
30 SPRING 202 5 IEEE SOLID-STATE CIRCUITS MAGAZINE
1943-0582 © 2025 IEEE. All rights reserved, including rights for text and data

mining, and training of artificial intelligence and similar technologies.

OPENER ART WAS CREATED USING MICROSOFT POWER POINT AND ITS “BRAIN” ICON.

Wei Tang , Sung-Gun Cho , Jie-Fang Zhang , and Zhengya Zhang

Digital Object Identifier 10.1109/MSSC.2025.3549361

Date of current version: 20 June 2025

Design and Optimization
of Efficient Digital
Machine Learning

Accelerators

D
igital machine learn­
ing (ML) accelera­
tors are popular and
widely used. We pro­

vide an overview of
the SIMD and systolic array archi­
tectures that form the foundation of

many accelerator designs. The demand
for higher compute density, energy
efficiency, and scalability has been
increasing. To address these needs,
new ML accelerator designs have
adopted a range of techniques, includ­
ing advanced architectural design,
more efficient quantization, exploit­
ing data­level sparsity, and leverag­
ing new integration technologies. For

each of these techniques, we review
the common approaches, identify
the design tradeoffs, and discuss
their implications.

Introduction
ML has found widespread use across
various applications and has become
a dominant computational workload.
While general­purpose platforms like

An overview of architecture choices, efficient quantization, sparsity
exploration, and system integration techniques

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 07,2025 at 15:36:48 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-5204-9728
https://orcid.org/0000-0001-6934-6956
https://orcid.org/0000-0002-6609-4383
https://orcid.org/0000-0001-5963-9018

 IEEE SOLID-STATE CIRCUITS MAGAZINE SPRING 202 5 31

GPUs and CPUs remain primary for
ML, dedicated accelerators are emerg­
ing due to their higher compute den­
sity and better energy efficiency.

Dedicated accelerators can be
designed effectively and efficiently
because the core of ML algorithms
is built on a small well­defined set
of computational kernels. These ker­
nels, such as matrix multiplication
and convolution, are computation­
ally intensive, along with activation
functions, pooling, normalization,
and element­wise operations. GPUs
can parallelize these kernels, but
they are designed for a broad range
of tasks and incur a large control
and memory management overhead,
making them less efficient and more
costly. In contrast, ML accelerators
are optimized for these key computa­
tional kernels, potentially achieving
higher performance per unit of sili­
con area and significantly improved
energy efficiency.

Over the past decade, consider­
able research and development has
been invested in ML accelerator
designs. Digital accelerators offer
unique advantages like higher fidel­
ity (compared to analog and in­mem­
ory accelerators1), better scalability,
seamless integration with CPUs,
and ease of design and manufac­
turability across different process
technologies. However, they may
not achieve the top­notch energy
efficiency of in­memory and ana­
log accelerators. Most commercially
available ML accelerators, such as
Google TPU [1], [2], Amazon Inferen­
tia, Groq TSP [3], [4], and Graphcore
IPU, are digital.

This article provides an over­
view of the foundational architec­
tures of digital ML accelerators and
explores potential enhancements in
this area.

1Recent in­memory compute has shifted
toward digital in­memory computing using
binary memory cells and digital circuitry to
enhance robustness against PVT variation
and improve accuracy compared to its analog
counterpart. Digital in­memory accelerators
are beginning to emerge commercially from
companies like TSMC, d­Matrix, and Axelera AI.

Foundational Architectures
A wide variety of ML accelerators
have been demonstrated. Despite
diverse designs, they often rely on
two core architectures for matrix
multiplication and convolution:
SIMD [5], [6], [7] and systolic arrays
[8], [9], [10]. We introduce each archi­
tecture, examining how it maps and
executes computations.

SIMD Architecture
The SIMD architecture is extensively
used in CPUs and GPUs [11], [12]. It
consists of an array of process­
ing elements (PEs), each capable of
executing operations like MAC, as
shown in Figure 1. A single instruc­

tion initiates an operation across
the entire PE array, with each PE
performing the same operation. For
example, with one multiplication
instruction, each PE fetches a pair of
data, computes their product, and
writes the result back to memory. A
SIMD array can be used to compute
a vector–vector dot product, where
multiplications are followed by
a summation.

The flexibility of the SIMD archi­
tecture allows it to support various
ML computational kernels, including
vector–matrix multiplication (VMM),
matrix–matrix multiplication (MMM),
and convolution. For VMM, the input
vector and weight matrix are stored

Input Activation

2D
Convolution

MMM

1D SIMD
Architecture

Data Memory

KC × R × S

W
C

C

k = 0 k = K–1

C

im2col
Conversion

H
R R

S S
X

Y
K

C
 ×

 R
 ×

 S

X
 ×

 Y

X
 ×

 Y

K

PE PE PE PE
Instruction
Memory

Weight Output Activation

FIGURE 1: A 1D SIMD array architecture and 2D convolution operations on the array. MMM:
matrix–matrix multiplication.

Dedicated accelerators can be designed
effectively and efficiently because the core of
ML algorithms is built on a small well-defined
set of computational kernels.

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 07,2025 at 15:36:48 UTC from IEEE Xplore. Restrictions apply.

32 SPRING 202 5 IEEE SOLID-STATE CIRCUITS MAGAZINE

in memory within the SIMD array.
Each processing step fetches the
input vector and one weight vector
to perform dot product computation
until the entire weight matrix is pro­
cessed. Local memory within each
PE can cache the input vector and
reuse it, reducing memory access
and enhancing efficiency. MMM
extends VMM by cycling through
both matrices and accessing vector
pairs to compute dot products. The
matrices can also be cached locally
to allow reuse.

For 2D convolution, weights and
activations are first organized app­
ropriately via the im2col conversion,
as described in Figure 1. The
K × R × S × C weights are flattened into
a 2D RSC × K matrix. The H × W × C
activation is divided into a series
of overlapping R × S × C segments,
each used for convolution in a sliding
window fashion. These segments are
stacked into a 2D XY × RSC matrix,
where X and Y represent the num­
ber of sliding window steps in the
horizontal and vertical directions,

respectively. An MMM operation by
the SIMD array then produces a 2D
XY × K convolution output.

