
1Mao F04

Sockets Programming

EECS 489 Computer Networks
http://www.eecs.umich.edu/~zmao/eecs489

Z. Morley Mao
Thursday Sept 16, 2004

Acknowledgement: Some slides adapted from Kurose&Ross and Katz&Stoica

2Mao F04

Outline

§ Socket API motivation, background
§ Names, addresses, presentation
§ API functions
§ I/O multiplexing

3Mao F04

Administrivia

§ Homework 1 is online
- www.eecs.umich.edu/~zmao/eecs489/hw1
- Code will shortly available by tomorrow

4Mao F04

Quiz!

§ What is wrong with the following code?

void alpha () {
rtgptr ptr = rtg_headptr;
while (ptr != NULL) {

rtg_check (ptr);
ptr = ptr->nextptr;

}
}

void rtg_check (rtgptr ptr) {
if (ptr->value == 0)

free (ptr);
}

struct routeptr {
int value;
struct routeptr *nextptr;

}

typedef struct routeptr rtgptr;

5Mao F04

§ Applications need Application Programming Interface (API)
to use the network

§ API: set of function types, data structures and constants
• Allows programmer to learn once, write anywhere
• Greatly simplifies job of application programmer

Motivation

physical

data-link

network

transport

application
API

6Mao F04

Sockets (1)

§ Useful sample code available at
- http://www.kohala.com/start/unpv22e/unpv22e.html

§ What exactly are sockets?
- An endpoint of a connection
- A socket is associated with each end-point (end-host) of

a connection

§ Identified by IP address and port number

§ Berkeley sockets is the most popular network API
- Runs on Linux, FreeBSD, OS X, Windows
- Fed/fed off popularity of TCP/IP

7Mao F04

Sockets (2)

§ Similar to UNIX file I/O API (provides file
descriptor)

§ Based on C, single threaded model
- Does not require multiple threads

§ Can build higher-level interfaces on top of
sockets

- e.g., Remote Procedure Call (RPC)

8Mao F04

Types of Sockets (1)

§ Different types of sockets implement different service
models

- Stream v.s. datagram

§ Stream socket (aka TCP)
- Connection-oriented (includes establishment + termination)
- Reliable, in order delivery
- At-most-once delivery, no duplicates
- E.g., ssh, http

§ Datagram socket (aka UDP)
- Connectionless (just data-transfer)
- “Best-effort” delivery, possibly lower variance in delay
- E.g., IP Telephony, streaming audio

9Mao F04

Types of Sockets (2)

§ How does application programming differ
between stream and datagram sockets?

§ Stream sockets
- No need to packetize data
- Data arrives in the form of a byte-stream
- Receiver needs to separate messages in stream

User application sends messages
“Hi there!” and “Hope you are well”
separately

physical

data-link

network

transport

applicationTCP sends messages
joined together, ie. “Hi
there!Hope you are
well”

10Mao F04

Types of Sockets (3)

§ Stream socket data separation:
- Use records (data structures) to partition data stream
- How do we implement variable length records?

- What if field containing record size gets corrupted?
• Not possible! Why?

A B C 4

fixed length
record

fixed length
record

variable length
record

size of
record

11Mao F04

Types of Sockets (4)

§ Datagram sockets
- User packetizes data before sending
- Maximum size of 64Kbytes
- Further packetization at sender end and

depacketization at receiver end handled by transport
layer

- Using previous example, “Hi there!” and “Hope you are
well” will definitely be sent in separate packets at
network layer

12Mao F04

Naming and Addressing

§ IP version 4 address
- Identifies a single host
- 32 bits
- Written as dotted octets

• e.g., 0x0a000001 is 10.0.0.1
§ Host name

- Identifies a single host
- Variable length string
- Maps to one or more IP address

• e.g., www.cnn.com
- Gethostbyname translates name to IP address

§ Port number
- Identifies an application on a host
- 16 bit unsigned number

13Mao F04

Presentation

high-order byte low-order byte

increasing memory addresses

address Aaddress A +1

little-endian

big-endian
low-order byte high-order byte

16-bit value

(network byte-order)

14Mao F04

Byte Ordering Solution

uint16_t htons(uint16_t host16bitvalue);
uint32_t htonl(uint32_t host32bitvalue);
uint16_t ntohs(uint16_t net16bitvalue);
uint32_t ntohl(uint32_t net32bitvalue);

