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Abstract— Recent developments in deep neural network (DNN)
pruning introduces data sparsity to enable deep learning applica-
tions to run more efficiently on resource- and energy-constrained
hardware platforms. However, these sparse models require spe-
cialized hardware structures to exploit the sparsity for storage,
latency, and efficiency improvements to the full extent. In this
work, we present the sparse neural acceleration processor (SNAP)
to exploit unstructured sparsity in DNNs. SNAP uses paral-
lel associative search to discover valid weight (W) and input
activation (IA) pairs from compressed, unstructured, sparse W
and IA data arrays. The associative search allows SNAP to
maintain a 75% average compute utilization. SNAP follows a
channel-first dataflow and uses a two-level partial sum (psum)
reduction dataflow to eliminate access contention at the output
buffer and cut the psum writeback traffic by 22× compared
with state-of-the-art DNN accelerator designs. SNAP’s psum
reduction dataflow can be configured in two modes to support
general convolution (CONV) layers, pointwise CONV, and fully
connected layers. A prototype SNAP chip is implemented in a
16-nm CMOS technology. The 2.3-mm2 test chip is measured to
achieve a peak effectual efficiency of 21.55 TOPS/W (16 b) at
0.55 V and 260 MHz for CONV layers with 10% weight and
activation densities. Operating on a pruned ResNet-50 network,
the test chip achieves a peak throughput of 90.98 frames/s at
0.80 V and 480 MHz, dissipating 348 mW.

Index Terms— Channel index matching, deep neural net-
work (DNN), energy-efficient accelerator, sparse neural network,
unstructured sparsity.
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Fig. 1. Average density of input IA and W data and average effectual work
of common DNNs after network pruning.

I. INTRODUCTION

DEEP learning or more specifically, deep neural network
(DNN), has emerged to be a key approach to solving

complex cognition and learning problems [1], [2]. State-
of-the-art DNNs [3]–[9] require billions of operations and
hundreds of megabytes to store activations and weights. Given
the trend toward even larger and deeper networks, the com-
pute and storage requirements will prohibit real-time, low-
power deployment on platforms that are resource and energy
constrained. The compute and storage challenges motivated
efforts in network pruning to zero out a large number of
weights (W) in a DNN model with only little inference accu-
racy degradation [10]–[12]. In addition to sparsity in weights,
the commonly used rectifier linear unit (ReLU) clamps all
negative activations to zeros, resulting in sparsity in output
activations (OAs), which becomes input activations (IAs) of
the next layer.

Fig. 1 shows that the typical density of nonzero W (after
network pruning [10]) and IA (due to ReLU) in well-known
network models: AlexNet, VGG-16, and ResNet-50. An aver-
age of 50% density is common. Because the nonzero W and
IA are nearly randomly distributed, the amount of effectual
computation, i.e., computation that does not involve a zero,
is only 25%. If a small sacrifice in inference accuracy can be
tolerated, the density of operands and the effectual computa-
tion can be further reduced.

Data sparsity can be exploited to save power. Many DNN
accelerators, e.g., Eyeriss [13], gates the computation, e.g.,
by turning off the clock, whenever a zero in the IA is detected
in runtime. Most dense DNN accelerators can incorporate
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Fig. 2. Convolution computation between unstructured sparse IA and W in
a sparse DNN. The colored cells indicate nonzero entries, and the white cells
indicate zero entries.

Fig. 3. Processing pipeline of a sparse DNN processor.

this technique to reduce power, but it does not shorten the
latency or improve the throughput.

Cnvlutin [14] and Cambricon-X [15] are well-known early
architectures that exploit sparsity in compressed IA for latency
reduction and throughput improvement. However, they were
designed to work with the sparsity in one of the two operands,
W or IA, but not both. A dense processing architecture can
be easily adapted to support one-operand sparsity by indirect
data access.

To fully exploit sparsity in both operands, W and IA are
stored in a compressed form where nonzero elements are
represented by value–index pairs. Storage in a compressed
form can reduce the memory size and bandwidth. However,
unlike the common dense array and matrix storage, com-
pressed storage is not amenable to regular and efficient vector
processing. One approach is to decompress the compressed
form before processing, but decompression costs performance,
memory, and power. Instead, state-of-the-art sparse DNN
accelerators [16]–[20] process data directly in the compressed
form, offering both low memory bandwidth and high degree
of acceleration.

Fig. 2 shows sparse convolutions, and Fig. 3 shows the
high-level computation pipeline of DNN processing in the
compressed format (which will be referred to as sparse DNN
processing for simplicity). A sparse DNN processor loads Ws
and IAs in a compressed form consisting of a data array (zeros
removed) and an index array. Compressed W and IA arrays are
paired by matching indices, dispatched to a multiplier array,
and the resulting partial sums (psums) are accumulated to their
respective OAs in output buffers.

Data sparsity leads to better performance and efficiency, but
major challenges remain as follows.

1) Front-End Challenge: Multiplier under-utilization due
to an insufficient number of W-IA pairs that can be
extracted and dispatched to the multiplier array.