The flexibility of a SIMD architec­
ture supports various computations
with simple data parallelism. Til­
ing a 1D SIMD array into a 2D array
allows shared input and weight
loading from external memory
among 1D tiles, reducing bandwidth
requirements.

Systolic Array Architecture
A systolic array consists of a 2D grid
of PEs interconnected with their
neighbors, each capable of opera­
tions like MAC and equipped with
boundary registers. In each clock
cycle, all PEs perform an operation,
passing intermediate outputs to
adjacent PEs in one direction, such
as top to bottom or left to right.

To compute a VMM between an
input vector and a weight matrix,
the weight matrix is loaded into
the array, with each weight element
stored in a PE, as in Figure 2. The
input vector is sequentially intro­
duced from one side, such as the left,
with one element entering per cycle.
In the first cycle, x11 is multiplied
by w11 to compute the partial sum
x11 w11, which is then propagated
downward. In the second cycle, x12
enters the array, where x12 w21, is
computed and added to the par­
tial sum from the first cycle. Mean­
while, x12 shifts one step to the right
in the first row to calculate x12 w21.
This process continues, with input
elements moving right and partial
sums moving downward, creating a
wavelike data flow through the array.
Once the wave passes through, the
VMM operation is complete. MMM can
be performed similarly by launching
vectors in waves during each cycle,
allowing the systolic array to execute
one VMM per clock cycle. 2D convo­
lution can also be converted to MMM
and mapped onto a systolic array
using this method.

Table 1 compares the SIMD and
systolic array architectures. In gen­
eral, a SIMD array offers greater
flexibility for various operations,

Input
Matrix

× =

x11

y43

y42

w11x41

x42 x32

x33x43

x31 x21

x22 x12

x13x23

x11

w21 w22

w12 w13

w23

w31 w32 w33

y41 y32

y22y31

y21

y11

y12

y33

y23

y13

x12 x13

x21 x22 x23

x31 x32 x33

w11 w12 w13
y11 y12

y13

y21 y22 y23

y31 y32 y33

y41 y42
y43

w21 w22 w23

w31 w32 w33

x41 x42 x43

Weight
Matrix

MMM

Psum

PE

Input
Register

Psum
Register

Weight
Buffer

Input

PE

Cycle

Cycle 8
Cycle 7

Cycle 6
Cycle 5

Cycle 4
Cycle 3

5 4 3 2 1 0

PE PE

PE PE PE

PE PE PE

Output
Matrix

FIGURE 2: A 3 × 3 systolic array, a PE design, and the MMM operation on the systolic array.

TABLE 1: A COMPARISON OF SIMD AND SYSTOLIC ARRAY ARCHITECTURES.

SIMD ARRAY SYSTOLIC ARRAY

Architecture 1D/2D PE array with shared
instructions

2D PE array with neighboring
connectivity

Operations VMM, MMM MMM

Data movement More memory access Mostly local data movement

Compute density Lower Higher

Flexibility Higher Lower

Hardware utilization Higher Lower

A SIMD array offers greater flexibility for
various operations, potentially leading to
higher hardware utilization but at the cost of
higher control overhead.

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 07,2025 at 15:36:48 UTC from IEEE Xplore. Restrictions apply.

 IEEE SOLID-STATE CIRCUITS MAGAZINE SPRING 202 5 33

potentially leading to higher hard­
ware utilization but at the cost of
higher control overhead. On the
other hand, a systolic array relies on
data movement and reuse between
neighboring PEs, resulting in higher
efficiency and reduced memory
bandwidth usage compared to a
SIMD architecture.

Enhanced Systolic Array
While a conventional systolic array
(CSA) can process inputs in a pipe­
lined structure, scaling it up for
higher performance introduces
two issues. First, the pipeline
length increases with the array
size, resulting in longer latencies.
For example, an N × N array would
require N cycles to compute a col­
umn summation through N PEs.
Second, the diverse data dimen­
sions of ML workloads often pre­
vent full utilization of all PEs in a
large array.

Low-Latency and High-Utilization
Systolic Array
A recent work [10] addressed these
issues by arranging and connecting
PEs in overlays of two structures—H
tree and array—forming the PE tree
array (PETRA). As a systolic array
architecture, PETRA includes PEs
that shift input data and weights
between each other. However,
PETRA differs from the CSA in its
data path for summation outputs.
PEs in PETRA calculate products
and push them to an array­wide
adder tree, structured as an H tree,
as illustrated in Figure 3(a). This
physical implementation­friendly
structure offers two advantages: 1)
logarithmic scaling of the summa­
tion latency and 2) low­overhead
multiworkload mapping to subtrees.

The H tree in PETRA can sum
products from an n × n PE array in
log2n

2 cycles when pipelined. For
n = 16, the summation latency across
256 PEs is eight cycles, 32 times
faster than the summation of a CSA
column with N = 256 PEs. The H tree
includes n2 -1 adders, one fewer than
the CSA.

In addition to reduced latency,
PETRA leverages the binary tree
structure to sectionize data mapped
to PEs. Since a binary tree can be
divided into subtrees, PETRA can
map multiple independent work­
loads simultaneously without a
complicated network between PEs,
enhancing PE utilization. Above a

certain level in the H tree, a con­
figurable adder tree (CAT) produces
sums for various input combina­
tions, while subtrees below remain
fixed adder trees. PEs can be par­
titioned by subtrees; for example,
eight subtrees can serve as sepa­
rate partitions for a 16 × 16 PETRA,
as in Figure 3(a). An independent

(a)

CAT

Convolution 5 × 5, C = 9, K = 1
Input Activation Weight

C = 9

K = 2
C = 3

C = 3

C = 9

W
W

H
H

S = 5
S = 5R

 =
 5

R
 =

 5

Input Activation Weight
Convolution 5 × 5, C = 3, K = 2

(b)

PETRA

Subtree

p3

p3

p1

In
pu

t B
uf

fe
rs

p1

p2

p2

p5

p5

p6

p6

p4

p4

p7

p7

p8

p8

p8

p3p1 p2 p5 p6p4 p7 p8 p3p1 p2 p5 p6p4 p7 p8

CAT

p6p5p2p1 p6p5p2p1

p3 p4 p7 p8 p3 p4 p7 p8

CAT

In
pu

t B
uf

fe
rs

In
pu

t B
uf

fe
rs

FIGURE 3: (a) PETRA with a configurable adder tree (CAT). (b) The flexible mapping of
various convolution workloads to PETRA.

