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Iterative Detector Decoder for 4 × 4 256-QAM
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Abstract— Iterative detection and decoding (IDD) employs a
soft-in soft-out (SISO) detector and an SISO forward error
correction (FEC) decoder in an iterative loop to improve the
receiver performance in multiple-input multiple-output (MIMO)
wireless communications. This paper describes a 256-QAM
4 × 4 prototype IDD design made up of a minimum mean square
error (MMSE) detector and a nonbinary low-density parity-check
(NBLDPC) decoder with the symbol size of the NBLDPC code
matched to the modulation to enhance performance. By directly
translating between nonbinary symbols and constellation points,
the detector–decoder interface is simplified. We present a Gb/s
MMSE detector using a shortened tandem scheduling, a low-
latency dual-lookup reciprocal unit, an optimized interleaved
microarchitecture, and a Gb/s NBLDPC decoder with efficient
internal skipping paths and memory allocation. The designs
were demonstrated in a 0.7-mm2 1.38-Gb/s MMSE detector and
a 1.7-mm2 1.02-Gb/s-NBLDPC decoder that are integrated in a
65-nm CMOS test chip. The chip is measured to achieve 19.2 pJ/b
in detection and 20.1 pJ/b/iteration in decoding.

Index Terms— Iterative detection and decoding (IDD), min-
imum mean square error (MMSE) detector, multiple-input
multiple-output (MIMO) processor, nonbinary low-density
parity-check (NBLDPC) decoder.

I. INTRODUCTION

ADVANCED wireless communication standards, such as
IEEE 802.11n/ac and 3GPP LTE Advanced Release

10/11 [1], rely on multiple-input multiple-output (MIMO)
communication to increase spectral efficiency and data rate.
For example, IEEE 802.11n uses up to 4 × 4 antenna
configuration (four-transmit and four-receive antennas), IEEE
802.11ac uses up to 8 × 4 antenna configuration, and 3GPP
LTE Advanced Release 10 [1] calls for up to 8 × 8 antenna
configuration. The enhancement in spectral efficiency and
higher data rates are obtained at a significant computational
cost. Workload profiling indicates that MIMO detection at the
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Fig. 1. PER comparison between MMSE-LDPC IDD design and
MMSE-NBLDPC GF(16) IDD design under a 4 × 4 256-QAM MIMO
system.

receiver costs up to 42% of the computing cycles and high
power consumption [2].

The latest MIMO wireless systems have adopted iterative
detection and decoding (IDD) to reduce the signal-to-noise
ratio (SNR) required for a reliable transmission. An IDD
system consists of a soft-in soft-out (SISO) detector to cancel
interference and an SISO forward error correction (FEC)
decoder to remove errors. Detector and decoder exchange soft
information to improve the error rate iteratively.

The state-of-the-art IDDs based on sphere decoding (SD)
and binary low-density parity-check (LDPC) FEC have been
demonstrated in [3] and [4] for up to 4 × 4 64-QAM
systems, achieving up to 396 Mb/s in detection throughput [3]
and 586 Mb/s in decoding throughput [4]. As antenna con-
figuration continues to scale beyond 4 × 4 and modulation
order increases above 64-QAM, the complexity of an SISO
SD detector is expected to grow exponentially, making it
impractical. An SISO minimum mean square error (MMSE)
detector [5], [6] features a lower complexity and a higher
throughput than an SISO SD detector. An MMSE detector can
be more easily scaled to support a large antenna configuration
and a high-order modulation. The drawback of an MMSE
detector is its lower detection performance (measured in error
rate). However, an IDD system can overcome this weakness
by iteration.

Recent IDD designs have used LDPC codes for
FEC [3], [4], [6], [7]. However, binary LDPC codes are
not matched to high-order modulations, and a loss is
expected. Compared to binary LDPC codes, nonbinary
LDPC (NBLDPC) codes defined over the Galois field (GF)
outperform binary LDPC codes of a comparable block
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Fig. 2. Illustration of an Nr × Nt IDD MIMO system with an SISO MMSE
detector and an NBLDPC decoder.

length in coding gain [8]. Even at a moderate block length,
an NBLDPC code offers a superior coding gain, and the
coding gain improves with a larger GF size. Used in an IDD
system, an NBLDPC code enhances the detection-decoding
performance [9]. For example, a 1/2-rate 640-b GF(16)
NBLDPC-based IDD system achieves over 2-dB gain over a
1/2-rate 640-b binary LDPC-based IDD system using half as
many iterations as shown in Fig. 1.