2) Back-End Challenge: Data traffic and access contention
to support the accumulation of psums whose destination
addresses are seemingly random.

3) Flexibility Challenge: Limited support for different ker-
nel sizes and layer types.

State-of-the-art sparse DNN accelerators, including
EIE [16], SCNN [17], Sticker [18], [19], and Eyeriss v2 [20],
addressed some of the challenges in sparse DNN processing,
but did not solve all of them. EIE [16] exploits both W and
IA sparsity but is restricted to fully connected (FC) layers.
SCNN [17] is the first attempt at exploiting both W and
IA sparsity for convolution (CONV) layers. It maximizes
multiplier utilization at the cost of massive psum writeback
traffic and access contention, and it supports only CONV
layers. Sticker [18], [19] follows SCNN’s dataflow and uses
two-way set-associative processing elements (PEs) to alleviate
the access contention but requires offline preprocessing to
re-arrange IA data. Without the data re-arrangement,
the access contention remains as significant as in SCNN.
Eyeriss-v2 [20] employs a two-step search front end to find
effectual W-IA pairs by first fetching nonzero IAs and then
using the channel index of the IA to look for nonzero Ws.
Eyeriss-v2 adopts an Eyeriss-like row stationary dataflow [13]
to avoid memory access contention.

We present sparse neural acceleration processor
(SNAP) [21] that adopts a channel-first dataflow and is
optimized for the efficient processing of unstructured sparse
DNNs. To solve the front-end challenge, SNAP uses parallel
associative index matching (AIM) units and sequence
decoders to extract a sufficient number of W–IA pairs to
maintain a high multiplier array utilization of 75%. To solve
the back-end challenge, SNAP adopts a two-level psum
reduction that consists of PE-level and core-level reduction
to eliminate memory access contention and reduce psum
writeback traffic to an average of 2.79 OA reductions/cycle
for a core of 63 multipliers. The core-level reduction is
configurable to support common layers in vision-based DNN
models, including general R ×S CONV (R, S > 1), pointwise
CONV, and FC.

The rest of this article is organized as follows. Section II
introduces the channel-last dataflow, an approach adopted by
state-of-the-art sparse accelerators, and analyzes its advantages
and inefficiencies in processing sparse DNNs. Section III
presents our channel-first dataflow and quantitatively compares
it against the channel-last dataflow to demonstrate its advan-
tages. In Section IV, we describe our solution to the front-end
challenge using parallel index matching, and in Section V,
we describe our solution to the back-end challenge using
two-level psum reduction. The configurable core-level reduc-
tion makes the SNAP architecture flexible to support different
kernel sizes and layer types. Section VI presents the overall
SNAP architecture, followed by measurement and evaluation
results using both synthetic sparse workloads and commonly
used pruned networks. Finally, Section VII concludes this
article.

II. BACKGROUND AND RELATED WORK

A dense CONV operation can be described by (1), where
f represents the activation function. For simplicity, the bias
is ignored and IA padding is assumed to be zero. FC can be
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Fig. 4. Illustration of channel-last dataflow for sparse DNN processing:
(a) IA and W data in dense format; (b) front-end dataflow; and (c) back-end
dataflow.

viewed as a special case of CONV. In this work, we will use
the following indexing convention: a W index of (r, s, c, k)
corresponds to (row, column, channel, kernel), an IA index
of (h, w, c) corresponds to (row, column, channel), and an
OA index of (x, y, k) corresponds to (row, column, output
channel (kernel)):

OA(x,y,k) = f

⎛
⎝

R−1∑
i=0

S−1∑
j=0

C−1∑
c=0

IA(x+i,y+ j,c) × W(i, j,c,k)

⎞
⎠. (1)

As shown in (1), there are two main steps in computing
CONV (besides the activation function): 1) IAs and Ws are
multiplied to produce psums and 2) the psums are accumulated
(or reduced) along the channel dimension (C) and along
the pixel dimension (R, S). The channel-dimension reduction
and pixel-dimension reduction are commutative. The channel
indices of a W and an IA need to match for the two to be
multiplied together.

In ordering inputs for storage and processing, we can choose
either the pixel dimension first ((r, s) for W and (h, w) for IA)
followed by the channel dimension (c), termed channel-last
dataflow, or vice versa, termed channel-first dataflow. Both
SCNN [17] and Sticker [19] adopt the channel-last dataflow.

A. Channel-Last Dataflow for Sparse DNN Processing

The channel-last dataflow is shown in Fig. 4. In the channel-
last dataflow, the nonzero W and IA data are ordered in
the pixel dimension first for storage and processing. Because
data are ordered pixel dimension first, as W and IA data
are streamed in, their channel indices are aligned. Since any
nonzero W can be multiplied with any nonzero IA of the same
channel in an CONV operation, the W and IA can be freely
paired to produce a large number of W-IA pairs for a multiplier
array.