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 07,2025 at 15:36:48 UTC from IEEE Xplore. Restrictions apply.

34 SPRING 202 5 IEEE SOLID-STATE CIRCUITS MAGAZINE

workload can be mapped to a sub­
tree or a set of subtrees. The CAT
allows for either individual subtree
outputs or summations of subtree
outputs based on the workload
partition. This support for work­
load partitioning allows PETRA to
accommodate multiple smaller fil­
ters more efficiently, improving
hardware utilization.

In addition to VMM and MMM,
PETRA is also optimized for convo­
lution. Traditional 2D convolution
operations with a CSA employ im2col
conversion followed by MMM, which
results in significant data duplica­
tion in the input matrix, due to the
overlapping sliding segments in con­
volution. Enhanced systolic array
architectures, like Eyeriss [8] and
PETRA, avoid this duplication and
reuse the input by locally shifting the
data. Eyeriss shifts the data between
PEs both horizontally and vertically,
requiring a dense inter­PE connec­
tion. In contrast, PETRA allows only
horizontal shifts between PEs and
performs the vertical shifts inside
the input buffer, lowering inter­PE
connection overhead.

Design Example
We compare the CSA and PETRA
architectures for an exemplary
(16 × 256) × (256 × 16) MMM work­

load. A CSA spatially unrolls the
MMM operation using a 256 × 16 PE
array. Each PE includes one MAC, one
input buffer, one weight buffer, and
one output buffer. The CSA takes
256 cycles to produce the first out­
put and 256 + 16 + 16 = 288 cycles
to produce all the outputs, with a
throughput of 16 outputs/cycle.

With the same number of PEs,
the PETRA architecture employs
16 16 × 16 PETRAs. Each PE includes
one multiplier, four input buffers, 16
weight buffers, and one output buf­
fer [10]. The larger weight buffer in
a PETRA PE allows for temporal mul­
tiplexing to handle 16­times­larger
workloads. The PETRA architec­
ture takes 16 + log2 (256) = 24 cycles
to produce the first output and
16 + log2 (256) + 16 = 40 cycles to pro­
duce all outputs. It achieves the same
throughput as the CSA, with signifi­
cantly lower latency.

Compared to the CSA, PETRA
trades higher buffer usage for
more efficient convolution opera­
tions, enabling input reuse without
duplication. Overall, PETRA offers
greater flexibility to accommodate
a wide range of workload sizes and
types, and it allows the mapping of
multiple independent workloads to
improve utilization. Two examples
of convolution workloads are given

in Figure 3(b). One 5 × 5 filter with
channel size C = 9 can be mapped to
an entire 16 × 16 PETRA, utilizing all
eight subtrees, with the CAT produc­
ing one output channel. In the other
example, two 5 × 5 filters (K = 2) with
channel size C = 3 can be mapped
concurrently to two sets of subtrees
in a 16 × 16 PETRA, with each set
combining four subtrees to support
one filter. The CAT is configured
to produce two output channels in
this case.

A PETRA prototype consisting of
four 16 × 16 PETRAs was fabricated
[10]. Sample ML model mapping
results are reported in Table 2. As
illustrated in Figure 3(a), each PETRA
can be partitioned into eight sub­
trees. Thus, the mapping granularity
is a subtree of 32 PEs. If the compute
kernels, such as filters, are of compa­
rable or larger size, high utilization
is expected. However, if the compute
kernels are smaller, the utilization is
likely to decrease. This is evidenced
by the results: for VGG­16 and Tiny­
YOLO, the utilization exceeds 80%,
whereas for LeNet and AlexNet, the
utilization is in the 60% range, due to
the presence of layers with shallow
channel depth (notably, the first and
second layers) and the small number
of layers in the overall model, which
does not effectively average out the
lower utilization of the early layers.
The granularity can be adjusted in
the design to maintain a high average
utilization.

Since the base PETRA is composed
of PEs for MAC operations, the base
architecture needs to be augmented
with specialized function units to
support other operations, such as
softmax, pooling, and normaliza­
tion. Another option is to enhance
some of the PEs to handle these spe­
cial functions, but it would inevita­
bly complicate the PE design itself.
Although PETRA’s design maximizes
data reuse, high­bandwidth I/O and
memory are still necessary to sup­
port a scaled­up version of PETRA,
ensuring high utilization when pro­
cessing large models like VGG and
transformers.

TABLE 2: A SAMPLE ML MODEL MAPPING ON PETRA [10].

MODEL THROUGHPUT INPUT DIMENSION UTILIZATION

LeNet 83,900 frames/s 32 × 32 (frame) 65%

AlexNet 103 frames/s 227 × 227 (frame) 61%

VGG-16 34.9 frames/s 227 × 227 (frame) 87%

Tiny-YOLO 68.5 frames/s 416 × 416 (frame) 81%

Transformer 278.5 sequences/s 768 (embedding), 64 (key/value) 100%

The throughput is measured at a 701-MHz clock frequency. Softmax and pooling are not included.
The transformer workload is a 12-head attention with 512 sequences.

A systolic array relies on data movement and
reuse between neighboring PEs, resulting
in higher efficiency and reduced memory
bandwidth usage.

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 07,2025 at 15:36:48 UTC from IEEE Xplore. Restrictions apply.