§ Use for all numbers (int, short) to be sent across
network

- Including port numbers, but not IP addresses

15Mao F04

Stream Sockets

§ Implements Transmission Control Protocol (TCP)
§ Does NOT set up virtual-circuit!
§ Sequence of actions: socket ()

bind ()

listen ()
accept ()

recv ()

close ()

socket ()

connect ()

send ()

send ()recv ()

close ()
time

initialize

establish

data
xfer

terminate

Client Server

16Mao F04

Initialize (Client + Server)

int sock;
if ((sock = socket(AF_INET, SOCK_STREAM,

IPPROTO_TCP)) < 0) {
perror("socket");
printf("Failed to create socket\n");
abort ();

}

§ Handling errors that occur rarely usually
consumes most of systems code

- Exceptions (e.g., in java) helps this somewhat

17Mao F04

Initialize (Server reuse addr)

§ After TCP connection closes, waits for 2MSL, which is twice
maximum segment lifetime (from 1 to 4 mins)

§ Segment refers to maximum size of a packet
§ Port number cannot be reused before 2MSL
§ But server port numbers are fixed ⇒ must be reused
§ Solution:

int optval = 1;
if ((sock = socket (AF_INET, SOCK_STREAM, 0)) < 0)

{
perror ("opening TCP socket");
abort ();

}

if (setsockopt (sock, SOL_SOCKET, SO_REUSEADDR, &optval,
sizeof (optval)) <0)

{
perror (“reuse address");
abort ();

}

18Mao F04

Initialize (Server bind addr)

§ Want port at server end to use a particular number

struct sockaddr_in sin;

memset (&sin, 0, sizeof (sin));

sin.sin_family = AF_INET;
sin.sin_addr.s_addr = IN_ADDR;
sin.sin_port = htons (server_port);

if (bind(sock, (struct sockaddr *) &sin, sizeof (sin)) < 0) {
perror(“bind");
printf("Cannot bind socket to address\n");
abort();

}

19Mao F04

Initialize (Server listen)

§ Wait for incoming connection
§ Parameter BACKLOG specifies max number of established

connections waiting to be accepted (using accept())

if (listen (sock, BACKLOG) < 0)
{
perror (“error listening");
abort ();

}

20Mao F04

Establish (Client)

struct sockaddr_in sin;

struct hostent *host = gethostbyname (argv[1]);
unsigned int server_addr = *(unsigned long *) host->h_addr_list[0];
unsigned short server_port = atoi (argv[2]);

memset (&sin, 0, sizeof (sin));

sin.sin_family = AF_INET;
sin.sin_addr.s_addr = server_addr;
sin.sin_port = htons (server_port);

if (connect(sock, (struct sockaddr *) &sin, sizeof (sin)) < 0) {
perror("connect");
printf("Cannot connect to server\n");
abort();

}

21Mao F04

Establish (Server)

§ Accept incoming connection

int addr_len = sizeof (addr);
int sock;

sock = accept (tcp_sock, (struct sockaddr *)
&addr, &addr_len);

if (sock < 0)
{
perror ("error accepting connection");
abort ();

}

22Mao F04

Sending Data Stream

int send_packets (char *buffer, int buffer_len)
{

sent_bytes = send (sock, buffer, buffer_len, 0);

if (send_bytes < 0)
perror (“send”);

return 0;
}

23Mao F04

Receiving Data Stream

int receive_packets(char *buffer, int buffer_len, int *bytes_read)
{

int left = buffer_len - *bytes_read;
received = recv(sock, buffer + *bytes_read, left, 0);
if (received < 0) {

perror ("Read in read_client");
printf("recv in %s\n", __FUNCTION__);

}
if (received == 0) { /* occurs when other side closes connection */

return close_connection();
}
*bytes_read += received;
while (*bytes_read > RECORD_LEN) {

process_packet(buffer, RECORD_LEN);
*bytes_read -= RECORD_LEN;
memmove(buffer, buffer + RECORD_LEN, *bytes_read);

}
return 0;

}

24Mao F04

Datagram Sockets

§ Similar to stream sockets, except:
- Sockets created using SOCK_DGRAM instead of

SOCK_STREAM
- No need for connection establishment and termination
- Uses recvfrom() and sendto() in place of recv()

and send() respectively
- Data sent in packets, not byte-stream oriented

25Mao F04

How to handle multiple connections?