The simple W-IA pairing results in a simple front end for
the channel-last dataflow. As shown in Fig. 4(a) and (b),
the compressed W and IA data of size n can be broadcast
over an n × n 2-D multiplier array vertically and horizontally,
respectively, so that each W is multiplied to every IA. The
drawback of the channel-last dataflow is that the address of
the OA that a psum needs to be accumulated to (will be
referred to as the psum address) does not follow deterministic
ordering. According to (1), if a nonzero W and a nonzero
IA have matching channel index c, they can be multiplied to
produce a psum with an index of (x, y, k) = (h − r, w − s, k).
The 3-D index is then translated to a 1-D physical address.
Hence, the n×n 2-D multiplier array produces n2 psums whose
(x, y) indices are {(h − r, w − s)} with random drawings of
h ∈ {0, . . . , H − 1}, r ∈ {0, . . . , R − 1}, w ∈ {0, . . . , W − 1},
and s ∈ {0, . . . , S −1}. It is highly likely to have two or more
psums that share the same address, and in theory, they should
be accumulated, or reduced, before writeback. However,
it is challenging to organize psums and reduce them before
writeback. Without any psum reduction, the writeback traffic
becomes congested, and frequent contentions are possible at
the OA buffer. It requires complex hardware or wiring, e.g.,
a crossbar switch, to resolve the contention, and results in
pipeline stalls and low multiplier array utilization.

This back-end challenge is shown in Fig. 4(c). The psums
need to be distributed by a switch to the corresponding
buffer bank. The red lines indicate the psum writebacks that
lead to buffer contentions. To avoid contentions, conflicting
psums need to be held. In the example, one output requires
the accumulation of three psums, resulting in a three-cycle
writeback where the multiplier array stalls for two cycles.

B. Other Related Work

Numerous DNN accelerators have been proposed to exploit
the parallelism in DNN inference operations [13]–[28].
To leverage the sparsity in Ws and IAs, some work imple-
mented power-saving techniques by clock-gating a PE when
a zero IA is detected [13], [25] to increase energy effi-
ciency. Some work exploited sparsity at the bit level [26]
by skipping the computation for the zero-valued bits in
the bit-serial multiplication. Compared with earlier methods,
exploiting sparsity in bit level reduces the overall computation
cycles and increases both efficiency and throughput. However,
the dataflows are still similar to traditional dense accelerators,
where zero elements are fetched on-chip, incurring unneces-
sary data transfers.

In this article, we focus on the DNN inference accelerator
design that exploits sparsity at data level and operates in the
compressed form. Only nonzero elements are fetched on-chip
for computation, such as in [16], [17], [19], and [20]. This
type of accelerator skips all unnecessary data transfers and
computation to optimize energy efficiency and computation
throughput. We will refer to this type of accelerator as a sparse
accelerator for discussion and comparison.

III. CHANNEL-FIRST PROCESSING DATAFLOW

Compared with the channel-last dataflow, the channel-first
dataflow orders W and IA data across the channel dimension
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Fig. 5. Channel-first compression in SNAP: (a) IA and W data in dense
format; (b) uncompressed IA and W bundles; and (c) compressed IA and W
bundles.

first for storage and processing. The channel-first dataflow
allows the psums computed by the multiplier array to be
locally reduced before writeback.

A. Compression Format

In the channel-first dataflow, nonzero W and IA data are
ordered and processed in the channel dimension first and then
in the pixel dimension. An example of a 3×3 CONV is shown
in Fig. 5. The channel-first dataflow supports arbitrary IA data
size and 3 × 3 IA data are chosen for the ease of illustration.

In Fig. 5(a), the W and IA data are illustrated in the dense
form. In our channel-last dataflow, a bundle of nonzero W data
and a bundle of nonzero IA data are provided to a PE at a time.
An IA bundle contains data in (h, w, c), where c represents
all nonzero elements along the channel dimension, and a W
bundle is larger and it contains data in (r , s, c, k), where r , c,
and k represent all nonzero elements along the row, channel,
and kernel dimension, respectively. In general, a larger data
bundle leads to a higher utilization and processing efficiency,
but we limit the IA bundle not to span more than 1-pixel
location to simplify channel index matching.

Fig. 5(b) shows the IA bundle of (h, w, c) = (2, 2, c) and
the W bundle of (r , s, c, k) = (r , 0, c, k). The bundles are
stored in the compressed form with all zeros squeezed out,
as shown in Fig. 5(c). The IA data are stored channel first.
The IA storage consists of a data array that stores nonzero
IA data and a channel index (c-idx) array that stores the
channel index of the corresponding IA data. The W data are
also stored channel first, followed by row (r-idx) and kernel
(k-idx). The W storage consists of a data array, a c-idx array,
an r-idx array, and a k-idx array, as well as a position pointer
(pos-ptr) array to track the starting points in the data array
of the next r-idx and/or k-idx. For instance, the pos-ptr array
stores 0 and 3, indicating that the first three data values A, B,
and C have (r, k) = (0, 0), and the data values D, E, and F
have (r, k) = (1, 0). An IA bundle and a W bundle are sent
to one PE for processing.

