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Accelerators

D
igital machine learn­
ing (ML) accelera­
tors are popular and  
widely used. We pro­

vide an overview of 
the SIMD and systolic array archi­
tectures that form the foundation of 

many accelerator designs. The demand 
for higher compute density, energy 
efficiency, and scalability has been 
increasing. To address these needs, 
new ML accelerator designs have 
adopted a range of techniques, includ­
ing advanced architectural design, 
more efficient quantization, exploit­
ing data­level sparsity, and leverag­
ing new integration technologies. For 

each of these techniques, we review 
the common approaches, identify 
the design tradeoffs, and discuss 
their implications.

Introduction
ML has found widespread use across 
various applications and has become 
a dominant computational workload. 
While general­purpose platforms like  

An overview of architecture choices, efficient quantization, sparsity 
exploration, and system integration techniques
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GPUs and CPUs remain primary for 
ML, dedicated accelerators are emerg­
ing due to their higher compute den­
sity and better energy efficiency.

Dedicated accelerators can be 
designed effectively and efficiently 
because the core of ML algorithms 
is built on a small well­defined set 
of computational kernels. These ker­
nels, such as matrix multiplication 
and convolution, are computation­
ally intensive, along with activation 
functions, pooling, normalization, 
and element­wise operations. GPUs 
can parallelize these kernels, but 
they are designed for a broad range 
of tasks and incur a large control 
and memory management overhead, 
making them less efficient and more 
costly. In contrast, ML accelerators 
are optimized for these key computa­
tional kernels, potentially achieving 
higher performance per unit of sili­
con area and significantly improved 
energy efficiency.

Over the past decade, consider­
able research and development has 
been invested in ML accelerator 
designs. Digital accelerators offer 
unique advantages like higher fidel­
ity (compared to analog and in­mem­
ory accelerators1), better scalability, 
seamless integration with CPUs, 
and ease of design and manufac­
turability across different process 
technologies. However, they may 
not achieve the top­notch energy 
efficiency of in­memory and ana­
log accelerators. Most commercially 
available ML accelerators, such as 
Google TPU [1], [2], Amazon Inferen­
tia, Groq TSP [3], [4], and Graphcore 
IPU, are digital.

This article provides an over­
view of the foundational architec­
tures of digital ML accelerators and 
explores potential enhancements in 
this area.

1Recent in­memory compute has shifted 
toward digital in­memory computing using 
binary memory cells and digital circuitry to 
enhance robustness against PVT variation 
and improve accuracy compared to its analog 
counterpart. Digital in­memory accelerators 
are beginning to emerge commercially from 
companies like TSMC, d­Matrix, and Axelera AI.

Foundational Architectures
A wide variety of ML accelerators 
have been demonstrated. Despite 
diverse designs, they often rely on 
two core architectures for matrix 
multiplication and convolution: 
SIMD [5], [6], [7] and systolic arrays 
[8], [9], [10]. We introduce each archi­
tecture, examining how it maps and 
executes computations.

SIMD Architecture
The SIMD architecture is extensively 
used in CPUs and GPUs [11], [12]. It 
consists of an array of process­
ing elements (PEs), each capable of 
executing operations like MAC, as 
shown in Figure 1. A single instruc­

tion initiates an operation across 
the entire PE array, with each PE 
performing the same operation. For 
example, with one multiplication 
instruction, each PE fetches a pair of 
data, computes their product, and 
writes the result back to memory. A 
SIMD array can be used to compute 
a vector–vector dot product, where 
multiplications are followed by 
a summation.

The flexibility of the SIMD archi­
tecture allows it to support various 
ML computational kernels, including 
vector–matrix multiplication (VMM), 
matrix–matrix multiplication (MMM), 
and convolution. For VMM, the input 
vector and weight matrix are stored 
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FIGURE 1: A 1D SIMD array architecture and 2D convolution operations on the array. MMM: 
matrix–matrix multiplication.

Dedicated accelerators can be designed 
effectively and efficiently because the core of 
ML algorithms is built on a small well-defined 
set of computational kernels.
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in memory within the SIMD array. 
Each processing step fetches the 
input vector and one weight vector 
to perform dot product computation 
until the entire weight matrix is pro­
cessed. Local memory within each 
PE can cache the input vector and 
reuse it, reducing memory access 
and enhancing efficiency. MMM 
extends VMM by cycling through 
both matrices and accessing vector 
pairs to compute dot products. The 
matrices can also be cached locally 
to allow reuse.