 IEEE SOLID-STATE CIRCUITS MAGAZINE SPRING 202 5 35

Quantization Optimization
Quantization is a crucial step in
determining the number format and
precision of an ML model’s param­
eters and activations. Shorter word
lengths, lower precision, and fixed­
point (integer) quantization reduce
computational complexity, data
storage, and data movement but
may sacrifice computation quality.
Several quantization approaches
exist: post­training quantization
converts a high­precision trained
model (e.g., 32­b floating point) to
a lower­precision fixed­point for­
mat (e.g., 8­b integer), which can
degrade accuracy unless fine­tuned
or retrained. Quantization­aware
training incorporates the effects
of quantization during the training
process, potentially yielding better
postquantization accuracy.

Applying the same quantization
for all parameters and activations in
a model is not ideal, as their contri­
butions to accuracy vary. Most ML
hardware already supports different
precision levels for weights and acti­
vations, such as 4­b weights and 8­b
activations. However, optimal preci­
sion varies across models. To address
this, recent ML hardware designs
[13], [14], [15], [16] have incorporated
mixed­precision quantization, offer­
ing greater flexibility and potential
for higher speed and efficiency. In
mixed­precision quantization, dif­
ferent layers or operations of an ML
model can be quantized using vari­
ous formats and precisions or even
dynamically changing at runtime.
The hardware needs to support a
range of choices, such as 4, 8, and 16
b—integer or floating point—ideally
reusing the same unit. For example, a
16­b unit can be split to perform mul­
tiple 8­ or 4­b operations.

Nonuniform and alternative quan­
tization methods [17], [18], [19],
[20] have been proposed, such as
variable­length quantization, which
offers higher precision for lower val­
ues and supports a higher dynamic
range, providing a better tradeoff
between word length and accuracy.
While these methods reduce memory

size and data movement costs, they
often require more complex arithme­
tic circuitry, lookup tables, or encod­
ers and decoders.

Sparsity Optimization
Sparsity in activations can result
from natural sparsity in input data,
such as zero­valued information,
static scenes in video, a rectified lin­
ear unit zeroing out negative values,
or finite­precision quantization
eliminating small values. Sparsity
can also be introduced by pruning
weights. Pruning reduces the size of
ML models before deployment, min­
imizing data storage and movement
and improving speed. Typically
performed after training, pruning
methods include removing weights
below a threshold, insignificant
filters or channels, and attention
heads in transformers. Fine­tun­
ing after pruning helps recover
accuracy, with possible retraining
if needed. Iterative pruning and
training cycles may be conducted
for optimal results. After pruning,
dense model data structures become
sparse, as shown in Figure 4(a), and

are represented using formats like
coordinate list [21], [22], [23], com­
pressed sparse row/column [9], [24],
and run length coding [20], which
store only the nonzero elements
and their indices, reducing memory
size and bandwidth, as detailed in
Figure 4(b).

Pruning can be unstructured or
structured. Unstructured pruning, or
fine­grained pruning, removes indi­
vidual weights based on magnitude
or significance, without considering
the model’s structure. This can lead
to higher sparsity but creates irregu­
lar data structures, i.e., vectors and
matrices with random zero locations,
making efficient hardware mapping
challenging. Structured pruning, or
coarse­grained pruning, removes
entire blocks, such as input chan­
nels, filters, or layers, retaining regu­
lar vector and matrix data structures,
as in Figure 4(a). This facilitates effi­
cient use of standard hardware but
imposes restrictions on pruning and
may have a greater impact on model
accuracy.

An accelerator can be designed to
process sparse (compressed) data.

Unstructured
(Fine-Grained)

COO Format

Value Value

Row Id

Fetch
Compressed
Sparse IA, W

Match
Nonzero

W–IA Pairs

Compute
Nonzero

Partial Sums

Reduce
OA Partial
Sum Traffic

Write Back
to Output
OA Buffer

Data
and

Index

Partial
Sums

W-IA
Pairs

Data
and

Index

Column Id

a b c d e

0 1 1 2 3

1 1 2 2 3

a b c d e a b c d 0 e

1 3 0 3 3 10 1 3 4 5

1 1 2 2 3

Row Pointer

Column Id

Value

2-b Run

CSR Format RLC Format

Structured
(Block)

Structured
(Channel /Filter)

a
b c

d
e

(a)

(b)

(c)

FIGURE 4: (a) Unstructured and structured pruning. (b) Compression formats: coordinate list
(COO), compressed sparse row (CSR), and run length coding (RLC). (c) The sparse data process-
ing flow. IA: input activation; W: weight; OA: output activation.

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 07,2025 at 15:36:48 UTC from IEEE Xplore. Restrictions apply.

36 SPRING 202 5 IEEE SOLID-STATE CIRCUITS MAGAZINE

Besides the core computing unit,
such as a SIMD unit or a systolic
array, it requires a front­end index­
ing unit to match nonzero activa­
tions and weights for computing
MAC and a write­back unit to deter­
mine addresses and prepare write
back, as in Figure 4(c). These units
must account for varying levels and
structures of sparsity, which can dif­
fer significantly between models and
layers. Consequently, hardware opti­
mized for one sparsity pattern may
not handle others effectively.

Recent accelerator designs [9], [20],
[21], [22], [23], [24], [25] have become
more flexible, supporting various
sparsity levels and structures to meet
different models’ needs. One method
uses multiple cores, each optimized
for a specific sparsity level or struc­
ture, with workloads directed to the
most suitable core. A more advanced

method [26] imposes structure on
fine­grained pruning by dividing
weight matrices into uniformly sized
groups, which are pruned indepen­
dently. The prune rate for each group
can be set to a limited number of
choices, offering flexibility within
a structure and ensuring efficient
hardware utilization.

System Integration
ML models are rapidly growing
in both size and variety, posing a
major challenge in evolving hard­
ware at the same pace. However,
as models evolve, the core com­
pute kernels remain consistent.
Differences among models mainly
involve the composition and sizes
of these kernels. This drives the
design of ML hardware using mod­
ular blocks, enabling reuse in con­
structing new systems.

Modular system construction can
take the form of SoCs, typically con­
sisting of CPU cores, a SIMD unit or
systolic array for convolutions, VMM,
MMM, a high­performance memory
system, and fast I/Os, as displayed
in Figure 5(a). The SIMD unit or sys­
tolic array handles intensive com­
putations, while the CPU manages
control, scheduling, and special
functions, offering versatility for
evolving workloads.