Despite the good coding gain, the decoding of NBLDPC
codes over a large GF(q) requires intensive computation and
large memory. To reduce the decoding complexity, Declercq
and Fossorier [10] and Voicila et al. [11] proposed the
extended min-sum (EMS) decoding algorithm, using only
nm , where nm � q , most reliable entries in a q-element
log-likelihood ratio vector (LLRV) in belief-propagation
decoding. The truncation reduces the complexity of elementary
decoding operations from O(q2) to O(nm log nm), with only
marginal bit error rate (BER) loss. Using the EMS algorithm,
the work by Park et al. [12] demonstrated a Gb/s NBLDPC
decoder.

In this paper, we present a high-speed 256-QAM
4 × 4 MMSE-NBLDPC IDD implementation. We match the
GF size of the NBLDPC code to the QAM constellation
size, thereby improving the performance and simplifying the
detector–decoder interface. The superb error-correcting capa-
bility provided by the NBLDPC code allows us to implement
the EMS decoding using only the top dozen entries out of a
256-entry LLRV to reduce the complexity of the decoder. Both
the detector and the decoder designs are optimized through
the algorithm, architecture, and circuit techniques to achieve
higher throughput and lower power compared to the prior art.

The rest of this paper is organized as follows. In Section II,
we present the background of the MMSE detection algorithm
and the EMS decoding algorithm. Our unique nonbinary
interface design is described in Section III. The circuit, archi-
tecture, and algorithm co-optimization for the MMSE detector
and the NBLDPC decoder are described in Sections IV and V,
respectively. Section VI provides the silicon measurement
results, and conclusions are drawn in Section VII.

II. BACKGROUND

The block diagram of an IDD MIMO system is shown
in Fig. 2. At the MIMO transmitter, the source bits are
encoded by an FEC encoder into a code word. The code
word is mapped to QAM symbols s[k], where k = 1, . . . , Nc ,

Fig. 3. Performance of the designed 256-QAM 4 × 4 MMSE-NBLDPC
IDD chip (with five iterations of NBLDPC decoding).

corresponding to the kth OFDM tone (a total of Nc tones
used). The symbol vectors are subsequently sent over Nt par-
allel transmit antennas. The signals travel through a wireless
channel that introduces fading, interference, and noise. At the
MIMO receiver, Nr antennas pick up the received symbols
in every OFDM tone y[k], k = 1, . . . , Nc . After dropping the
index k for the convenience, the per-tone received signal vector
y can be modeled as

y = Hs + n (1)

where y ∈ C
Nr×1, channel matrix H ∈ C

Nr×Nt , transmitted
symbols s ∈ CNt×1, and the complex Gaussian noise n is
modeled as CN (0, N0).

An SISO MMSE detector performs MMSE filtering to can-
cel the interference and outputs the soft symbols and variances
that represent the estimated symbols in a signal constellation
and the likelihoods of the symbols, respectively. The soft
symbols and variances are converted to a prior log-likelihood
ratio (LLR) to be used in an SISO FEC decoder. An SISO FEC
decoder performs error correction and outputs the posterior
LLRs. The posterior LLRs are converted to soft symbols and
variances and fed back to the SISO detector for the next
IDD iteration. IDD iterations improve the quality of detection
and decoding. A successful convergence is indicated by the
convergence of soft symbols and narrowing of variances.

Fig. 3 shows the BER and frame error rate (FER) curves
of the proposed 256-QAM 4 × 4 IDD system. The channel
model is a 4 × 4 TGn Type-C channel [13]. The error rates
improve with IDD iterations: a 3-dB gain is achieved from
zero iteration (I = 0, also called open loop) to three iterations
(I = 3). The performance gain is at the cost of higher latency
and energy of receiver processing. In Sections II-A and II-B,
we provide a brief introduction to MMSE detection and
NBLDPC decoding.

A. MMSE Detection

In this paper, we use the MMSE parallel interference
cancellation (MMSE-PIC) algorithm based on [5] as described
in the following. In an IDD system, step 1 (pre-processing) is
only done in the first iteration.

1) Pre-Processing: Compute Gram matrix G = HHH and
perform match filtering yM F = HHy.

2) Initialization: Compute soft symbols st and variances
σ 2

t , t = 1, . . . , Nt , using the decoder’s LLRs in the
previous IDD iteration (in the first iteration, st and σ 2

t
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are initialized to zero and average symbol energy Es ,
respectively) and obtain MMSE filter matrix A

A = G� + N0I (2)

where � = diag(σ 2
1 , . . . , σ 2

Nt
).