B. Channel-First Dataflow

In a channel-first dataflow, the nonzero W and IA data are
streamed in channel first, the addresses of the psums computed

Fig. 6. SNAP’s channel-first dataflow with channel index matching and psum
reduction along the channel dimension.

are aligned, and the psums can be immediately reduced along
the channel dimension. Despite the appeal of the channel-first
dataflow, a W and an IA can only be paired and multiplied if
their channel index matches. Hence, channel index matching
must be performed at the front end to extract the valid W-IA
pairs. Compared with the channel-last dataflow, this additional
channel index matching step introduces an overhead, but it
provides immediately reducible psums to cut the writeback
traffic, leading to potential improvements in both power and
performance.

The channel-first dataflow is shown in Fig. 6. Each PE
receives a W bundle (r , s, c, k) and an IA bundle (h, w, c),
as shown in Fig. 5(c). The W c-idx is matched with the IA
c-idx to generate valid W-IA pairs. Valid W-IA data pairs
are fetched and multiplied to produce psums. The psums are
accumulated and saved to the OAs at (x, y, k) = (h − r,
w − s, k). Due to the channel-first input ordering and bundled
processing, the address of the psums computed by one PE
will stay the same until the PE completes an IA bundle and
switches to a new IA bundle (change of h, w) or until the r-idx
or k-idx changes (change of r and k) for a W bundle. Due to
the high locality of psum address, the majority of the psums
are immediately reduced to one within a PE. To process a
complete convolution, the IA and W data are decomposed and
compressed into IA and W bundles. The IA and W bundles are
distributed to different PEs for processing as shown in Fig. 6
until all bundles are fully processed.

In a channel-first dataflow, channel-dimension psum reduc-
tion is done first. A second-level pixel-dimension psum reduc-
tion can be done on-chip to further reduce the writeback
bandwidth. To enable the second-level psum reduction, PEs
can be arrayed and coordinated to facilitate the psum reduction
across the PEs. The second-level psum reduction will be
described in more detail in Section V-B.

To evaluate the benefits of the channel-first dataflow,
we prototyped a channel-last dataflow that follows the process-
ing pipeline described in Fig. 4 and quantify the key dif-
ferences between the two dataflows, as shown in Fig. 7.
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Fig. 7. Comparison between channel-last dataflow and SNAP (channel-first
dataflow) for dense, medium, and sparse workloads.

The channel-last dataflow is limited by the large number of
OA buffer accesses and the access contention, causing the
compute to stall and worsening both utilization and processing
latency, and in comparison, the channel-first dataflow employs
a front-end channel index matching to reduce the number of
OA buffer accesses and remove the access contention. The
channel-first dataflow provides on average 1.51× and 1.45×
improvement over the channel-last dataflow in processing
latency and multiplier utilization, respectively. Only when the
data density drops below a threshold, e.g., 10% W and IA data
density, does the channel-first dataflow starts to underperform
the channel-last dataflow due to two factors: 1) the lack
of reduction opportunities due to highly sparse data and
2) the imbalance of input bundle sizes causing PE workload
imbalance.

The SNAP architecture follows the channel-first dataflow.
The two key techniques, channel index matching and two-level
psum reduction, will be presented in Sections IV and V.

IV. CHANNEL INDEX MATCHING

Channel index matching extracts pairs of nonzero W-IA
pairs of matching channel index. We propose an AIM unit
to extract a sufficient number of W-IA pairs to sustain a high
utilization of a parallel multiplier array. The AIM performs
index matching and encodes the addresses of valid W-IA pairs,
and a sequence decoder decodes the addresses and dispatches
the pairs for parallel computation.

A. Associative Index Matching

Fig. 8(a) shows the microarchitecture of the AIM and
illustrates its mechanism. The AIM consists of an N × N
comparator array, where each row is connected to a priority
encoder. During operation, an AIM receives the W and IA
channel index arrays from a PE, and it compares each W chan-
nel index to each IA channel index. In Fig. 8(a), for example,
the W channel indices 0, 2, 9, and 5 are matched to the IA
channel index at position 0, 1, 4, and 2, respectively, whereas
the W channel index 4 does not have a match. A priority
encoder encodes the match result in each row into a valid

Fig. 8. (a) Microarchitecture of AIM. (b) Microarchitecture of sequence
decoder and step-by-step example of W-IA data pair dispatch in a PE.

bit to indicate a match and the matched position in the IA
channel index array. Upon completion, an AIM returns a list
of valid-position pairs to a PE for processing.

B. Sequence Decoder

Within a PE, a sequence decoder converts a list of valid-
position pairs into W-IA data pairs. Fig. 8(b) shows the
microarchitecture and illustrates the sequence detection mech-
anism with the valid-position list output from Fig. 8(a):
1) a three-way priority encoder converts three valid-position
pairs (with valid bit = 1) at a time into W-IA data addresses;
2) the positions in the valid-position pairs are used as the
addresses to fetch IA data and the indices of the valid-position
pairs are used as the addresses to fetch W data; and 3) the three
valid-position pairs are invalidated by overwriting the valid
bits to 0, and the W and IA data are sent to the multipliers
to compute psums. After completing the list of valid-position
pairs, the PE requests a new list from the AIM.