One drawback of monolithic SoCs
is that every model change requires
chip redesign and new fabrication.
A promising alternative is chiplet­
based integration, as described in
Figure 5(b), where systems are con­
structed from modular chiplets, each
specializing in a particular func­
tion. This approach allows systems
to grow by incrementally adding
more chiplets and different types
of chiplets. To realize chiplet­based
integration, it is essential to lever­
age advanced packaging to place
chiplets close together, route dense
wiring between them, and provide
a high­bandwidth energy­efficient
die­to­die interface for seamless
communication. Advanced packag­
ing is becoming more accessible, and
die­to­die interface standards are
emerging, paving the way for a wider
adoption of this technique.

The chiplet approach enables rapid
system scaling to meet new model
needs. For example, Netflex [27],
as presented in Figure 5(c), is con­
structed from four identical neural
network chiplets using high­density
fan­out wafer­level packaging [29].
Similarly, Nvidia’s deep neural net­
work (DNN) MCM [30], [31] integrates
up to 36 DNN chiplets in an organic
package. The chiplet approach also
supports more versatile ML systems.
For instance, Arvon [28], as shown
in Figure 5(d), integrates an Intel
FPGA chiplet with two systolic array
chiplets using embedded multidie
interconnect bridges [32], [33]. Con­
volutions and MMMs are handled by
the systolic array chiplets, while the
FPGA chiplet provides control and
support functions. This combination

Chip Package

Cross-Section View Cross-Section View

HD-FOWLP

CPU

Memory
Interposer

CPU

M
em

or
y Accelerator Accelerator

Accelerator Accelerator

I/O

Accelerator
(Systolic Array,

SIMD, and
so on)

C4 Bumps
Microbumps

Conventional SoC 2.5D Chiplet Integration

DNN
Chiplet2DNN

Chiplet1

DNN
Chiplet3

DNN
Chiplet4

Stratix 10 FPGA
Chiplet EMIBs

DSP2
(R180)

DSP1
(R0)

13.5 m
m

13.5 mm

(a) (b)

(c) (d)

MCP

FIGURE 5: System integration: (a) conventional SoC and (b) chiplet integration. Examples of
chiplet integration: (c) homogeneous [27] and (d) heterogeneous [28]. HD-FOWLP: high-
density fan-out wafer-level packaging; DNN: deep neural network; EMIB: embedded multidie
interconnect bridge.

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 07,2025 at 15:36:48 UTC from IEEE Xplore. Restrictions apply.

 IEEE SOLID-STATE CIRCUITS MAGAZINE SPRING 202 5 37

of the FPGA’s flexibility and systolic
array’s performance addresses the
needs of fast­evolving ML models.

A well­designed monolithic chip
would theoretically be the best solu­
tion for achieving the highest per­
formance and energy efficiency, as
a chiplet approach incurs integration
overheads, such as die­to­die I/Os.
However, in practice, a well­designed
monolithic chip is not always feasible
due to the rapid evolution of ML
models and their increasing size,
resulting in unrealistic design turn­
around time, design effort, and cost.
Additionally, a larger die suffers
from lower yield, and the monolithic
die size is ultimately limited by the
maximum available reticle size.
Therefore, the argument in favor
of a chiplet approach lies in its
faster turnaround and more scal­
able design effort to accommodate
new model changes, offering com­
petitive, though potentially not the
absolute best possible, performance
and energy efficiency compared to a
theoretical monolithic die.

Regarding the scaling of chiplets,
a previous study examined the per­
formance versus energy advantage of
scaling up the number of chiplets for
running DNN workloads [31]; another
study studied the cost advantages of
chipletized versus monolithic CPUs
as the core numbers scale from 16 to
64 [34]. These studies demonstrate
the promise of chiplets in terms of
performance, energy, and cost in
scaled­up designs.

Conclusion
We presented an overview of two
core architectures for digital ML
accelerators: SIMD and systolic
arrays. SIMD architectures are flex­
ible and provide higher utilization,
while systolic arrays offer higher
compute density and more efficient
data movement. Systolic arrays can
be further optimized to reduce com­
putational latency for critical appli­
cations and improve utilization for
various workloads, as demonstrated
by the PETRA design example. Opti­
mizing parameter quantization

is crucial in ML computation, and
hardware should be designed to
accommodate optimal quantizations
while remaining flexible for diverse
workloads. Additionally, built­in
hardware support for data sparsity
is increasingly common, enhancing
performance and efficiency with
minimal overhead. Finally, ML accel­
erators are typically integrated into
SoCs, and it is becoming practical to
use 2.5D integration techniques to
scale up such systems.

Acknowledgment
We acknowledge the funding of this
work by the ACE Center for Evolv­
able Computing and the Center for
Ubiquitous Connectivity, sponsored
by the Semiconductor Research
Corporation and DARPA, under the
JUMP 2.0 Program.

References
[1] N. P. Jouppi et al., “In­datacenter perfor­

mance analysis of a tensor processing
unit,” in Proc. 44th Annu. Int. Symp. Com-
put. Archit. (ISCA), 2017, pp. 1–12.

[2] N. P. Jouppi et al., “Ten lessons from three
generations shaped Google’s TPUv4i: In­
dustrial product,” in Proc. ACM/IEEE 48th
Int. Symp. Comput. Archit. (ISCA), 2021,
pp. 1–14, doi: 10.1109/ISCA52012.2021.
00010.

[3] D. Abts et al., “Think fast: A tensor
streaming processor (TSP) for accelerat­
ing deep learning workloads,” in Proc.
ACM/IEEE 47th Annu. Int. Symp. Comput.
Archit. (ISCA), 2020, pp. 145–158, doi:
10.1109/ISCA45697.2020.00023.

[4] D. Abts et al., “A software­defined tensor
streaming multiprocessor for large­scale
machine learning,” in Proc. 49th Annu. Int.
Symp. Comput. Archit. (ISCA), New York,
NY, USA: ACM, 2022, pp. 567–580, doi:
10.1145/3470496.3527405.