3) Matrix Inversion: Compute A−1 by performing
lower-upper decomposition (LUD) to get A = LU,
followed by forward substitution (f-sub) to get L−1 and
backward substitution (b-sub) to get A−1.

4) Interference Cancellation:

yI C
t = yM F −

∑

j �=t

g j s j , t = 1 . . . Nt (3)

where g j is the j th column of G.
5) MMSE Filtering:

ŝt = μ−1
t aH

t yI C
t , t = 1 . . . Nt

σ̂ 2
t = μ−1

t − σ 2
t (4)

where aH
t denotes the tth row of A−1 and μt = aH

t gt .

The outputs of the detector are the estimated soft symbols
ŝt and variances σ̂ 2

t . In an IDD system, the soft symbols and
variances are converted to LLRs for FEC decoding.

B. Nonbinary LDPC Code and EMS Decoding

An N × M regular-(dv, dc) NBLDPC code over GF(q) can
be depicted in a bipartite graph that consists of N VNs and
M CNs. Each VN is connected to dv CNs and each CN is
connected to dc VNs. The weight of the connection between
VN j and CN i is α j,i , α j,i ∈ GF(q).

An NBLDPC code is decoded by passing the messages
between VNs and CNs. A message passed between a VN and
a CN is a vector of q LLRs, called an LLRV, containing one
LLR per GF(q) symbol. The EMS decoding algorithm keeps
only nm , nm � q , most reliable LLRs, and uses a GF index
vector (GFIV) to keep track of the nm symbols. The LLRs
in an LLRV are sorted and normalized: the LLR value of
the most reliable GF symbol is set to 0 and the remaining
LLR values are normalized to it. The steps of EMS decoding
are described in the following. In iterative decoding, the first
step (initialization) is done only in the first iteration.

1) Initialization: VNs are initialized with prior LLRVs x.
2) VN to CN Propagation: Each VN sends a V2C message

to each of the dv -connected CNs. The message from VN
j to CN i is denoted u j,i . The GFIV of each message
is GF multiplied by α j,i , a permutation operation.

3) CN Processing: Each CN receives dc V2C messages and
computes C2V messages using (5). The message from
CN i to VN j is denoted vi, j

vi, j =
⊕

k∈M(i),k �= j

uk,i (5)

where M(i) is the set of VNs connected to CN
i , and

⊕
is performed using the forward–backward

algorithm [14].

TABLE I

COMPARISON BETWEEN STANDARD CONVERSION METHOD AND DIRECT
CONVERSION METHOD FROM SOFT SYMBOL TO LLRV

4) CN to VN Propagation: Each CN sends C2V messages
to the dc-connected VNs. The GFIV of each C2V
message is GF divided by α j,i , an inverse permutation.

5) VN Processing: Each VN receives dv C2V messages and
computes V2C messages u j,i and posterior LLRVs z j

using the following equation:

u j,i = x j +
∑

k∈N ( j ),k �=i

vk, j

z j = x j +
∑

k∈N ( j )

vk, j (6)

where N ( j) is the set of CNs connected to VN j , and �
is performed using the elementary processing steps [11].

In an IDD system, the decoder’s output LLRs are converted
to soft symbols s and variances σ 2 for detection.

III. DETECTOR–DECODER INTERFACE AND

OPTIMIZATION

An MMSE detector processes soft symbols, while an
NBLDPC decoder processes LLRVs. Translations between
soft symbols and LLRVs are required to implement an IDD
system. Assume a 2n-QAM constellation that is widely used
in wireless communication systems. In this paper, we propose
to match the QAM constellation and the GF size to enable the
direct and simplified translations between soft symbols and
LLRVs without any information loss. Matching the constella-
tion and GF size provides the highest performance [15].

A. Converting Soft Symbol to LLRV

In a conventional method, a soft symbol ŝt in a 2n-QAM
constellation is converted to LLRV in two steps: 1) con-
vert ŝt to n bit-LLRs [16] and 2) assemble the bit-LLRs to
symbol-LLRs [9] from nm nearest neighbors and construct
LLRV. The bit-by-bit conversion requires searching constel-
lation points to find the nearest neighbors of ŝt for each
bit. The search can be done along the real and imaginary
axes independently to narrow the search space, as shown
in Fig. 4(a). The computational complexity of the bit-by-bit
conversion is listed in Table I. Note that the search and bit
LLR computation in Table I can be further simplified if the
Gray mapping is used [17].