For 2D convolution, weights and  
activations are first organized app­
ropriately via the im2col conversion, 
as  described in Figure 1. The  
K × R × S × C weights are flattened into 
a 2D RSC × K matrix. The H × W × C  
activation is divided into a series 
of overlapping R × S × C segments, 
each used for convolution in a sliding 
window fashion. These segments are 
stacked into a 2D XY × RSC matrix, 
where X and Y represent the num­
ber of sliding window steps in the 
horizontal and vertical directions, 

respectively. An MMM operation by 
the SIMD array then produces a 2D 
XY × K convolution output.

The flexibility of a SIMD architec­
ture supports various computations 
with simple data parallelism. Til­
ing a 1D SIMD array into a 2D array 
allows shared input and weight 
loading from external memory 
among 1D tiles, reducing bandwidth 
requirements.

Systolic Array Architecture
A systolic array consists of a 2D grid 
of PEs interconnected with their 
neighbors, each capable of opera­
tions like MAC and equipped with 
boundary registers. In each clock 
cycle, all PEs perform an operation, 
passing intermediate outputs to 
adjacent PEs in one direction, such 
as top to bottom or left to right.

To compute a VMM between an 
input vector and a weight matrix, 
the weight matrix is loaded into 
the array, with each weight element 
stored in a PE, as in Figure 2. The 
input vector is sequentially intro­
duced from one side, such as the left, 
with one element entering per cycle. 
In the first cycle, x11 is multiplied 
by w11 to compute the partial sum  
x11 w11, which is then propagated 
downward. In the second cycle, x12 
enters the array, where x12 w21, is 
computed and added to the par­
tial sum from the first cycle. Mean­
while, x12 shifts one step to the right 
in the first row to calculate x12 w21. 
This process continues, with input 
elements moving right and partial 
sums moving downward, creating a 
wavelike data flow through the array. 
Once the wave passes through, the 
VMM operation is complete. MMM can 
be performed similarly by launching 
vectors in waves during each cycle, 
allowing the systolic array to execute 
one VMM per clock cycle. 2D convo­
lution can also be converted to MMM 
and mapped onto a systolic array 
using this method.

Table 1 compares the SIMD and 
systolic array architectures. In gen­
eral, a SIMD array offers greater 
flexibility for various operations, 
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FIGURE 2: A 3 × 3 systolic array, a PE design, and the MMM operation on the systolic array. 

TABLE 1: A COMPARISON OF SIMD AND SYSTOLIC ARRAY ARCHITECTURES.

SIMD ARRAY SYSTOLIC ARRAY

Architecture 1D/2D PE array with shared 
instructions

2D PE array with neighboring 
connectivity

Operations VMM, MMM MMM

Data movement More memory access Mostly local data movement

Compute density Lower Higher

Flexibility Higher Lower

Hardware utilization Higher Lower

A SIMD array offers greater flexibility for 
various operations, potentially leading to 
higher hardware utilization but at the cost of 
higher control overhead.
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potentially leading to higher hard­
ware utilization but at the cost of 
higher control overhead. On the 
other hand, a systolic array relies on 
data movement and reuse between 
neighboring PEs, resulting in higher 
efficiency and reduced memory 
bandwidth usage compared to a 
SIMD architecture.

Enhanced Systolic Array
While a conventional systolic array 
(CSA) can process inputs in a pipe­
lined structure, scaling it up for 
higher performance introduces 
two issues. First, the pipeline 
length increases with the array 
size, resulting in longer latencies. 
For example, an N × N array would 
require N cycles to compute a col­
umn summation through N PEs. 
Second, the diverse data dimen­
sions of ML workloads often pre­
vent full utilization of all PEs in a 
large array.

Low-Latency and High-Utilization 
Systolic Array
A recent work [10] addressed these 
issues by arranging and connecting 
PEs in overlays of two structures—H 
tree and array—forming the PE tree 
array (PETRA). As a systolic array 
architecture, PETRA includes PEs 
that shift input data and weights 
between each other. However, 
PETRA differs from the CSA in its 
data path for summation outputs. 
PEs in PETRA calculate products 
and push them to an array­wide 
adder tree, structured as an H tree, 
as illustrated in Figure 3(a). This 
physical implementation­friendly 
structure offers two advantages: 1) 
logarithmic scaling of the summa­
tion latency and 2) low­overhead 
multiworkload mapping to subtrees.