[5] D. Rossi et al., “Vega: A ten­core SoC for IoT
endnodes with DNN acceleration and cog­
nitive wake­up from MRAM­based state­
retentive sleep mode,” IEEE J. Solid-State
Circuits, vol. 57, no. 1, pp. 127–139, Jan.
2022, doi: 10.1109/JSSC.2021.3114881.

[6] G. K. Chen, P. C. Knag, C. Tokunaga, and
R. K. Krishnamurthy, “An eight­core RISC­
V processor with compute near last level
cache in intel 4 CMOS,” IEEE J. Solid-State
Circuits, vol. 58, no. 4, pp. 1117–1128, Apr.
2023, doi: 10.1109/JSSC.2022.3228765.

[7] S. K. Lee, P. N. Whatmough, M. Donato,
G. G. Ko, D. Brooks, and G.­Y. Wei, “SMIV:
A 16­nm 25­mm2 SoC for IoT with arm
cortex­a53, eFPGA, and coherent accel­
erators,” IEEE J. Solid-State Circuits, vol.
57, no. 2, pp. 639–650, Feb. 2022, doi:
10.1109/JSSC.2021.3115466.

[8] Y.­H. Chen, T. Krishna, J. S. Emer, and V.
Sze, “Eyeriss: An energy­efficient recon­
figurable accelerator for deep convolu­
tional neural networks,” IEEE J. Solid-State
Circuits, vol. 52, no. 1, pp. 127–138, Jan.
2017, doi: 10.1109/JSSC.2016.2616357.

[9] Y.­H. Chen, T.­J. Yang, J. Emer, and V.
Sze, “Eyeriss v2: A flexible accelera­
tor for emerging deep neural networks
on mobile devices,” IEEE J. Emerg. Sel.
Topics Circuits Syst., vol. 9, no. 2, pp.
292–308, Jun. 2019, doi: 10.1109/JET­
CAS.2019.2910232.

[10] S.­G. Cho, W. Tang, C. Liu, and Z. Zhang,
“PETRA: A 22nm 6.97 TFLOPS/W AIB­en­
abled configurable matrix and convolu­
tion accelerator integrated with an Intel
Stratix 10 FPGA,” in Proc. Symp. VLSI Cir-
cuits (VLSI), 2021, pp. 1–2, doi: 10.23919/
VLSICircuits52068.2021.9492517.

[11] Intel® 64 and IA-32 Architectures Software
Developer’s Manual Volume 1: Basic Archi-
tecture, Intel, Santa Clara, CA, USA, Apr.
2022, pp. 5–16–5–19.

[12] R. Krashinsky, O. Giroux, S. Jones, N.
Stam, and S. Ramaswamy, “NVIDIA am­
pere architecture in­depth,” NVIDIA De-
veloper, May 14, 2020. [Online]. Available:
https://developer.nvidia.com/blog/nvidia
­ampere­architecture­in­depth/

[13] C.­H. Lin et al., “A quad­core AI pro­
cessing unit for generative AI in 4nm
5G smartphone SoC,” in Proc. IEEE
Symp. VLSI Technol. Circuits, 2024, pp.
1–2, doi: 10.1109/VLSITechnologyand­
Cir46783.2024.10631508.

[14] V. Jain, S. Giraldo, J. D. Roose, B. Boons,
L. Mei, and M. Verhelst, “TinyVers: A 0.8­
17 TOPS/W, 1.7 mW­20 mW, tiny versa­
tile system­on­chip with state­retentive
eMRAM for machine learning infer­
ence at the extreme edge,” in Proc. IEEE
Symp. VLSI Technol. Circuits, 2022, pp.
20–21, doi: 10.1109/VLSITechnologyand­
Cir46769.2022.9830409.

[15] B. Keller et al., “A 17–95.6 TOPS/W deep
learning inference accelerator with per­vec­
tor scaled 4­bit quantization for transform­
ers in 5nm,” in Proc. IEEE Symp. VLSI Technol.
Circuits, 2022, pp. 16–17, doi: 10.1109/VLSI­
TechnologyandCir46769.2022.9830277.

[16] T. Tambe et al., “22.9 A 12nm 18.1TFLOPs/W
sparse transformer processor with en­
tropy­based early exit, mixed­precision
predication and fine­grained power man­
agement,” in Proc. IEEE Int. Solid-State Cir-
cuits Conf. (ISSCC), 2023, pp. 342–344, doi:
10.1109/ISSCC42615.2023.10067817.

[17] J. Wang, J. Lin, and Z. Wang, “Efficient
hardware architectures for deep convo­
lutional neural network,” IEEE Trans. Cir-
cuits Syst. I, Reg. Papers, vol. 65, no. 6,
pp. 1941–1953, Jun. 2018, doi: 10.1109/
TCSI.2017.2767204.

[18] Z. Liu, K.­T. Cheng, D. Huang, E. Xing, and
Z. Shen, “Nonuniform­to­uniform quanti­
zation: Towards accurate quantization via
generalized straight­through estimation,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pat-
tern Recognit. (CVPR), Los Alamitos, CA,
USA, 2022, pp. 4932–4942, doi: 10.1109/
CVPR52688.2022.00489.

[19] K. Prabhu et al., “MINOTAUR: An edge
transformer inference and training ac­
celerator with 12 MBytes on­chip re­
sistive RAM and fine­grained spatio­
temporal power gating,” in Proc. IEEE
Symp. VLSI Technol. Circuits, 2024, pp.
1–2, doi: 10.1109/VLSITechnologyand­
Cir46783.2024.10631515.

[20] S. Moon, H.­G. Mun, H. Son, and J.­Y. Sim,
“Multipurpose deep­learning accelerator
for arbitrary quantization with reduc­
tion of storage, logic, and latency waste,”
IEEE J. Solid-State Circuits, vol. 59, no.
1, pp. 143–156, Jan. 2024, doi: 10.1109/
JSSC.2023.3312615.

