost. Diff, on the other hand, can
gracefully handle such variation, and performs reasonably well in
other cases.

Of course, the accuracy of both algorithms could be improved by
better distribution of the snooper nodes, by placing more snooper
nodes in the building, and by tuning parameters inside the al-
gorithms. Regardless, when the localization system can make
stronger model assumptions, such as assuming that all wireless
nodes are using the same WLAN implementation and broadcasting
at full power, it will generally be able to achieve higher precision.
However, if those assumptions prove to be false, the robustness of



the localization will necessarily suffer relative to what could have
been achieved with a model making fewer such assumptions.

In cases where it really matters, there is no reason the system
could not perform both localization algorithms. Nodes that want
to know their location, and thus presumably follow the rules, can
get an accurate answer. Administrators trying to track down the
physical location of a malicious node, on the other hand, can use the
more robust tracker, which will certainly help narrow the physical
search space.

4.2 Comparison to prior work
In our prior work [20], we consistently saw better accuracy than
observed here. Several factors worked against us this time. First,
in the tests described here, only five snoopers were available, and
generally no more than four had visibility of the target at any given
position. In the previous work, up to nine APs were used for lo-
calization at any position. The additional APs could be used to
disambiguate certain points in the training area, helping to increase
measurement accuracy.

Furthermore, in this work, we performed no sensor fusion. In
our prior work, the output of our Bayesian inference engine was
post-processed by a filter that fused multiple location samples over
time based on some simple assumptions. These assumptions in-
cluded observing, based on a simple probabilistic model of human
movement [5], that the object being tracked is unlikely to make
large, discontinuous jumps across the building. We found that such
techniques significantly improved localization accuracy, and they
would certainly apply here.

4.3 Privacy concerns
We have presented a methodology for localizing nodes within a
building without their cooperation. If a node transmits a packet in-
side a building that has wireless snoopers and a trained localization
engine, that node can be localized. While the original motivation
for this work is allowing administrators to locate nodes that ac-
tively misbehave and remove them, it can also allow for less agree-
able uses. For example, an employer could track the locations of
its employees, or a shopping mall could track the locations of its
shoppers.

Furthermore, the owner of the building need not be the opera-
tor of the snoopers. Rogues could install their own snoopers (e.g.,
placing laptops above the ceiling tiles) and localize nodes within
the building without the knowledge or consent of the building’s
owners or occupants. This creates a clearly undesirable situation,
defeating any attempts at restricting the disclosure of presumably
sensitive location information (e.g., Canny [8]). Our work implies
that anyone who can deploy snoopers and train their localization
system will be able to localize nodes in the area, even if those nodes
take steps to obfuscate their transmission power.

The only exception to this may be nodes that are physically dis-
tant from the wireless network to which they are connected. An at-
tacker who is war driving outside the building may well be able to
interact with the in-building wireless network; such attackers might
also use parabolic antennas, further increasing their physical sep-
aration [6, 12]. Attackers with such unusual high-power antennas
may well generate localization data sufficiently unlike our normal
training data as to be virtually unlocalizable.

4.4 Future work
There is still progress to be made in improving wireless local-
ization. By computing the differences between sampled signal
strengths, we are able to filter out variations that can occur as a
result of varying transmission power, but this is just one instance of

a more general space of possible preprocessing filters. Future stud-
ies might spend more effort on applying a preprocessing filter to
the sample data before feeding it to an inference engine. Likewise,
our work does not consider any postprocess filtering or sensor fu-
sion of localization inferences. Finally, difference in signal strength
could be integrated into a Bayesian inference algorithm for wireless
localization. These and many other techniques may be able to sig-
nificantly improve the accuracy and robustness of localization.

Our work suggests that it may be very difficult to physically
hide a wireless network node that is actively broadcasting packets.
However, we did not consider coalitions of hostile nodes, work-
ing in concert to attack a network. Such coalitions might be able
to confuse the localization system by presenting the illusion of an
attacker being simultaneously in multiple locations, particularly if
some of the hostile nodes are actively moving. A more robust local-
izer might try to solve clustering problems to determine the number
and locations of hostile nodes.

Likewise, while nodes which wish to communicate normally on
a network generally need to maintain a constant MAC address,
an attacker has no such constraints. In order for our localization
system to operate effectively, it must be able to distinguish “evil”
packets from normal packets [4]. This is generally the domain of
Network Intrusion Detection Systems such as Bro [22]. Building
a suitable packet classifier for wireless network misbehavior would
require knowing something about how an attacker may or may not
choose to misbehave. In practice, it might be preferable for the
classifier to err on the side of false positives once an attack is under
way, assuming suitable clustering algorithms can post-process the
localization data. If an attacker’s probable location can be reduced
to a small enough number of possibilities, that may be acceptable
to the administrator seeking to stop the attacker.

A further concern is attackers operating at a significant distance,
using parabolic or otherwise non-standard antennas. An interest-
ing question is whether the in-building snooper network could be
trained to identify, at a minimum, the compass direction from the
building to the attacker. Such information could greatly reduce the
effort necessary to find the attacker.

5 CONCLUSION

Traditional localization methods tend to have simple models of how
nodes will behave. Malicious nodes can easily violate these as-
sumptions by modulating their transmission power for each packet.
We present a mechanism for locating mobile devices in an indoor
environment, even when the nodes might be malicious. Our tech-
niques sacrifice some amount of accuracy in the ideal case of local-
izing cooperative nodes, but maintain robustness when faced with
a variety of model errors, including malicious nodes, nodes with
different hardware than we trained against, and, to some extent,
nodes located outside of the training area. We conclude that wire-
less nodes can be localized whether or not they wish to be, raising
interesting privacy issues in the use of wireless networks.
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