C. Design Tradeoff Exploration

The size of the comparator array, N , determines AIM’s
throughput and effectiveness. N needs to be sufficiently large
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Fig. 9. Multiplier utilization of AIM designs at different data density levels.

to even out the workload density imbalance and variations
across W and IA bundles for extracting enough W-IA pairs
to maintain a high multiplier utilization. However, the area
and power consumption of AIM increase nearly quadratically
with N . To balance these two competing factors, we avoid
using a small AIM, e.g., one with a 4 ×4 or 8 ×8 comparator
array, and instead use a larger AIM and time multiplex it
between multiple PEs to amortize the cost.

Fig. 9 shows the multiplier utilization across a range of
workload densities for N = 16, 32, or 64, where a suffix S
indicates that a large AIM is time-multiplexed among an
appropriate number of PEs and a suffix P indicates that a
simple prefetch mechanism is implemented to further reduce
the workload imbalance by pre-requesting valid-position pairs
from the AIM. A larger AIM provides a higher multiplier uti-
lization across all workload densities: the utilization improves
by 10% from N = 16 to 32 and again from 32 to 64.
A large AIM with N = 64 incurs an area overhead of 50%.
A moderate-sized AIM with N = 32 cuts the area overhead
below 12.5%, and adding prefetching increases the utilization
by up to 5%. Therefore, in designing SNAP, we adopt a
time-multiplexing, prefetching AIM design with an N = 32
comparator array to balance the performance, area, and power
consumption. This design achieves an average multiplier uti-
lization above 75% for our benchmarks.

V. TWO-LEVEL PARTIAL SUM REDUCTION

To reduce the output bandwidth, after the psums are com-
puted by the PEs, they should be maximally accumulated
on chip to reduce the number of writebacks to the output
buffer. Following the channel-first dataflow, SNAP implements
a two-level psum reduction to minimize the read-accumulate-
writes to the output buffer. The psums are first reduced along
the channel dimension inside the PEs and then along the pixel
dimension across PEs. The across-PE reduction is configurable
to support not only CONV but also pointwise CONV and FC.

A. PE-Level Channel-Dimension Reduction

The PE microarchitecture is shown in Fig. 10. Each PE con-
tains a compute path consisting of three multipliers and psum
accumulators, an address path that computes the addresses and

Fig. 10. PE microarchitecture and psum reduction along the channel
dimension.

TABLE I

SELECTION OF REDUCTION PATTERN

then selects the psum reduction pattern, a sequence decoder,
a W register file (RF), and an IA RF to provide the inputs,
and an OA psum RF to store the outputs. In each cycle,
the sequence decoder dispatches three W-IA data pairs and
their indices ((h, w) for IA data and (r, s, k) for W data). The
W-IA data pairs are directed to the compute path to produce
the psums, A, B, and C; and the W and IA indices are sent to
the address path to compute the addresses (recall psum index
is (x, y, k) = (h−r, w−s, k), which is translated to a physical
1-D address). Given the three psum addresses, the reduction
controller selects one psum reduction pattern in the compute
path.

The channel-first input processing order guarantees that the
addresses for A, B, and C are ordered and non-decreasing,
i.e., AddrA ≤ AddrB ≤ AddrC . Due to the deep channels
seen in modern DNN layers, in most cases, AddrA = AddrB =
AddrC , and the three psums can be accumulated and reduced
to one. If not, the reduction controller selects one of the
reduction patterns according to Table I. One, two, or three
psums are produced and sent to the OA psum RF every cycle,
avoiding stalls in the computation pipeline. A PE retains an
OA psum in the RF until all possible reductions along the
channel dimension are complete, cutting the psum writeback
traffic by up to the channel depth compared to the channel-last
dataflow. Note that the number of multipliers in a PE is set
to 3 to keep a reasonable overhead for the reduction pattern
selection.

B. Core-Level Pixel-Dimension Reduction

To reduce the writeback traffic, after the first-level psum
reduction along the channel dimension, a second-level psum
reduction across an array of PEs can be done. Fig. 11(a)
shows a 3 × 3 PE array and the input data mapping for a
3 × 3 CONV kernel. The three W bundles of s = 0, 1, 2 are
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Fig. 11. Psum reduction configuration across an array of PEs. (a) 3 × 3 CONV in diagonal mode. (b) Pointwise CONV in row mode. (c) FC in row mode.

broadcast to the three PE columns, and the three IA bundles
of (h, w) = (2, 2), (2, 3), (2, 4) are broadcast to the three PE
rows. This mapping allows W and IA reuse by a column and a
row of PEs, respectively. Following this mapping, the PEs on
the same diagonal lane produce psums of the same address.
For example, assume (r, k) = (0, 0) for the W bundles, PE11,
PE22, and PE33 compute the psums going to the OA address
of (x, y, k) = (h − r, w − s, k) = (2, 2, 0); similarly, PE12

and PE23 compute the psums going to the OA address of
(x, y, k) = (h − r, w − s, k) = (2, 1, 0). Therefore, the psums
along the diagonal lanes are accumulated.