The H tree in PETRA can sum 
products from an n × n PE array in  
log2n

2 cycles when pipelined. For  
n = 16, the summation latency across 
256 PEs is eight cycles, 32 times 
faster than the summation of a CSA 
column with N = 256 PEs. The H tree 
includes n2 -1 adders, one fewer than 
the CSA.

In addition to reduced latency, 
PETRA leverages the binary tree 
structure to sectionize data mapped 
to PEs. Since a binary tree can be 
divided into subtrees, PETRA can 
map multiple independent work­
loads simultaneously without a 
complicated network between PEs, 
enhancing PE utilization. Above a 

certain level in the H tree, a con­
figurable adder tree (CAT) produces 
sums for various input combina­
tions, while subtrees below remain 
fixed adder trees. PEs can be par­
titioned by subtrees; for example, 
eight subtrees can serve as sepa­
rate partitions for a 16 × 16 PETRA, 
as in Figure 3(a). An independent 

(a)

CAT

Convolution 5 × 5, C = 9, K = 1
Input Activation Weight

C = 9

K = 2
C = 3

C = 3

C = 9

W
W

H
H

S = 5
S = 5R

 =
 5

R
 =

 5

Input Activation Weight
Convolution 5 × 5, C = 3, K = 2

(b)

PETRA

Subtree

p3

p3

p1

In
pu

t B
uf

fe
rs

p1

p2

p2

p5

p5

p6

p6

p4

p4

p7

p7

p8

p8

p8

p3p1 p2 p5 p6p4 p7 p8 p3p1 p2 p5 p6p4 p7 p8

CAT

p6p5p2p1 p6p5p2p1

p3 p4 p7 p8 p3 p4 p7 p8

CAT

In
pu

t B
uf

fe
rs

In
pu

t B
uf

fe
rs

FIGURE 3: (a) PETRA with a configurable adder tree (CAT). (b) The flexible mapping of  
various convolution workloads to PETRA.
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workload can be mapped to a sub­
tree or a set of subtrees. The CAT 
allows for either individual subtree 
outputs or summations of subtree 
outputs based on the workload 
partition. This support for work­
load partitioning allows PETRA to 
accommodate multiple smaller fil­
ters more efficiently, improving 
hardware utilization.

In addition to VMM and MMM, 
PETRA is also optimized for convo­
lution. Traditional 2D convolution 
operations with a CSA employ im2col 
conversion followed by MMM, which 
results in significant data duplica­
tion in the input matrix, due to the 
overlapping sliding segments in con­
volution. Enhanced systolic array 
architectures, like Eyeriss [8] and 
PETRA, avoid this duplication and 
reuse the input by locally shifting the 
data. Eyeriss shifts the data between 
PEs both horizontally and vertically, 
requiring a dense inter­PE connec­
tion. In contrast, PETRA allows only 
horizontal shifts between PEs and 
performs the vertical shifts inside 
the input buffer, lowering inter­PE 
connection overhead.

Design Example
We compare the CSA and PETRA 
architectures for an exemplary 
(16 × 256) × (256 × 16) MMM work­

load. A CSA spatially unrolls the 
MMM operation using a 256 × 16 PE 
array. Each PE includes one MAC, one 
input buffer, one weight buffer, and 
one output buffer. The CSA takes 
256 cycles to produce the first out­
put and 256 + 16 + 16 = 288 cycles 
to produce all the outputs, with a 
throughput of 16 outputs/cycle.

With the same number of PEs, 
the PETRA architecture employs  
16 16 × 16 PETRAs. Each PE includes 
one multiplier, four input buffers, 16 
weight buffers, and one output buf­
fer [10]. The larger weight buffer in 
a PETRA PE allows for temporal mul­
tiplexing to handle 16­times­larger 
workloads. The PETRA architec­
ture takes 16 + log2 (256) = 24 cycles 
to produce the first output and  
16 + log2 (256) + 16 = 40 cycles to pro­
duce all outputs. It achieves the same 
throughput as the CSA, with signifi­
cantly lower latency.