§ Where do we get incoming data?
- Stdin (typically keyboard input)
- All stream, datagram sockets
- Asynchronous arrival, program doesn’t know when data

will arrive

§ Solution: I/O multiplexing using select ()
- Coming up soon

§ Solution: I/O multiplexing using polling
- Very inefficient

§ Solution: multithreading
- More complex, requires mutex, semaphores, etc.
- Not covered

26Mao F04

I/O Multiplexing: Polling

int opts = fcntl (sock, F_GETFL);
if (opts < 0) {

perror ("fcntl(F_GETFL)");
abort ();

}
opts = (opts | O_NONBLOCK);
if (fcntl (sock, F_SETFL, opts) < 0) {

perror ("fcntl(F_SETFL)");
abort ();

}
while (1) {

if (receive_packets(buffer, buffer_len, &bytes_read) != 0) {
break;

}
if (read_user(user_buffer, user_buffer_len,

&user_bytes_read) != 0) {
break;

}
}

get data
from
socket

get
user
input

first get current
socket option settings

then adjust settings

finally store settings
back

27Mao F04

I/O Multiplexing: Select (1)

§ Select()
- Wait on multiple file descriptors/sockets and timeout
- Application does not consume CPU cycles while waiting
- Return when file descriptors/sockets are ready to be read or

written or they have an error, or timeout exceeded

§ Advantages
- Simple
- More efficient than polling

§ Disadvantages
- Does not scale to large number of file descriptors/sockets
- More awkward to use than it needs to be

28Mao F04

I/O Multiplexing: Select (2)
fd_set read_set;
struct timeval time_out;
while (1) {

FD_ZERO (read_set);
FD_SET (stdin, read_set); /* stdin is typically 0 */
FD_SET (sock, read_set);
time_out.tv_usec = 100000; time_out.tv_sec = 0;
select_retval = select(MAX(stdin, sock) + 1, &read_set, NULL,

NULL, &time_out);
if (select_retval < 0) {

perror ("select");
abort ();

}
if (select_retval > 0) {

if (FD_ISSET(sock, read_set)) {
if (receive_packets(buffer, buffer_len, &bytes_read) != 0) {

break;
}

if (FD_ISSET(stdin, read_set)) {
if (read_user(user_buffer, user_buffer_len,

&user_bytes_read) != 0) {
break;

}
}

}
}

set up
parameters
for select()

run select()

interpret
result

29Mao F04

Common Mistakes + Hints

§ Common mistakes:
- C programming

• Use gdb
• Use printf for debugging, remember to do
fflush(stdout);

- Byte-ordering
- Use of select()
- Separating records in TCP stream
- Not knowing what exactly gets transmitted on the wire

• Use tcpdump / Ethereal
§ Hints:

- Use man pages (available on the web too)
- Check out WWW, programming books

30Mao F04

Network Architecture

31Mao F04

A Quick Review

§ Many different network styles and technologies
- circuit-switched vs packet-switched, etc.
- wireless vs wired vs optical, etc.

§ Many different applications
- ftp, email, web, P2P, etc.

§ How do we organize this mess?

32Mao F04

The Problem

§ Do we re-implement every application for every
technology?

§ Obviously not, but how does the Internet architecture
avoid this?

Telnet FTP NFS

Packet
radio

Coaxial
cable

Fiber
optic

Application

Transmission
Media

HTTP

33Mao F04

Today’s Lecture: Architecture

§ Architecture is not the implementation itself

§ Architecture is how to “organize”
implementations
- what interfaces are supported
- where functionality is implemented

§ Architecture is the modular design of the network

34Mao F04

Software Modularity

Break system into modules:

§ Well-defined interfaces gives flexibility
- can change implementation of modules
- can extend functionality of system by adding new

modules

§ Interfaces hide information
- allows for flexibility
- but can hurt performance

35Mao F04

Network Modularity

Like software modularity, but with a twist:

§ Implementation distributed across routers and
hosts

§ Must decide both:
- how to break system into modules
- where modules are implemented

§ Lecture will address these questions in turn

36Mao F04

Outline

§ Layering
- how to break network functionality into modules

§ The End-to-End Argument
- where to implement functionality

37Mao F04

Layering

§ Layering is a particular form of modularization

§ System is broken into a vertical hierarchy of
logically distinct entities (layers)

§ Service provided by one layer is based solely on
the service provided by layer below

§ Rigid structure: easy reuse, performance suffers

38Mao F04

ISO OSI Reference Model for Layers

§ Application
§ Presentation
§ Session
§ Transport
§ Network
§ Datalink
§ Physical

39Mao F04

Layering Solves Problem

§ Application layer doesn’t know about anything
below the presentation layer, etc.