We name an array of PEs a core. To support the popular 3×3
CONV seen in modern DNN models, the number of columns
can be set to 3 (which also sets the number of PEs along
a diagonal to 3) to achieve the full utilization. The number
of rows can be set based on the throughput requirement for
an application. Going beyond the 3 × 3 CONV, the diagonal
mode reduction is used for general R × S CONV (R, S > 1).
If R, S > 3, the CONV kernel is divided into R×3 sub-kernels
and then distributed and processed independently on multiple
compute cores. A global accumulator merges the psums from
the multiple cores to compute the final OA for writeback.

The core-level psum reduction along the pixel dimension
cuts the writeback traffic by 2.3–3.0×. The two-level reduction
resolves the access contention seen in prior work [17]–[19].
It reduces the writeback traffic to only 2.79 OAs per cycle
on average for a core of 7 × 3 PEs that contain a total
of 63 multipliers. The output bandwidth of a channel-first
dataflow using the two-level reduction is 22× lower than the
channel-last dataflow with an equal number of multipliers.

C. Support for Pointwise CONV and FC

In our work, we considered the pointwise CONV and FC as
special cases of the CONV computation shown in Fig. 2 with
size constraints R = S = 1 and R = S = H = W = 1,
respectively. The size constraints in pointwise CONV and

FC eliminate the possibility of pixel-dimension reduction.
The interconnection between the PEs and the core reducer is
configurable to support not only the diagonal mode, but also
provide a row mode to support DNN layers that do not have
any pixel-dimension reduction opportunities.

To reuse the same architecture for a pointwise CONV
including the same output bandwidth and to achieve a high
utilization, the inputs are divided into groups in the channel
dimension, and the core is reconfigured to perform reduction
along the channel dimension. For example, in Fig. 11(b),
a W bundle is divided into three groups in the channel dimen-
sion, and each group is broadcast to a column of PEs; an IA
bundle is divided into three groups in the channel dimension
and multicast to the three PEs in a row. This mapping allows
W reuse by the PEs along a column. Following this mapping,
the PEs on the same row produce the psums going to the
same OA address. Therefore, the core reducer is configured to
accumulate the psums from the PEs along the rows.

In processing an FC, W data cannot be reused in batch-1
processing. Similar to the pointwise CONV, the PE array
is utilized in channel-dimension reduction. An IA bundle is
divided into groups in the channel dimension; a W bundle is
divided into groups in both the channel and kernel dimensions.
For example, in Fig. 11(b), a W bundle is divided into three
groups in the channel and kernel dimension and multicast to
the three PEs in a column; an IA bundle is divided into three
groups in the channel dimension and broadcast to the three PEs
in a column. This mapping allows IA reuse by the PEs along a
column. Similar to the pointwise CONV, the PEs on the same
row produce the psums going to the same OA address, and
the core reducer is configured to accumulate the psums from
the PEs along the rows.

VI. IMPLEMENTATION AND EVALUATION RESULTS

We present the SNAP system architecture based on the tech-
niques introduced earlier. The SNAP architecture is prototyped
in a 16-nm test chip. The chip is measured and evaluated using
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Fig. 12. SNAP system architecture.

workloads of different sparsity levels and a pruned ResNet-50
model. The results are summarized and compared with state-
of-the-art dense and sparse DNN accelerators.

A. SNAP Architecture Overview

The SNAP high-level architecture is shown in Fig. 12.
It consists of multiple cores, a control module, and a memory
module. The control module provides the configuration of
the compute cores and coordinates the communication with
the external interface. The memory module is composed of
multi-banked IA and OA buffers shared between the compute
cores and non-shared W buffers of each compute core. The
compressed W and IA data are fetched from off-chip and
aligned by bundles. W bundles are stored in each core’s W
buffers following the system configuration, and IA bundles
are stored in the IA buffers. The output OAs are compressed
before writeback to the external memory.

Following the high-level architecture, we designed a SNAP
test chip that is made of four cores, and each core is imple-
mented in a 7 × 3 PE array. Within a core, seven AIM units
are shared in a time-multiplexed fashion between the three
PEs in a row. Each PE is implemented with three multipliers
and a sequence decoder. The PEs output psums, which are
accumulated by the core reducer, and a global accumulator is
used to further accumulate psums before the final writeback.

The SNAP test chip provides a total of 252 multipliers
of 16-bit fixed-point precision and a total of 280.6-kB SRAM.
Note that an 8-bit design would work equally as well to
demonstrate the architectural advantages and show an even
better performance and energy efficiency. The only difference
is that the overhead of index matching, measured as a fraction
of the compute core, increases from 12.5% (in a 16-bit design)
to 17% (in an 8-bit design). The test chip is implemented
using a 16-nm CMOS process technology with a core area
of 2.3 mm2. Fig. 13 shows the chip microphotograph.

Fig. 13. Microphotograph of the 16-nm SNAP test chip.