Compared to the CSA, PETRA 
trades higher buffer usage for 
more efficient convolution opera­
tions, enabling input reuse without 
duplication. Overall, PETRA offers 
greater flexibility to accommodate 
a wide range of workload sizes and 
types, and it allows the mapping of 
multiple independent workloads to 
improve utilization. Two examples 
of convolution workloads are given 

in Figure 3(b). One 5 × 5 filter with 
channel size C = 9 can be mapped to 
an entire 16 × 16 PETRA, utilizing all 
eight subtrees, with the CAT produc­
ing one output channel. In the other 
example, two 5 × 5 filters (K = 2) with 
channel size C = 3 can be mapped 
concurrently to two sets of subtrees 
in a 16 × 16 PETRA, with each set 
combining four subtrees to support 
one filter. The CAT is configured  
to produce two output channels in 
this case.

A PETRA prototype consisting of 
four 16 × 16 PETRAs was fabricated 
[10]. Sample ML model mapping 
results are reported in Table 2. As 
illustrated in Figure 3(a), each PETRA 
can be partitioned into eight sub­
trees. Thus, the mapping granularity 
is a subtree of 32 PEs. If the compute 
kernels, such as filters, are of compa­
rable or larger size, high utilization 
is expected. However, if the compute 
kernels are smaller, the utilization is 
likely to decrease. This is evidenced 
by the results: for VGG­16 and Tiny­
YOLO, the utilization exceeds 80%, 
whereas for LeNet and AlexNet, the 
utilization is in the 60% range, due to 
the presence of layers with shallow 
channel depth (notably, the first and 
second layers) and the small number 
of layers in the overall model, which 
does not effectively average out the 
lower utilization of the early layers.  
The granularity can be adjusted in 
the design to maintain a high average 
utilization.

Since the base PETRA is composed 
of PEs for MAC operations, the base 
architecture needs to be augmented 
with specialized function units to 
support other operations, such as 
softmax, pooling, and normaliza­
tion. Another option is to enhance 
some of the PEs to handle these spe­
cial functions, but it would inevita­
bly complicate the PE design itself. 
Although PETRA’s design maximizes 
data reuse, high­bandwidth I/O and 
memory are still necessary to sup­
port a scaled­up version of PETRA, 
ensuring high utilization when pro­
cessing large models like VGG and 
transformers.

TABLE 2: A SAMPLE ML MODEL MAPPING ON PETRA [10].

MODEL THROUGHPUT INPUT DIMENSION UTILIZATION

LeNet 83,900 frames/s 32 × 32 (frame) 65%

AlexNet 103 frames/s 227 × 227 (frame) 61%

VGG-16 34.9 frames/s 227 × 227 (frame) 87%

Tiny-YOLO 68.5 frames/s 416 × 416 (frame) 81%

Transformer 278.5 sequences/s 768 (embedding), 64 (key/value) 100%

The throughput is measured at a 701-MHz clock frequency. Softmax and pooling are not included.
The transformer workload is a 12-head attention with 512 sequences.

A systolic array relies on data movement and 
reuse between neighboring PEs, resulting 
in higher efficiency and reduced memory 
bandwidth usage.
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Quantization Optimization
Quantization is a crucial step in 
determining the number format and 
precision of an ML model’s param­
eters and activations. Shorter word 
lengths, lower precision, and fixed­
point (integer) quantization reduce 
computational complexity, data 
storage, and data movement but 
may sacrifice computation quality. 
Several quantization approaches 
exist: post­training quantization 
converts a high­precision trained 
model (e.g., 32­b floating point) to 
a lower­precision fixed­point for­
mat (e.g., 8­b integer), which can 
degrade accuracy unless fine­tuned 
or retrained. Quantization­aware 
training incorporates the effects 
of quantization during the training 
process, potentially yielding better 
postquantization accuracy.

Applying the same quantization 
for all parameters and activations in 
a model is not ideal, as their contri­
butions to accuracy vary. Most ML 
hardware already supports different 
precision levels for weights and acti­
vations, such as 4­b weights and 8­b 
activations. However, optimal preci­
sion varies across models. To address 
this, recent ML hardware designs 
[13], [14], [15], [16] have incorporated 
mixed­precision quantization, offer­
ing greater flexibility and potential 
for higher speed and efficiency. In 
mixed­precision quantization, dif­
ferent layers or operations of an ML 
model can be quantized using vari­
ous formats and precisions or even 
dynamically changing at runtime. 
The hardware needs to support a 
range of choices, such as 4, 8, and 16 
b—integer or floating point—ideally 
reusing the same unit. For example, a 
16­b unit can be split to perform mul­
tiple 8­ or 4­b operations.