§ Information about network is hidden from higher
layers

§ Ensures that we only need to implement an
application once!

§ Caveat: not quite....

40Mao F04

OSI Model Concepts

§ Service: what a layer does

§ Service interface: how to access the service
- Interface for layer above

§ Peer interface (protocol): how peers communicate
- Set of rules and formats that govern the communication

between two network boxes
- Protocol does not govern the implementation on a single

machine, but how the layer is implemented between machines

41Mao F04

Physical Layer (1)

§ Service: move information between two systems
connected by a physical link

§ Interface: specifies how to send a bit

§ Protocol: coding scheme used to represent a
bit, voltage levels, duration of a bit

§ Examples: coaxial cable, optical fiber links;
transmitters, receivers

42Mao F04

Datalink Layer (2)

§ Service:
- Framing (attach frame separators)
- Send data frames between peers
- Others:

• arbitrate the access to common physical media
• per-hop reliable transmission
• per-hop flow control

§ Interface: send a data unit (packet) to a machine
connected to the same physical media

§ Protocol: layer addresses, implement Medium Access
Control (MAC) (e.g., CSMA/CD)…

43Mao F04

Network Layer (3)

§ Service:
- Deliver a packet to specified network destination
- Perform segmentation/reassemble
- Others:

• packet scheduling
• buffer management

§ Interface: send a packet to a specified
destination

§ Protocol: define global unique addresses;
construct routing tables

44Mao F04

Transport Layer (4)

§ Service:
- Demultiplexing
- Optional: error-free and flow-controlled delivery

§ Interface: send message to specific destination

§ Protocol: implements reliability and flow control

§ Examples: TCP and UDP

45Mao F04

Session Layer (5)

§ Service:
- Full-duplex
- Access management (e.g., token control)
- Synchronization (e.g., provide check points for long transfers)

§ Interface: depends on service

§ Protocol: token management; insert checkpoints,
implement roll-back functions

46Mao F04

Presentation Layer (6)

§ Service: convert data between various
representations

§ Interface: depends on service

§ Protocol: define data formats, and rules to
convert from one format to another

47Mao F04

Application Layer (7)

§ Service: any service provided to the end user

§ Interface: depends on the application

§ Protocol: depends on the application

§ Examples: FTP, Telnet, WWW browser

48Mao F04

Who Does What?

§ Seven layers
- Lower three layers are implemented everywhere
- Next four layers are implemented only at hosts

Application
Presentation

Session
Transport
Network
Datalink
Physical

Application
Presentation

Session
Transport
Network
Datalink
Physical

Network
Datalink
Physical

Physical medium

Host A Host B

Router

49Mao F04

Logical Communication

§ Layers interacts with corresponding layer on peer

Application
Presentation

Session
Transport
Network
Datalink
Physical

Application
Presentation

Session
Transport
Network
Datalink
Physical

Network
Datalink
Physical

Physical medium

Host A Host B

Router

50Mao F04

Physical Communication

§ Communication goes down to physical network, then
to peer, then up to relevant layer

Application
Presentation

Session
Transport
Network
Datalink
Physical

Application
Presentation

Session
Transport
Network
Datalink
Physical

Network
Datalink
Physical

Physical medium

Host A Host B

Router

51Mao F04

Encapsulation

§ A layer can use only the service provided by the layer
immediate below it

§ Each layer may change and add a header to data packet

data

data

data

data

data

data

data

data

data

data

data

data

data

data

52Mao F04

Example: Postal System

Standard process (historical):
§ Write letter
§ Drop an addressed letter off in your local mailbox
§ Postal service delivers to address
§ Addressee reads letter (and perhaps responds)

53Mao F04

Postal Service as Layered System

Layers:
§ Letter writing/reading
§ Delivery

Information Hiding:
§ Network need not know letter contents
§ Customer need not know how the

postal network works

Encapsulation:
§ Envelope

Customer

Post Office

Customer

Post Office

54Mao F04

Questions?

55Mao F04

Standards Bodies

§ ISO: International Standards Organization
- professional bureaucrats writing standards
- produced OSI layering model

§ IETF: Internet Engineering Task Force
- started with early Internet hackers
- more technical than bureaucratic

“We reject kings, presidents, and voting. We believe
in rough consensus and running code” (David Clark) running

code .

