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Abstract

Faults can be classified using information contained in the MIB vari-
ables. It is observed that distinct changes in the MIB data characteris-
tics precede different fault types. Previous work has shown that network
faults can be predicted [18] using MIB data. Now with the possibility
of classifying faults, network alarms can be associated with specific fault
types. Associating a network alarm with a specific network fault is an
essential pre-requisite for automated recovery. In our current work we de-
scribe the classification of four different faults: network access problems,
protocol implementation error, runaway process and file server failures.
We also show that a simple discriminant function scheme that accounts
for spatial correlations in the MIB data performs better than common
majority-voting schemes.
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1 Introduction

The increased commercial use of the Internet is critically dependent on a reliable
network. Hence identification and correction of network faults is an imperative.
There are several techniques available today to perform fault detection [6][1].
A major goal of our research is to be able to automate network management
through fault prediction, classification and recovery. It has been shown that
network faults are preceeded by indications in the MIB variables that allow for
prediction! [20]. In this work we focus on the classification of faults in an IP
network, using the same MIB variable data.

Faults can be classified based on the changes observed in the MIB variables
immediately preceeding the fault. This finding has great potential as a means
of initiating corrective measures for proactive network management [11][13].
In earlier work we have shown that predictive alarms can be generated using
discriminant functions [18]. These discriminant functions are functions of the
features derived from the input MIB variables. This is a flexible method since
the feature vectors can be tailored to the type of problem under study [4]. The
alarms generated correlated well with the faults observed in the data. However,
these alarms alone are not sufficient to indicate the type of fault. Once a fault
is declared, the alarms have to be associated with a specific fault type in order
to implement recovery actions. Fault identification may be done using standard
alarm correlation techniques such as finite state machine or constraint satisfac-
tion algorithms [14], [3], [2], [15]. In this work we show, using real network data,
that network faults can be identified based on the characteristics of the MIB
data immediately prior to the fault. There is no new processing of information
required and therefore allows simultaneous declaration and identification of the
fault. This provides a significant advantage in terms of the timeliness of recovery
measures implemented.

A large number of existing fault detection algorithms use a majority-vote
scheme to declare the occurrence of a fault. The majority-vote scheme obscures
the details necessary to further classify a network fault due to hard thresholds.
In this work we compare our discriminant function scheme with a majority-
voting scheme. Using real network data, we found our method performs better
in terms of prediction and false alarm rate (the discriminant function predicted
most of the faults while the majority-vote only detected one type of fault. The
mean time between false alarms using discriminant functions was two times
more than with majority-vote.)

The organization of the paper is as follows: In section 2 we discuss some
possible choices for feature vectors and provide specific details relating to the
choice of feature vectors for this work. Section 2.1 describes the system studied
along with the description of the production networks used to obtain data. The
metrics used to evaluate management schemes are also described. A discussion
on the discriminant function along with the summary of results is presented
in section 2.2. The fault classification problem is addressed in section 3. A

Lwith respect to fault labels obtained using syslog messages



comparative study of the discriminant function with the majority-voting scheme
is provided in section 4. Discussions and conclusion follow in section 5.

2 System Description

The existing management tools provide statistics on a large number of variables
that may or may not be relevant to fault detection. Therefore one of the main
challenges faced by the research community in this regard is the choice of a
single variable or a set of variables that are relevant towards fault detection.
Data mining techniques are being used to study different management data
bases in order to extract the relevant information [5]. Statistical information
obtained from such variables constitute the feature vectors. For any given fault
detection scheme, to cover a wide range of failures it is necessary to choose a
set of relevant feature vectors. Maxion et al used features such as packet loss,
and number of collisions [8]. Trouble tickets can be used as feature vectors
in algorithms using artificial intelligence techniques [7],[12], [10]. In our work
we use the statistical changes in the Management Information Base (MIB II)
variables [9] (which are a part of SNMP).

Since most of the faults of interest are user related we chose those MIB vari-

ables that reflect the traffic behavior at a given network node. For example in
the case of the router we used the following MIB variables;
ipIR: Number of datagrams received by the ip layer of the router
ipIDe: Number of datagrams forwarded to the higher layers
ipOR: Number of datagrams received from the higher layers.
These variables provide a cross-sectional view of the traffic at the network layer.
For more details on the choice of these variables refer [17]. The statistical behav-
ior of the change points in the MIB variables are then studied and abnormality
indicators? are obtained for each of these variables [18]. The value of the ab-
normality indicator ranges from 0 to 1. A value of 0 corresponds to no change
in MIB data behavior and a value of 1 denotes maximal change. Change is
measured by comparing adjacent windows of data (approx. 1 hr long) [19]. The
abnormality indicators constitute the components of the input feature vector.