Nonuniform and alternative quan­
tization methods [17], [18], [19], 
[20] have been proposed, such as 
variable­length quantization, which 
offers higher precision for lower val­
ues and supports a higher dynamic 
range, providing a better tradeoff 
between word length and accuracy. 
While these methods reduce memory 

size and data movement costs, they 
often require more complex arithme­
tic circuitry, lookup tables, or encod­
ers and decoders.

Sparsity Optimization
Sparsity in activations can result 
from natural sparsity in input data, 
such as zero­valued information, 
static scenes in video, a rectified lin­
ear unit zeroing out negative  values, 
or finite­precision quantization 
eliminating small values. Sparsity 
can also be introduced by pruning 
weights. Pruning reduces the size of 
ML models before deployment, min­
imizing data storage and movement 
and improving speed. Typically 
performed after training, pruning 
methods include removing weights 
below a threshold, insignificant 
filters or channels, and attention 
heads in transformers. Fine­tun­
ing after pruning helps recover 
accuracy, with possible retraining 
if needed. Iterative pruning and 
training cycles may be conducted 
for optimal results. After pruning, 
dense model data structures become 
sparse, as shown in Figure 4(a), and 

are represented using formats like 
coordinate list [21], [22], [23], com­
pressed sparse row/column [9], [24], 
and run length coding [20], which 
store only the nonzero elements 
and their indices, reducing memory 
size and bandwidth, as detailed in  
Figure 4(b).

Pruning can be unstructured or 
structured. Unstructured pruning, or 
fine­grained pruning, removes indi­
vidual weights based on magnitude 
or significance, without considering 
the model’s structure. This can lead 
to higher sparsity but creates irregu­
lar data structures, i.e., vectors and 
matrices with random zero locations, 
making efficient hardware mapping 
challenging. Structured pruning, or 
coarse­grained pruning, removes 
entire blocks, such as input chan­
nels, filters, or layers, retaining regu­
lar vector and matrix data structures, 
as in Figure 4(a). This facilitates effi­
cient use of standard hardware but 
imposes restrictions on pruning and 
may have a greater impact on model 
accuracy.

An accelerator can be designed to 
process sparse (compressed) data. 

Unstructured
(Fine-Grained)

COO Format

Value Value

Row Id

Fetch
Compressed
Sparse IA, W

Match
Nonzero

W–IA Pairs

Compute
Nonzero

Partial Sums

Reduce
OA Partial
Sum Traffic

Write Back
to Output
OA Buffer

Data
and

Index

Partial
Sums

W-IA
Pairs

Data
and

Index

Column Id

a b c d e

0 1 1 2 3

1 1 2 2 3

a b c d e a b c d 0 e

1 3 0 3 3 10 1 3 4 5

1 1 2 2 3

Row Pointer

Column Id

Value

2-b Run

CSR Format RLC Format

Structured
(Block)

Structured
(Channel /Filter)

a
b c

d
e

(a)

(b)

(c)

FIGURE 4: (a) Unstructured and structured pruning. (b) Compression formats: coordinate list 
(COO), compressed sparse row (CSR), and run length coding (RLC). (c) The sparse data process-
ing flow. IA: input activation; W: weight; OA: output activation. 

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 07,2025 at 15:36:48 UTC from IEEE Xplore.  Restrictions apply. 



36 SPRING 202 5 IEEE SOLID-STATE CIRCUITS MAGAZINE 

Besides the core computing unit, 
such as a SIMD unit or a systolic 
array, it requires a front­end index­
ing unit to match nonzero activa­
tions and weights for computing 
MAC and a write­back unit to deter­
mine addresses and prepare write 
back, as in Figure 4(c). These units 
must account for varying levels and 
structures of sparsity, which can dif­
fer significantly between models and 
layers. Consequently, hardware opti­
mized for one sparsity pattern may 
not handle others effectively.

Recent accelerator designs [9], [20], 
[21], [22], [23], [24], [25] have become 
more flexible, supporting various 
sparsity levels and structures to meet 
different models’ needs. One method 
uses multiple cores, each optimized 
for a specific sparsity level or struc­
ture, with workloads directed to the 
most suitable core. A more advanced 

method [26] imposes structure on 
fine­grained pruning by dividing 
weight matrices into uniformly sized 
groups, which are pruned indepen­
dently. The prune rate for each group 
can be set to a limited number of 
choices, offering flexibility within 
a structure and ensuring efficient 
hardware utilization.