If the constellation and the GF size are matched, we propose
a direct conversion method to bypass the heavy bit-LLR
compute: 1) directly convert ŝt to symbol-LLRs using (7) and



TANG et al.: 2.4-mm2 130-mW MMSE-NBLDPC ITERATIVE DETECTOR DECODER FOR 4 × 4 256-QAM MIMO IN 65-nm CMOS 2073

Fig. 4. Example of (a) bit-LLR and (b) symbol-LLR computations before
SNR scaling for the soft detector output in 256-QAM. Note that the x and y
entries are cross-added to obtain the symbol-LLRs.

2) construct LLRV from nm symbol-LLRs

Lr = ln
P(s = r |ŝt )

P(s = sx1,y1 |ŝt )
= 1

σ̂ 2
t

(|ŝt − r |2 − |ŝt − sx1,y1|2) (7)

where r is a GF symbol, representing a constellation point,
and sx1,y1 represents the reference constellation point closest
to ŝt , as shown in Fig. 4(b). Due to normalization, Lsx1,y1

= 0.
In a QAM constellation, the real and imaginary parts of the
LLR can be computed independently and summed.

An illustration of the direct conversion step 1) is shown
in Fig. 4(b). The distance between the soft symbol ŝt and its
nearest neighbor sx1,y1 is d . The projection of d on the x- and
y-axes are dx and dy , respectively. Without loss of generality,
assume that the constellation points are spaced by 2. It follows
that the distance from ŝt to its second nearest constellation
point along the x-axis, x2, is 2 − dx and to the second nearest
constellation point along the y-axis, y2, is 2−dy. The real and
imaginary parts of the LLR can be computed as follows:

Lx2 = 1

σ̂ 2
t

(|2 − dx |2 − |dx |2) = 4

σ̂ 2
t

(1 − dx),

L y2 = 1

σ̂ 2
t

(|2 − dy|2 − |dy|2) = 4

σ̂ 2
t

(1 − dy). (8)

Notice that the square terms are canceled, and the calculation
only requires �1 distance.

The direct conversion step 2) prepares LLRV from
symbol-LLRs. In the EMS decoding of NBLDPC code,
an LLRV consists of the LLRs of the nm nearest symbols.
In a QAM constellation, they are located within the dashed
box, as shown in Fig. 4(b). Thus, the nm nearest symbols’

TABLE II

COMPARISON BETWEEN STANDARD CONVERSION METHOD AND
APPROXIMATE CONVERSION METHOD FROM

LLRV TO SOFT SYMBOL

LLRs can be computed by cross-adding the distances to the
�nm

(1/2)� nearest neighbors along the x- and y-axes, where �·�
is the ceiling function.

The complexity of the direct conversion only depends on the
choice of nm , as shown in Table I. Since nm � 2n , the direct
conversion is especially advantageous for large constellations.
For instance, converting a 256-QAM soft symbol and its
variance to a GF(256) LLRV (nm = 16) requires 18 multiplies,
129 adds using the conventional bit-by-bit method, compared
to only 24 adds using the direct conversion method.

B. Converting LLRV to Soft Symbol

In a conventional method, an LLRV is converted to a soft
symbol in two steps: 1) convert symbol-LLRs in an LLRV to
probabilities of the corresponding constellation points (the step
is often done by table lookups) and 2) combine the positions
of the constellation points weighted by their probabilities to
compute the soft symbol and variance.

Following the EMS decoding of NBLDPC code, an LLRV
consists of nm most likely GF symbol-LLRs. To further sim-
plify the conversion, we apply an approximation by choosing
only the top two most likely GF symbol-LLRs. Suppose the
two most likely GF symbols from the decoder are mapped to
QAM symbols s0 and s1. Step 1 of the conversion is reduced
to the following:

Ps0 = exp(0.5Ls0)

exp(0.5Ls0) + exp(−0.5Ls0)

Ps1 = 1 − Ps0 . (9)

The underlying assumption is that the two most likely symbols
dominate. Thus, the probability of the second most likely
symbol is approximated by Ps1 = 1 − Ps0 . With only two
most likely symbols to consider, step 2 of the conversion is
reduced to the following:

st = Ps0 s0 + Ps1s1

σ 2
t = Ps0(s0 − st )

2 + Ps1(s1 − st )
2

= Ps0 Ps1(s0 − s1)
2. (10)