56Mao F04

OSI vs. Internet

§ OSI: conceptually define services, interfaces, protocols
§ Internet: provide a successful implementation

Application
Presentation

Session
Transport
Network
Datalink
Physical

Internet
Net access/
Physical

Transport

Application

IP

LAN Packet
radio

TCP UDP

Telnet FTP DNS

OSI (formal) Internet (informal)

57Mao F04

Multiple Instantiations

§ Can have several instantiations for each layer
- many applications
- many network technologies
- transport can be reliable (TCP) or not (UDP)

§ Applications dictate transport
- In general, higher layers can dictate lower layer

§ But this is a disaster!
- applications that can only run certain networks

58Mao F04

Multiple Instantiations of Layers

59Mao F04

Solution

A universal Internet layer:
§ Internet has only IP at the Internet layer
§ Many options for modules above IP
§ Many options for modules below IP

Internet

Net access/
Physical

Transport

Application

IP

LAN Packet
radio

TCP UDP

Telnet FTP DNS

60Mao F04

Hourglass

61Mao F04

Implications of Hourglass

A single Internet layer module:

§ Allows all networks to interoperate
- all networks technologies that support IP can exchange

packets (my rant last lecture)

§ Allows all applications to function on all networks
- all applications that can run on IP can use any network

§ Simultaneous developments above and below IP

62Mao F04

Network Modularity

Two crucial decisions

§ Layers, not just modules
- alternatives?

§ Single internetworking layer, not multiple
- alternatives?

63Mao F04

Back to Reality

§ Layering is a convenient way to think about
networks

§ But layering is often violated
- Firewalls
- Transparent caches
- NAT boxes
-

§ More on this later....on to part two of this lecture

§ Questions?

64Mao F04

Placing Functionality

§ The most influential paper about placing
functionality is “End-to-End Arguments in System
Design” by Saltzer, Reed, and Clark

§ The “Sacred Text” of the Internet
- Endless disputes about what it means
- Everyone cites it as supporting their position

65Mao F04

Basic Observation

§ Some applications have end-to-end performance
requirements
- Reliability, security, etc.

§ Implementing these in the network is very hard:
- Every step along the way must be fail-proof

§ The hosts:
- Can satisfy the requirement without the network
- Can’t depend on the network

66Mao F04

Example: Reliable File Transfer

§ Solution 1: make each step reliable, and then
concatenate them

§ Solution 2: end-to-end check and retry

OS

Appl.

OS

Appl.

Host A Host B

OK

67Mao F04

Example (cont’d)

§ Solution 1 not complete
- What happens if any network element misbehaves?
- The receiver has to do the check anyway!

§ Solution 2 is complete
- Full functionality can be entirely implemented at application

layer with no need for reliability from lower layers

§ Is there any need to implement reliability at lower
layers?

68Mao F04

Conclusion

Implementing this functionality in the network:
§ Doesn’t reduce host implementation complexity
§ Does increase network complexity
§ Probably imposes delay and overhead on all

applications, even if they don’t need functionality

§ However, implementing in network can enhance
performance in some cases
- very lossy link

69Mao F04

Conservative Interpretation

§ “Don’t implement a function at the lower levels of
the system unless it can be completely
implemented at this level” (Peterson and Davie)

§ Unless you can relieve the burden from hosts,
then don’t bother

70Mao F04

Radical Interpretation

§ Don’t implement anything in the network that can
be implemented correctly by the hosts

- E.g., multicast

§ Make network layer absolutely minimal
- Ignore performance issues

71Mao F04

Moderate Interpretation

§ Think twice before implementing functionality in
the network

§ If hosts can implement functionality correctly,
implement it a lower layer only as a performance
enhancement

§ But do so only if it does not impose burden on
applications that do not require that functionality

72Mao F04

Extended Version of E2E Argument

§ Don’t put application semantics in network
- Leads to loss of flexibility
- Cannot change old applications easily
- Cannot introduce new applications easily

§ Normal E2E argument: performance issue
- Introducing more functionality imposes more overhead
- Subtle issue, many tough calls (e.g., multicast)

§ Extended version:
- Short-term performance vs long-term flexibility

73Mao F04

Back to Reality (again)

§ Layering and E2E Principle regularly violated:
- Firewalls
- Transparent caches
- Other middleboxes

§ Battle between architectural purity and
commercial pressures
- Extremely important
- Imagine a world where new apps couldn’t emerge

74Mao F04

Summary

§ Layering is a good way to organize networks

§ Unified Internet layer decouples apps from
networks

§ E2E argument encourages us to keep IP simple

§ Commercial realities threaten to undo all of this...