System Integration
ML models are rapidly growing 
in both size and variety, posing a 
major challenge in evolving hard­
ware at the same pace. However, 
as models evolve, the core com­
pute kernels remain consistent. 
Differences among models mainly 
involve the composition and sizes 
of these kernels. This drives the 
design of ML hardware using mod­
ular blocks, enabling reuse in con­
structing new systems.

Modular system construction can 
take the form of SoCs, typically con­
sisting of CPU cores, a SIMD unit or 
systolic array for convolutions, VMM, 
MMM, a high­performance memory 
system, and fast I/Os, as displayed 
in Figure 5(a). The SIMD unit or sys­
tolic array handles intensive com­
putations, while the CPU manages 
control, scheduling, and special 
functions, offering versatility for 
evolving workloads.

One drawback of monolithic SoCs 
is that every model change requires 
chip redesign and new fabrication. 
A promising alternative is chiplet­
based integration, as described in 
Figure 5(b), where systems are con­
structed from modular chiplets, each 
specializing in a particular func­
tion. This approach allows systems 
to grow by incrementally adding 
more chiplets and different types 
of chiplets. To realize chiplet­based 
integration, it is essential to lever­
age advanced packaging to place 
chiplets close together, route dense 
wiring between them, and provide 
a high­bandwidth energy­efficient 
die­to­die interface for seamless 
communication. Advanced packag­
ing is becoming more accessible, and 
die­to­die interface standards are 
emerging, paving the way for a wider 
adoption of this technique.

The chiplet approach enables rapid 
system scaling to meet new model 
needs. For example, Netflex [27], 
as presented in Figure 5(c), is con­
structed from four identical neural 
network chiplets using high­density 
fan­out wafer­level packaging [29]. 
Similarly, Nvidia’s deep neural net­
work (DNN) MCM [30], [31] integrates 
up to 36 DNN chiplets in an organic 
package. The chiplet approach also 
supports more versatile ML systems. 
For instance, Arvon [28], as shown 
in Figure 5(d), integrates an Intel 
FPGA chiplet with two systolic array 
chiplets using embedded multidie 
interconnect bridges [32], [33]. Con­
volutions and MMMs are handled by 
the systolic array chiplets, while the 
FPGA chiplet provides control and 
support functions. This combination 
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of the FPGA’s flexibility and systolic 
array’s performance addresses the 
needs of fast­evolving ML models.

A well­designed monolithic chip 
would theoretically be the best solu­
tion for achieving the highest per­
formance and energy efficiency, as 
a chiplet approach incurs integration 
overheads, such as die­to­die I/Os. 
However, in practice, a well­designed 
monolithic chip is not always feasible  
due to the rapid evolution of ML 
models and their increasing size, 
resulting in unrealistic design turn­
around time, design effort, and cost. 
Additionally, a larger die suffers 
from lower yield, and the monolithic 
die size is ultimately limited by the 
maximum available reticle size. 
Therefore, the argument in favor 
of a chiplet approach lies in its 
faster turnaround and more scal­
able design effort to accommodate 
new model changes, offering com­
petitive, though potentially not the 
absolute best possible, performance 
and energy efficiency compared to a 
theoretical monolithic die.

Regarding the scaling of chiplets, 
a previous study examined the per­
formance versus energy advantage of 
scaling up the number of chiplets for 
running DNN workloads [31]; another 
study studied the cost advantages of 
chipletized versus monolithic CPUs 
as the core numbers scale from 16 to 
64 [34]. These studies demonstrate 
the promise of chiplets in terms of 
performance, energy, and cost in 
scaled­up designs.

Conclusion
We presented an overview of two 
core architectures for digital ML 
accelerators: SIMD and systolic 
arrays. SIMD architectures are flex­
ible and provide higher utilization, 
while systolic arrays offer higher 
compute density and more efficient 
data movement. Systolic arrays can 
be further optimized to reduce com­
putational latency for critical appli­
cations and improve utilization for 
various workloads, as demonstrated 
by the PETRA design example. Opti­
mizing parameter quantization 

is crucial in ML computation, and 
hardware should be designed to 
accommodate optimal quantizations 
while remaining flexible for diverse 
workloads. Additionally, built­in 
hardware support for data sparsity 
is increasingly common, enhancing 
performance and efficiency with 
minimal overhead. Finally, ML accel­
erators are typically integrated into 
SoCs, and it is becoming practical to 
use 2.5D integration techniques to 
scale up such systems.
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