The complexity of the approximate conversion is fixed
regardless of the constellation size or choice of nm , as shown
in Table II. Using the approximate conversion, a GF(256)
LLRV to a 256-QAM soft symbol and variance conversion
requires only one table lookup, five multiplies, and three
adds, a significant simplification over the conventional method



2074 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 54, NO. 7, JULY 2019

Fig. 5. Performance comparison among three setups for a 4 × 4 265-QAM
IDD system using MMSE detection and a GF(256) NBLDPC code using:
1) nm = 16 in NBLDPC decoding and the 16 symbol-LLRs for soft symbol
estimation (standard conversion); 2) nm = 32 in NBLDPC decoding and
the 32 symbol-LLRs for soft symbol estimation (standard conversion); and
3) using nm = 16 in NBLDPC decoding and only the two most likely
symbol-LLRs for soft symbol estimation (approximate conversion).

that requires 16 table lookups (nm = 16), 49 multiplies,
and 33 adds.

In Fig. 5, the error rate performances of the approximate
conversion (nm = 32, using only two symbols for conversion
from LLRV to soft symbol) are compared with two standard
conversions (nm = 16 and nm = 32, using all nm symbols
for conversion from LLRV to soft symbol). In the open-loop
case, i.e., no iterations, the nm = 32 standard conversion
provides the best packet error rate (PER); the nm = 16
standard conversion and the nm = 32, two-symbol approxi-
mate conversion perform worse (note that these two curves
overlap). Once iterations are turned ON, the nm = 32, the
two-symbol approximate conversion starts to outperform the
two standard conversions. At three iterations and 10−2 PER,
the approximate conversion provides the best performance.

IV. MMSE DETECTOR DESIGN

The MMSE detection is comprised of five functional steps:
1) initialization to compute soft symbols and MMSE filter
matrix A; 2) matrix inversion; 3) interference cancellation;
4) MMSE filtering; and 5) post-processing to compute updated
soft symbols and variances. Note that step 2 and step 3 can
be overlapped due to the lack of data dependence.

To shorten the latency, the functional steps need to be
pipelined, and the latency of each step needs to be balanced.
To improve the throughput, the cycle period also needs to be
minimized. Among the five steps, matrix inversion and MMSE
filtering cost the longest latency and the highest complexity.
These two stages are the focus of our optimization.

A. Tandem Scheduling

Matrix inversion is done in three substeps: LUD, f-sub, and
b-sub. A Nt × Nt matrix A is first decomposed to a lower
and an upper triangular matrices, L and U, using LUD. L−1

is then found by solving for X in LX = I using f-sub. Finally,
A−1 is found by solving for Y in UY = L−1 using b-sub.

Fig. 6. Tandem scheduling of matrix inversion and MMSE filtering. Here, the
element in the ith row and the j th column of the matrices L, U, L−1, U−1,
and A−1 are indexed by the subscripts i and j .

LUD follows the Gaussian elimination that operates from
the top row to the bottom row of matrix A, obtaining L from
the left to the right column and U from the top to the bottom
row. In each step, LUD uses a reciprocal unit to compute the
inverse of the diagonal element of U. Assume A is 4 × 4 and
suppose the reciprocal unit takes nr cycles, a multiply-add
(MAC) takes 1 cycle, and 16 parallel real-valued MACs are
allocated, the critical path of LUD can be packed in 4nr + 8
cycles. Under this critical path, f-sub can be performed in
tandem with LUD to hide its latency. As soon as the first
element of L is available, f-sub can start. In this way, f-sub
and LUD complete at the same time, as shown in Fig. 6. Once
the last row of L−1 is found and buffered, b-sub starts from
the bottom row to the top row of L−1 to compute A−1.

MMSE filtering is done by vector inner products: aH
t yI C

t ,
t = 1, . . . , Nt . Recall that aH

t denotes the t th row of A−1,
and yI C

t is the output of the interference cancellation step.
We propose the tandem scheduling of b-sub and MMSE
filtering. As soon as an element of A−1 is available, the
corresponding product with yI C

t can be performed. In this way,
MMSE completes in only one cycle after f-sub is done.

With tandem scheduling, the matrix inversion and MMSE
filtering are reduced from three coarse pipeline stages [5] to
two stages, as shown in Fig. 6. Tandem scheduling also cuts
the number of boundary registers between stages by 85%,
as the output from the previous step is immediately consumed
by the subsequent step.