2.1 Network Description

The experimental system consisted of two production networks: an enterprise
network and a campus network. Both these networks were being actively mon-
itored and were well designed to meet customer requirements. The types of
faults observed were the following: File server failures, protocol implementation
error, network access problems and runaway processes [17]. Most of these fail-
ures were due to abnormal user activity except for the protocol implementation
errors. File server failures could result from user behavior such as excessive
number of ftp requests and a runaway process is an example of high network

2The abnormality indicators are obtained using a change detection algorithm. For more
details please refer [21]



utilization by some culprit user. However all of these cases did affect the normal
characteristics of the MIB data, and impaired the functionality of the network.
The analysis of the two schemes under study consisted of comparing the
alarms obtained® with the corresponding syslog messages and the trouble tick-
eting systems that were being actively used by the system administrators. The
performance measures used were as follows: Prediction time 7}, is given as,

T,=Tp T, (1)

where T is the time stamp of the fault as given by the syslog messages. T, is
the alarm time given by the scheme under study. The detection time T} is,

T, =T, - Tr (2)

Ty, the mean time between false alarms is the average time between any two
alarms obtained by the scheme that were not positively associated with a fault
by the available labeling systems. The quantities T}, and Ty are constrained to
be always less than T7.

2.2 Discriminant Functions and Fault Space

A discriminant function is used to discriminate between two classes of data: a
fault class and a non-fault class. Often the discriminant function is a function of
the input feature vectors and incorporates information specific to the problem
being studied. The discriminant function captures the spatial correlation among
the components of the input feature vector z[? through the matrix operator A.
The feature vector is the abnormality indicators derived from the different MIB
variables. The operator is essentially a variant of the correlation matrix p [17].
The scheme used is shown in Figure 1. A is one of the eigenvalues of the matrix
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Figure 1: Discriminant function scheme for N inputs using the operator A. \ is
the eigenvalue of A.

A. The choice of the eigenvalue used to declare alarms involves preferential
weighting of the input features based on their relevance to the nature of faults

3persistence filters incorporated in the interest of robustness [17]



Fault Data Set || Case || Prediction || Detection Mean Time
Type No No Time Time Between
T, (mins) Ty(mins) False Alarms
Ty (mins)
File server I 1 95 - 700
11 1 21 - 1032
111 1 16 - 257
2 - -
3 26 -
v 1 22 - 1019
\% 1 15 - 192
VI 1 5 - 184
2 5 -
Protocol imple- VII 1 15 - no other alarms
Mentation error
Runaway process VIII 1 1 - 235
Network access IX 1 50 - 286
2 - 34
3 - 12
Avg. 24.6 23 488
Std.dev 26.9 15.6 370.5

Table 1: Prediction of failures at the router using the discriminant function
scheme

studied. In our case we are focusing on faults caused by user traffic which is
maximally represented in the variable ipIR. Hence the eigenvalue corresponding
to this variable is weighted heavier than the others and is used to declare alarms.
The matrix A is designed so that the discriminant function ’QZJAQ/:"T returns a value
between 0 and 1 [17]. The results obtained using this discriminant function are
shown in Table (1). Data set number refers to the different time periods of data
collection. Data was collected over a period of ten months. The case numbers
in each data set identify the fault instances encountered in the different time
periods. There is no thresholding performed on the input feature vectors prior
to fault declaration. This helps to preserve the information required to detect
the subtle changes associated with the different types of faults.

The discriminant function can be used to divide the problem space into
a fault and non-fault region. With each of the three input feature vectors
ranging in value from 0 to 1, we have a problem space that is the same as a unit
cube. The discriminant function carves out a region in this problem space which
denotes the fault region. In general, the fault region corresponds to maximal
values of abnormality in all of the feature vectors. Hence the input vector
1/7 = [111] corresponds to the maximum fault condition. The fault space can
be represented as shown in Figure 2. The color scale indicates the gradient in
the combined abnormality of the input vectors. Thus the brighter (red) region



which contains the higher values of the abnormality indicators corresponds to
the highest abnormal event or a network fault.

ipOR Ab. Indicator
S o o o
hS] w ~ o

o
=

o o

iplde Ab. Indicator

ipIR Ab. Indicator

Figure 2: Fault space (shown in red) embedded in the problem space. The
axes indicate the feature vectors (abnormality indicators) obtained from the
corresponding input MIB variables

3 Fault Classification

Once an alarm is obtained using the discriminant function, we sought to identify
the type of impending fault. Using the MIB data from the production networks,
we investigated the behavior of the abnormality indicators one hour prior to the
fault time. Four different faults were studied: file server failures, network access
problems, protocol implementation errors and runaway process. The average
values of the abnormality indicators are tabulated in Table (2). This average
value is used to locate the fault in the problem space shown in Figure 3.