[21] Z. Yuan et al., “STICKER: An energy­
eff icient multi­sparsity compatible

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 07,2025 at 15:36:48 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/ISCA52012.2021.00010
http://dx.doi.org/10.1109/ISCA52012.2021.00010
http://dx.doi.org/10.1109/ISCA45697.2020.00023
http://dx.doi.org/10.1145/3470496.3527405
http://dx.doi.org/10.1109/JSSC.2021.3114881
http://dx.doi.org/10.1109/JSSC.2022.3228765
http://dx.doi.org/10.1109/JSSC.2021.3115466
http://dx.doi.org/10.1109/JSSC.2016.2616357
http://dx.doi.org/10.1109/JETCAS.2019.2910232
http://dx.doi.org/10.1109/JETCAS.2019.2910232
http://dx.doi.org/10.23919/VLSICircuits52068.2021.9492517
http://dx.doi.org/10.23919/VLSICircuits52068.2021.9492517
https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
http://dx.doi.org/10.1109/VLSITechnologyandCir46783.2024.10631508
http://dx.doi.org/10.1109/VLSITechnologyandCir46783.2024.10631508
http://dx.doi.org/10.1109/VLSITechnologyandCir46769.2022.9830409
http://dx.doi.org/10.1109/VLSITechnologyandCir46769.2022.9830409
http://dx.doi.org/10.1109/VLSITechnologyandCir46769.2022.9830277
http://dx.doi.org/10.1109/VLSITechnologyandCir46769.2022.9830277
http://dx.doi.org/10.1109/ISSCC42615.2023.10067817
http://dx.doi.org/10.1109/TCSI.2017.2767204
http://dx.doi.org/10.1109/TCSI.2017.2767204
http://dx.doi.org/10.1109/CVPR52688.2022.00489
http://dx.doi.org/10.1109/CVPR52688.2022.00489
http://dx.doi.org/10.1109/VLSITechnologyandCir46783.2024.10631515
http://dx.doi.org/10.1109/VLSITechnologyandCir46783.2024.10631515
http://dx.doi.org/10.1109/JSSC.2023.3312615
http://dx.doi.org/10.1109/JSSC.2023.3312615

38 SPRING 202 5 IEEE SOLID-STATE CIRCUITS MAGAZINE

accelerator for convolutional neural net­
works in 65­nm CMOS,” IEEE J. Solid-State
Circuits, vol. 55, no. 2, pp. 465–477, Feb.
2020, doi: 10.1109/JSSC.2019.2946771.

[22] Y. Qin et al., “A 52.01 TFLOPS/W diffu­
sion model processor with inter­time­
step convolution­attention­redundancy
elimination and bipolar floating­point
multiplication,” in Proc. IEEE Symp. VLSI
Technol. Circuits, 2024, pp. 1–2, doi:
10.1109/VLSITechnologyandCir46783.
2024.10631322.

[23] X. Feng et al., “A 28­nm energy­efficient
sparse neural network processor for
point cloud applications using block­
wise online neighbor searching,” IEEE
J. Solid-State Circuits, vol. 59, no. 9, pp.
3070–3081, Sep. 2024, doi: 10.1109/
JSSC.2024.3386878.

[24] A. Parashar et al., “SCNN: An accelerator for
compressed­sparse convolutional neural
networks,” in Proc. 44th Annu. Int. Symp.
Comput. Archit. (ISCA), 2017, pp. 27–40.

[25] J.­F. Zhang, C.­E. Lee, C. Liu, Y. S. Shao, S.
W. Keckler, and Z. Zhang, “SNAP: An effi­
cient sparse neural acceleration proces­
sor for unstructured sparse deep neural
network inference,” IEEE J. Solid-State
Circuits, vol. 56, no. 2, pp. 636–647, Feb.
2021, doi: 10.1109/JSSC.2020.3043870.

[26] H. Li, A. Kadav, I. Durdanovic, H. Samet,
and H. P. Graf, “Pruning filters for efficient
ConvNets,” 2016, arXiv:1608.08710.

[27] T. Chou et al., “NetFlex: A 22nm multi­
chiplet perception accelerator in high­
density fan­out wafer­level packaging,”
in Proc. IEEE Symp. VLSI Technol. Circuits,
2022, pp. 208–209, doi: 10.1109/VLSI­
TechnologyandCir46769.2022.9830249.

[28] W. Tang et al., “Arvon: A heterogeneous
system­in­package integrating FPGA and
DSP chiplets for versatile workload ac­
celeration,” IEEE J. Solid-State Circuits, vol.
59, no. 4, pp. 1235–1245, Apr. 2024, doi:
10.1109/JSSC.2023.3343457.

[29] M. D. Rotaru, W. Tang, D. Rahul, and
Z. Zhang, “Design and development of
high density fan­out wafer level pack­
age (HD­FOWLP) for deep neural net­
work (DNN) chiplet accelerators using
advanced interface bus (AIB),” in Proc.
IEEE 71st Electron. Compon. Technol. Conf.
(ECTC), 2021, pp. 1258–1263, doi: 10.1109/
ECTC32696.2021.00204.

[30] B. Zimmer et al., “A 0.32–128 TOPS, scal­
able multi­chip­module­based deep neu­
ral network inference accelerator with
ground­referenced signaling in 16 nm,”
IEEE J. Solid-State Circuits, vol. 55, no.
4, pp. 920–932, Apr. 2020, doi: 10.1109/
JSSC.2019.2960488.

[31] Y. S. Shao et al., “Simba: Scaling deep­
learning inference with multi­chip­
module­based architecture,” in Proc.
52nd Annu. IEEE/ACM Int. Symp. Micro-
archit., 2019, pp. 14–27, doi: 10.1145/
3352460.3358302.

[32] R. Mahajan et al., “Embedded multi­die in­
terconnect bridge (EMIB) ­­ A high density,
high bandwidth packaging interconnect,”
in Proc. IEEE 66th Electron. Compon. Tech-
nol. Conf. (ECTC), 2016, pp. 557–565, doi:
10.1109/ECTC.2016.201.