B. Dual-Lookup Reciprocal Unit

Reciprocal is in the critical path of matrix inversion and
dominates the latency. A popular reciprocal design is based on
the Newton–Raphson division algorithm. Suppose we need to
find x = (1/d), the problem can be formulated as finding the
root of f (x) = (1/x)−d = 0. Applying the Newton–Raphson
method, the root can be found by iteration with an initial
estimate x0

xi+1 = xi − f (xi )/ f �(xi ) = 2xi − dx2
i . (11)

A baseline reciprocal unit is shown in Fig. 7(a) [5]. The
initial estimate x0 is retrieved from a lookup table (LUT).
To reduce the LUT size, only the MSB bits are used to address
the LUT. Two multiplies are needed to compute dx2

i , which is
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Fig. 7. Reciprocal unit designs. (a) Baseline three-cycle design from [5].
(b) Dual-lookup single-cycle design. The critical paths are highlighted in blue.

then subtracted from 2xi to compute the reciprocal. A better
approximation can be obtained by iterations. For an MMSE
detector, it was shown that a 32 × 6 b LUT and one iteration
are sufficient [5]. The baseline design is naturally divided into
three pipeline stages, costing three cycles.

In the baseline design, the latency of the reciprocal unit is
dominated by the two multiplies. To reduce latency, we design
a dual-lookup reciprocal unit, as shown in Fig. 7(b), using two
LUTs: a 32 × 6 b LUT for retrieving x0 and a 32 × 12 b LUT
for obtaining x2

0 . The addition of the 32 × 12 b LUT allows
the redesigned reciprocal unit to have only one-cycle delay,
which translates to six-cycle latency reduction of the matrix
inversion stage. To make the best use of the limited LUT size,
we apply dynamic scaling of the matrix A based on symbol
variance, such that the input to the reciprocal unit falls in
the range of [1, 2). The designed reciprocal unit provides an
average precision of 0.00044 and a maximum error of 0.0017
that are sufficient for an MMSE detector [18].

C. Relaxed Timing by Interleaving

The MMSE detector is pipelined to four stages, as shown
in Fig. 8. Initialization is in stage 1. The tandem scheduling
of LUD and f-sub allow them to be grouped in stage 2, and
the tandem scheduling of b-sub and MMSE filtering allows
them to be grouped in stage 3. Due to the lack of data
dependence, interference cancellation is also done in stage 2.
Post-processing is done in stage 4.

Despite the optimizations done in the stages 2 and 3 of
the pipeline, the long critical paths in the multipliers present
a tight timing constraint. To loosen the constraint, we use a
simple clock divider to create a 2× slow clock domain for
stages 2 and 3 to allow the gates to be downsized and main-
tain the throughput across the two stages by duplicating the
datapaths and interleaving between the two copies, as shown
in Fig. 8. After gate downsizing, the duplication costs only
24% additional area over the baseline, as depicted in Fig. 9,
but the throughput is increased by 38%, thanks to a higher

clock frequency. The downsized gates also reduce the load
capacitance, thus improving the energy efficiency.

V. NBLDPC DECODER DESIGN

We choose a GF(256) NBLDPC code to match the
256-QAM constellation. To reduce the implementation cost
of an NBLDPC decoder, we use a relatively short (52, 26)
regular-(2, 4) NBLDPC code over GF(256) [19], [20] with a
binary block length of 416 bits. In decoding, we adopt the
EMS algorithm using nm = 12.

A. Fully Parallel Architecture

To match the throughput and latency of the MMSE detector,
the NBLDPC decoder is fully parallelized with 52 VNs
and 26 CNs, as shown in Fig. 10. After the MMSE detection,
the soft symbols and variances are translated to prior LLRVs
for initializing VNs.

To start decoding, each VN passes V2C messages to the
connected CNs through a routing network. Each CN generates
C2V messages and sends them back to the connected VNs.
The VNs use the C2V messages to update the V2C messages
to send to the connected VNs for the next iteration. The
decoding stops when the maximum iteration limit is reached.
The fully parallel architecture achieves high throughput and
low latency, but the data dependencies between CNs and VNs
as well as within their internal stages cause inefficiency due
to the pipeline stalls.

B. Low-Latency VN Design

A VN receives dv = 2 C2V messages (LLRVs) and
computes V2C messages (LLRVs) to start the next iteration.
The VN processing is implemented by two elementary VNs
(EVNs) [12] as well as a memory to store prior LLRV and
two content addressable memories (CAMs) to store the two
C2V LLRVs, one per EVN.