As shown in Figure 3, the four fault types are clustered in different areas of
the problem space. Notice that all the file server failures are clustered around
the average vector [0.4634, 0.7665, 0.8650]. In contrast, the network access
problems are clustered near [0.5270, 0, 0]. The Euclidean distance between
these two fault clusters is approximately 1.16. The standard deviation for the
network file server cluster is 0.43 and that for the network access cluster is



Fault Data Set || Case || Abnormality || Abnormality || Abnormality
Type No No of of of
ipIR ipIDe ipOR
File server I 1 .5402 0 1818
II 1 .5079 .6982 .8180
11 1 .5669 9183 .8998
2 1497 .9240 9769
3 .3698 .9007 9995
v 1 .3061 9088 9995
A% 1 .4399 .8099 19991
VI 1 .6827 .8248 .9983
2 .6077 9142 9117
Avg. 4634 .7665 .8650
Std.dev .1658 .2969 .2638
Protocol imple- VII 1 .9999 0 0
mentation error
Runaway process VIII 1 .7890 .0909 .5089
Network access X 1 .0925 0 0
2 .4461 0 0
3 .5424 0 0
Avg. .5270 0 0
Std.dev .0744 0 0

Table 2: Abnormality indicators of the feature vectors averaged over an hour

prior to the fault.
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Figure 3: Classification of faults using the average (over a 1 hour) of the feature
vectors. x: file server failures, o: network access problems, star: protocol error,
square: runaway process

0.07. These results show that the two clusters do not overlap. We have limited
data on the other two types of faults but it is interesting to note that they
are distinct from both file server failures and network access problems. In the
case of file server failures (shown as ’x’) the abnormality in the ipOR and ipIDe
variables are much more significant than in p/R. On the contrary the network
access problems (shown as ’0’) are expressed only in the ipIR variable. The
fact that these faults were predicted or detected by the discriminant function
which, isolates a very narrow region of the problem space suggests that, the
abnormality in the feature vectors increases as the fault event approaches.

4 Comparison of Discriminant Function Method
and Majority-Voting

Majority-voting is a scheme in which alarms are declared based on a majority
of the feature vectors exceeding their respective thresholds. This scheme is
described in Figure 4. The scheme was implemented on data obtained from the
two networks and the results have been tabulated in Table (3).

With our production network data, it was observed that the majority-voting
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Figure 4: Majority-voting scheme for N input vectors. ¥ is the sum of all
thresholded feature vectors

scheme failed to predict or detect certain fault conditions such as network access
problems, runaway processes and protocol implementation errors. On the other
hand, the discriminant function predicted or detected these faults suggesting
that the faults did affect the characteristics of the MIB data. The discriminant
function scheme avoids hard thresholds on the input feature vectors. Therefore
this scheme is able to detect the subtle changes in the MIB characteristics
associated with different fault types. Imposing hard thresholding to the input
feature vectors leads to a loss of information. Furthermore, the discriminant
function scheme accounts for the lesser and more subtle spatial correlations
among the input feature vectors making it capable of detecting a variety of
failures.

The discriminant function was able to predict all of the file server failures.
On the other hand, the majority-vote scheme only detected failures at the same
time or immediately after it was observed by the existing mechanisms (syslog
and trouble tickets). To provide predictability for the majority-voting scheme
it will be necessary to lower the hard thresholds used. This will compromise on
the number of false alarms generated. The optimal thresholds to be imposed
on the input feature vectors are hard to obtain in practice, especially with the
evolving or non-stationary nature of network traffic [16].

In addition to the benefits of prediction, the discriminant function out-
performs the majority-vote scheme by producing only half as many false alarms
(the average mean time between false alarms is 8 hrs for the discriminant func-
tion and 4 hrs for the majority-vote scheme). The discriminant function provides
a continuous indicator of network abnormality while the majority-vote scheme



Fault Data Set || Case || Prediction || Detection Mean Time
Type No No Time Time Between
T, (mins) Ty(mins) || False Alarms
Ty (mins)
File server I 1 - - 105
1I 1 - 29 39
111 1 - 1 95
2 - 4
3 - 3
v 1 - 1 270
A% 1 - 2 727
VI 1 - 9 352
2 - 1
Avg - 6.25 265
Std.dev 9.6 233

Table 3: Detection of file server failures at the router using the majority-voting
scheme

gives an on/off output. A continuous indicator is essential to provide trends in
availability and reliability information. Thus on comparing Tables (3) and (1)
we can conclude that a more sophisticated discriminant function that accounts
for spatial correlation among the input feature vectors performs better than the
majority-vote scheme.

5 Discussion and Conclusion

In this work we have demonstrated using real network data that the MIB
variables show distinctive features prior to a network fault. These distinctive
changes can be associated with specific fault types. The four different fault types
studied: file server failures, network access problems, protocol implementation
errors and runaway processes, show characteristic finger prints in the abnormal-
ity indicators of the ipIR, ipIDe and ipOR MIB variables. There is sufficient
distance between the clusters of file server failures and network access problems
that it is possible to distinguish them easily. As soon as more data becomes
available, we hope to confirm our initial findings on the other two fault types as
well. We believe that this is a novel approach to perform online classification of
network fault conditions by looking at just an hour duration of the MIB data. It
is a simple scheme and does not require much data manipulation to do classifi-
cation. We only consider predictive indicators to do fault classification because
we are interested in proactively managing the network to prevent failures.

The fault classification described here can be used to develop suites of recov-
ery options for different fault types. Furthermore, this work presents the first
step to characterize network fault behavior in terms of the effects of the fault
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on traffic measurements. More research is under way to test the findings in
controlled environments and on new network data. Finally, we have shown that
using discriminant functions that incorporate the spatial correlations among the
MIB variables is significantly better than the majority-vote scheme.
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