[33] C. Liu, J. Botimer, and Z. Zhang, “A
256Gb/s/mm­shoreline AIB­compatible
16nm FinFET CMOS chiplet for 2.5D in­
tegration with Stratix 10 FPGA on EMIB
and tiling on silicon interposer,” in
Proc. IEEE Custom Integr. Circuits Conf.
(CICC), 2021, pp. 1–2, doi: 10.1109/
CICC51472.2021.9431555.

[34] S. Naffziger, K. Lepak, M. Paraschou, and M.
Subramony, “2.2 AMD chiplet architecture

for high­performance server and desktop
products,” in Proc. IEEE Int. Solid-State Cir-
cuits Conf. (ISSCC), 2020, pp. 44–45, doi:
10.1109/ISSCC19947.2020.9063103.

About the Authors
Wei Tang (weitang@umich.edu)
received his B.S. degree from
National Chiao­Tung University,
Hsinchu, Taiwan, in 2011 and his
M.S. and Ph.D. degrees in electri­
cal engineering from the University
of Michigan in 2019. He previously
worked as a visiting Ph.D. at Lund
University, Lund, Sweden, and as
a graduate research intern at Intel
Labs. He is currently an assistant
research scientist with the Depart­
ment of Electrical Engineering and
Computer Science, University of
Michigan, Ann Arbor, MI 48109 USA.
His research interests include high­
speed, energy­efficient, and flexible
VLSI designs for communications,
machine learning, and robotics. He
is a Member of IEEE.

Sung-Gun Cho (sunggun@umich.
edu) received his B.S. and M.S.
degrees in electrical engineering
from the Korea Advanced Institute
of Science and Technology, Dae­
jeon, South Korea, in 2010 and 2012,
respectively, and his Ph.D. degree in
electrical and computer engineer­
ing from the University of Michigan,
Ann Arbor, MI, USA, in 2020. From
2012 to 2015, he was with SK Hynix,
South Korea, where he worked on
SoC design and implementation of
error control coding. In 2020, he
joined the Intel Programmable Solu­
tions Group CTO Office as an SoC
design engineer to develop chiplets
for various applications. He is cur­
rently with Google, Mountain View,
CA 94043 USA. His research interests
include energy­efficient high­perfor­
mance design for signal processing,
error control coding, and machine
learning acceleration.

Jie-Fang Zhang (jfzhang@umich.
edu) received his B.S. degree in elec­
trical engineering from National Tai­
wan University, Taipei, Taiwan, in
2015 and his M.S. degree in computer
science and engineering and Ph.D.
degree in electrical and computer

engineering from the University
of Michigan, Ann Arbor, MI, USA,
in 2018 and 2022, respectively. He
joined Nvidia, Santa Clara, CA 95050
USA, in 2022 as a deep learning archi­
tect, focusing on GPU performance
analysis, modeling, and optimiza­
tion for deep learning models. His
research interests include energy­
efficient hardware architecture and
accelerator design for machine learn­
ing, computer vision, and robotics
applications. He is a Senior Member
of IEEE.

Zhengya Zhang (zhengya@umich.
edu) received his B.A.Sc. degree in
computer engineering from the Uni­
versity of Waterloo, Waterloo, ON,
Canada, in 2003 and his M.S. and
Ph.D. degrees in electrical engineer­
ing from the University of California,
Berkeley (UC Berkeley), Berkeley, CA,
USA, in 2005 and 2009, respectively.
He has been a faculty member with
the University of Michigan, Ann
Arbor, MI 48109 USA, since 2009,
where he is currently a professor with
the Department of Electrical Engi­
neering and Computer Science. His
research interests include low­power
and high­performance VLSI circuits
and systems for computing, com­
munications, and signal processing.
He was a recipient of the University
of Michigan College of Engineering
Neil Van Eenam Memorial Award in
2019, the Intel Early Career Faculty
Award in 2013, the National Science
Foundation CAREER Award in 2011,
and the David J. Sakrison Memorial
Prize from UC Berkeley in 2009. He
has served on the technical program
committee of the IEEE Custom Inte­
grated Circuits Conference and the
IEEE VLSI Symposium on Technology
and Circuits. Additionally, he served
as an associate editor for IEEE Trans-
actions on Very Large Scale Integra-
tion (VLSI) Systems, IEEE Transactions
on Circuits and Systems I: Regular
Papers, and IEEE Transactions on Cir-
cuits and Systems II: Express Briefs.
He was also an IEEE Solid­State Cir­
cuits Society Distinguished Lecturer.
He is a Senior Member of IEEE.

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 07,2025 at 15:36:48 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/JSSC.2019.2946771
http://dx.doi.org/10.1109/VLSITechnologyandCir46783.2024.10631322
http://dx.doi.org/10.1109/VLSITechnologyandCir46783.2024.10631322
http://dx.doi.org/10.1109/JSSC.2024.3386878
http://dx.doi.org/10.1109/JSSC.2024.3386878
http://dx.doi.org/10.1109/JSSC.2020.3043870
http://dx.doi.org/10.1109/VLSITechnologyandCir46769.2022.9830249
http://dx.doi.org/10.1109/VLSITechnologyandCir46769.2022.9830249
http://dx.doi.org/10.1109/JSSC.2023.3343457
http://dx.doi.org/10.1109/ECTC32696.2021.00204
http://dx.doi.org/10.1109/ECTC32696.2021.00204
http://dx.doi.org/10.1109/JSSC.2019.2960488
http://dx.doi.org/10.1109/JSSC.2019.2960488
http://dx.doi.org/10.1145/3352460.3358302
http://dx.doi.org/10.1145/3352460.3358302
http://dx.doi.org/10.1109/ECTC.2016.201
http://dx.doi.org/10.1109/CICC51472.2021.9431555
http://dx.doi.org/10.1109/CICC51472.2021.9431555
http://dx.doi.org/10.1109/ISSCC19947.2020.9063103
mailto:weitang@umich.edu
mailto:sunggun@umich.edu
mailto:sunggun@umich.edu
mailto:jfzhang@umich.edu
mailto:jfzhang@umich.edu
mailto:zhengya@umich

	030_17mssc02-tang-3549361