VN processing starts by loading C2V LLRVs to the two
CAMs in nm = 12 cycles. In the second step, 12 symbol-LLRs
from the prior LLRV are read from memory one by one,
from the most likely to the least, and sent to the two EVNs.
Each EVN searches the symbol in its CAM. The matching
symbol-LLR is read from the CAM and summed with the
symbol’s prior LLR. In the third step, the updated symbol-LLR
is inserted to a sorter, and it takes 12 cycles to produce the
complete V2C LLRV. The critical path of CN processing
is 36 cycles, as shown in Fig. 11.

In the baseline design described earlier, VN processing
cannot start until C2V LLRVs from the CNs are received
and loaded to the CAMs. To cut the stall, we allow C2V
LLRVs from the CNs to be directly forwarded to the EVNs
instead of being stored in CAMs and relocate prior LLRV to
a CAM. Since prior LLRV is updated only at the beginning
of an iterative decoding and remains stationary, this relocation
eliminates the between-iteration stall due to data loading.

With the C2V forwarding, incoming C2V LLRVs are
streamed to the EVNs, and an EVN searches the CAM
for a matching symbol in the prior LLRV. Only one CAM
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Fig. 8. Design of the MMSE detector in four task-based coarse pipeline stages. Stages 2 and 3 operate at a 2× slower clock frequency, and the remaining
stages operate at the base clock frequency.

Fig. 9. Comparison between single-path performance/area optimized designs
and dual-path interleaving with slow clock.

Fig. 10. Fully parallel architecture of NBLDPC decoder.

is required, but the CAM needs to provide two ports to
support the independent reads by the two EVNs. The C2V
loading latency is eliminated to reduce the critical path of CN
processing to 25 cycles, as illustrated in Fig. 11.

Thanks to the simplified decoder–detector interface, the
compute of posterior LLRV is reduced to finding the two most
likely symbols by a small CAM and a simplified EVN. The
posterior compute does not add to the critical path. In all, the

Fig. 11. Dataflow and latency of the conventional and the proposed VN
designs.

proposed VN design uses 31% less storage, and the area is
15.7% smaller than the conventional VN design.

C. Low-Latency CN Design

A CN performs a parity check of dc = 4 input V2C
messages (LLRVs) and produces C2V messages (LLRVs)
to send back to the connected VNs. The CN processing
is implemented using the forward–backward algorithm [11]
by six elementary CNs (ECNs), including a forward ECN,
a backward ECN, and four merge ECNs, as well as six
memory blocks to store the input LLRVs and the intermediate
results [12], as shown in Fig. 12.

An ECN looks for the nm = 12 most likely pairings of
symbols from the two input V2C LLRVs, namely, LLRV1
and LLRV2. To support nm = 12, an ECN uses a six-element
insertion sorter [21]. The sorter queue is first loaded with
the top six symbol-LLRs from LLRV1 in six cycles. After
initialization, the top symbol-LLRs from LLRV2 are read from
memory one by one and paired with the top entries from
LLRV1 following the bubble check algorithm [22]. The paired
symbols are summed to a combined symbol (GF addition).
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Fig. 12. Proposed CN design with V2C forwarding; the pipeline schedules
of conventional and proposed CN design.

The LLR value of the combined symbol is computed and
inserted to a sorter queue, and the top of the sorter queue
is popped as the output of the ECN. It takes 12 cycles to
produce the 12 symbol-LLRs to form an LLRV.

This baseline ECN design incurs a six-cycle stall in ini-
tialization. Though the forward/backward ECN latency can be
hidden, as shown in Fig. 12, the merge ECN’s initialization
cannot be hidden because it requires reading from memory.
We add data-forwarding paths to initialize merge ECNs con-
currently with forward/backward ECNs, as shown in Fig. 12.
The data forwarding allows the CN latency to be shortened
from 24 to 19 cycles.

The baseline ECN sorter design uses shift registers to
store symbol indices, memory indices, and LLR values [12].
We observe that the symbol indices are unused during sorting,
wasting switching power to shift unused entries. We eliminate
symbol index memory in ECN sorter to reduce its buffer size
by 36%, which translates to 20% area reduction and 12%
power reduction for one CN.