Fig. 14. (a) Measured power consumption at different operating frequencies
and the optimal supply voltages. (b) Measured effectual energy efficiency for
synthetic sparse workloads at different data density levels.

B. Performance Analysis

In our evaluations, a 16-bit fixed-point multiply and accu-
mulate (MAC) is counted as two operations (OPs). Each PE
computes at most three MACs or six OPs every clock cycle.
For the evaluations, we used both synthetic sparse work-
loads and real workloads of pruned DNN models, including
AlexNet, VGG-16, and ResNet-50, pruned with less than 0.5%
accuracy loss using the technique from [10], to measure per-
formance, power consumption, and effectual energy efficiency
(considering the input IA/W density).

The measured chip power consumption is shown
in Fig. 14(a). At each operating frequency, the power is
reported at the lowest supply voltage. At 0.55 V and 260 MHz,
the test chip achieves the peak effectual energy efficiency
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Fig. 15. Processing speedup by SNAP (a channel-first dataflow) and a
channel-last dataflow over a dense accelerator baseline running the residual
blocks of a sparse ResNet-50 model.

of 3.61 TOPS/W for a sparse ResNet-50 model with an
average IA/W density of 0.38/0.52. The chip achieves
the highest inference throughput of 90.98 frames/s for
the same sparse ResNet-50 model at 0.8 V, 480 MHz,
consuming 348 mW.

The measured effectual energy efficiency of the SNAP
test chip running synthetic sparse workloads of different
data density levels is shown in Fig. 14(b). In previous
work, SCNN [17] reports the results at the IA/W density
of 0.2/0.2 and 0.1/0.1, and Sticker [19] reports the results at the
IA/W density of 0.15/0.15 and 0.05/0.05. We used the IA/W
density of 0.1/0.1 to approximately match the previous work,
so we can fairly compare the designs for energy efficiency.
For dense (1.0/1.0), medium (0.4/0.4), and extremely sparse
(0.1/0.1) IA/W data density levels, a peak effectual energy
efficiency of 1.67, 5.06, and 21.55 TOPS/W is achieved,
respectively.

We benchmark the measured throughput of the SNAP
architecture and a simulated channel-last dataflow architecture
over a dense accelerator baseline running a sparse ResNet-50
model. In Fig. 15, we show the speedup in processing each
residual block. For a fair comparison, the dense accelerator
baseline is constructed to be the same as SNAP, but with
uncompressed, dense inputs. Overall, the channel-last dataflow
demonstrates an average speedup of 2.20× over the dense
baseline; and the SNAP design obtains an average speedup
of 2.87× over the dense baseline, which is 30.3% better over
the channel-last dataflow.

Although SNAP, a channel-first dataflow, generally provides
a higher performance than a channel-last dataflow, the per-
formance gap is more visible at the shallow and middle
layers, but less visible for deep layers, as shown in Fig. 15.
For instance, SNAP has a 46.2% better performance than
the channel-last dataflow for the first residual block blk-2a,
but only 7% better performance for the last residual block
blk-5c. The difference is attributed to two factors: 1) the deep
layers are generally sparser after pruning, resulting in less
access contention and better performance for the channel-last
dataflow, and 2) extremely sparse workloads often come with

imbalanced zero distribution, causing challenges to SNAP’s
index matching and psum reduction.

The imbalanced zero distribution, or workload imbalance,
is a design challenge for both the SNAP front end and back
end. At the front end, the workload imbalance causes PEs to
receive a varied number of W-IA pairs for computation, and
the overall performance is limited by the PE with the heaviest
workload. This problem may be resolved by implementing
a more aggressive prefetching scheme that provides a larger
work chunk for PEs to prevent them from stalling. At the
back end, the workload imbalance causes each PE to have less
channel-dimension reduction opportunity before writeback to
the output buffer, resulting in a higher writeback bandwidth.
In addition, the PEs on the same core-level reduction lane
may have varied reduction progress, requiring the faster PEs
to be stalled to wait for the slowest one. The back-end problem
may be mitigated by implementing a larger OA psum RF to
store more psums in a PE and the OA output buffers using
two-port SRAMs or multi-banked SRAMs to provide a higher
accumulation bandwidth.

C. Comparison Against State-of-the-Art Works

Compared with state-of-the-art inference accelerators that
support sparsity at data level or for power saving shown
in Table II, SNAP exploits sparsity in both compressed W and
IA data for both CONV and FC layers. SNAP employs a 16-bit
fixed-point precision for data storage and computation. SNAP
has a comparable number of multipliers as many previous
silicon designs. Energy efficiency is reported for the effective
efficiency evaluated on both synthetic workloads and real
sparse network workloads.

To provide a fair comparison, we also present the syn-
thesis results of SNAP-65nm-8b, the same SNAP design
with 8b storage and computation in a 65-nm GP process.
SNAP-65 nm-8b was synthesized at 250 MHz with the SRAM
modules re-generated to support 8-b processing. It is estimated
to have an area of 9.32 mm2 and consume 500 mW. For
a sparse AlexNet, SNAP-65nm-8b is estimated to achieve
an effective energy efficiency of 0.74 TOPS/W running at
250 MHz at a nominal voltage of 1.0 V.

1) Dense and Sparse Workloads: For high- and medium-
density workloads, SNAP achieves a higher effectual energy
efficiency than all the other sparse accelerators. More specif-
ically, the channel-last accelerators, including SCNN and
Sticker, suffer from memory contention and compute stalls,
resulting in lower performance. SNAP also benefits from
the large channel-dimension reduction opportunity and a low
workload imbalance to achieve a high compute utilization
and better efficiency. The network-on-chip (NoC) in Eyeriss-
v2 consumes extra power and latency for conventional DNN
workloads. Compared with Eyeriss-v2, SNAP benefits from a
larger search depth and is specifically optimized for CONV
(R×S and 1 × 1) and FC layers. For extremely sparse work-
loads, Sticker [19] reports better effectual energy efficiency
than SNAP but uses 8bit storage and computation, while SNAP
uses 16-bit storage and computation.

In sparse workload evaluations, SNAP outperforms all
the other works. Compared with sparse accelerators,

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 21,2021 at 16:03:04 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: SNAP FOR UNSTRUCTURED SPARSE DNN INFERENCE 645

TABLE II

COMPARISON WITH PRIOR WORKS

Sticker (8b) [19] and Eyeriss-v2 (8b) [20], SNAP achieves up
to 3.34× and 6.68× better effectual energy efficiency running
synthetic workloads, respectively. For sparse AlexNet, SNAP
achieves 1.37× and 4.02× better effectual energy efficiency
than Sticker (8b) and Eyeriss-v2 (8b), respectively.

2) Index Matching Search Depth: Among all the references,
Eyeriss-v2 is the closest to SNAP in terms of architectural
design. The difference between SNAP and Eyeriss-v2 is
mainly attributed to two factors. First is the difference in
search granularity in index matching. SNAP adopts a more
coarse-grained compression format. During the discover stage,
the AIM searches in the first 32 nonzero entries of the
compressed W data. On the other hand, Eyeriss-v2 uses
the CSC format. During the discover stage, Eyeriss-v2 first
identifies IA’s channel index and then searches for nonzero
W data only across all k indices. Due to a smaller search
depth, Eyeriss-v2’s index matching mechanism is more likely
to encounter fragmentation of nonzero W data, resulting in an
insufficient number of W-IA pairs sent to the MAC array and
possibly a lower compute utilization. The second difference
is that SNAP’s dataflow is specifically optimized for CONV
and FC, whereas Eyeriss-v2 implements a fully flexible NoC
for routing and switching. The NoC may be a burden on
performance and power consumption.

3) Load Balancing Consideration: Load imbalance can
be caused by front-end workload distribution or back-end

writeback or both. The channel-last accelerators, such as
Sticker and SCNN, are not affected by the front-end workload
imbalance seen in channel-first accelerators, such as SNAP
and Eyeriss-v2. The varying number of W-IA pairs assigned
to different PEs affects the compute utilization of each PE.
With a large enough search depth, SNAP, a channel-first
accelerator, can minimize the front-end workload imbalance.
Eyeriss-v2, another channel-first accelerator, used a similar
approach, except that its search depth is smaller than SNAP.

The channel-last accelerators suffer from the back-end
workload imbalance when there are memory access con-
tentions between the accumulation buffers and the multipli-
ers, especially for medium-to-high density workloads. The
memory contention affects the number of cycles needed to
complete a chunk of W and IA data and causes progress
differences between PEs, resulting in the faster PEs stalling
for the slowest one. This imbalance situation is worse for
higher density workloads where contention is more frequent.
A channel-first accelerator such as SNAP effectively mitigates
the back-end workload imbalance by streamlined, maximal OA
psum reduction before writeback.

VII. CONCLUSION

We present the SNAP that exploits unstructured sparsity in
sparse DNNs for efficient inference acceleration. SNAP adopts
a new channel-first dataflow with channel index matching as
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the front end and a two-level psum reduction back end for
sparse DNN processing.

At the front end, channel index matching is done by efficient
AIM units and sequence decoders to discover valid W-IA pairs
for computation. It results in an average compute utilization
of 75% while limiting the area overhead to only 12.5% of the
compute core. At the back end, the combination of PE-level
psum reduction along the channel dimension and core-level
psum reduction along the pixel dimension eliminates write-
back access contention at the output buffer and reduces the
psum writeback traffic by 22× compared with the previous
sparse accelerator designs. The core-level psum reduction
is configurable to support general R × S CONV, pointwise
CONV, and FC layers.

A SNAP test chip is designed using 252 16-bit multipliers
organized in four cores of 7 × 3 PEs. The chip is measured to
achieve an effective energy efficiency of up to 21.55 TOPS/W
running synthetic sparse workloads and 3.61 TOPS/W running
a pruned ResNet-50. Compared with the state-of-the-art dense
and sparse accelerators, SNAP offers competitive performance
and energy efficiency by maintaining high compute utiliza-
tion and low writeback data traffic.
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