VI. CLOCK GATING EXPLOITING REGULAR ACCESS

A total of 70.9-kb registers are used for buffering data
in and between stages of the detector and the decoder.
Registers are used in place of memory arrays to support
high access bandwidth and the flexibility of placing small
memory blocks. Registers are power hungry, but we recognize
a power reduction opportunity, as most of the registers used
in our design are regularly but infrequently updated due to the
task-based pipeline stages, e.g., one update every 12 cycles
for the 7.6-kb stage boundary registers in the detector and one
update every 25 cycles for the 26.2-kb CN buffer registers
in the decoder. A detailed tally of register usage and update
frequency is shown in Fig. 13. We exploit the regular access to
reduce power by enabling clock gating of the registers when
they are idling, saving the detector power and the decoder
power by 53% and 61%, respectively.

Fig. 13. Power breakdown and the activities of registers.

Fig. 14. Die photograph of the MMSE-NBLDPC IDD chip.

Fig. 15. Measured throughput and energy efficiency with voltage scaling.

VII. CHIP MEASUREMENT RESULTS

The MMSE-NBLDPC iterative detector–decoder test chip is
fabricated in TSMC 65-nm technology. The die photograph is
shown in Fig. 14. The chip dimension is 2.04 mm × 2.2 mm,
and the MMSE detector core and the NBLDPC decoder core
occupy 0.7 and 1.7 mm2, respectively. At room temperature
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TABLE III

COMPARISON WITH STATE-OF-THE-ART MIMO DETECTORS AND LDPC DECODERS

and 1.0-V supply, the MMSE detector runs at a maximum
frequency of 517 MHz for a throughput of 1.38 Gb/s, and
the NBLDPC decoder runs at 307 MHz for a throughput of
1.02 Gb/s (five iterations), as shown in Fig. 15.

Our work is compared with the state-of-the-art MIMO IDD
designs in Table III. The MMSE detector achieves higher
reported throughput of an SISO MMSE detector [5]. The
MMSE detector consumes only 19.2 pJ/b, an order of magni-
tude lower than previous SISO detector designs [3]–[5]. The
NBLDPC decoder consumes 20.1 pJ/b/iteration, the lowest
reported energy of an NBLDPC decoder [12], and it matches
the efficiency of the binary LDPC decoder used in IDD [4].
Although our NBLDPC code is about half the size of [12],
the one order of magnitude improvement in energy [12] is
significant. The energy efficiency can be further improved
by voltage and frequency scaling, as shown in Fig. 15.
At 500-mV supply, the MMSE detector and the NBLDPC
decoder consume 9.7 and 6.9 pJ/b/iteration, respectively, for
throughputs above 200 Mb/s.

Our test chip is a proof of concept of an IDD system sup-
porting a high-order modulation using a matching NBLDPC
symbol. The matching provides the best performance and
efficiency in conversions between soft symbols and LLRs.
In a low-SNR case, a high-order modulation is not applicable.

A possible solution is to pack multiple constellation symbols
to a GF(256) code symbol. For example, in 16-QAM, two sets
of I/Q symbol LLRVs are packed to a GF(256) symbol LLRV.
Any mismatch will complicate the conversions and may lead to
non-optimal performance. Further study is needed in the area
of flexible NBLDPC decoder design to support the adjustable
GF size and rate to match the modulation in order to achieve
the best performance and efficiency.

VIII. CONCLUSION

We demonstrate an MMSE-NBLDPC IDD system for a
256-QAM 4 × 4 MIMO system to achieve an excellent error
rate that improves with iterations. By matching the constel-
lation and GF size of the nonbinary FEC code, soft symbols
and symbol-LLRs between the detector and the decoder can
be directly converted, simplifying the interface and making the
IDD design practical.

To minimize latency over the iterative loop and improve
throughput, tandem scheduling and a new dual-lookup recip-
rocal unit are employed to reduce the latency of the detector,
and the critical paths of the detector are interleaved and placed
in a slow clock domain to support a high throughput at a low
cost. The resulting MMSE detector design achieves an 82%
higher throughput and almost 3.5× the throughput of the latest



TANG et al.: 2.4-mm2 130-mW MMSE-NBLDPC ITERATIVE DETECTOR DECODER FOR 4 × 4 256-QAM MIMO IN 65-nm CMOS 2079

SD detector. The NBLDPC decoder is fully parallelized to
support the highest throughput. Internal data forwarding paths
are created, and memory organization is optimized to reduce
the decoding latency by 30% over the latest NBLDPC decoder
design.

To lower the power consumption, automatic clock gating is
applied to stage boundary and buffer registers to save 53% of
the detector power and 61% of the decoder power. We demon-
strate a 65-nm MMSE-NBLDPC iterative detector–decoder
test chip that achieves 1.38 Gb/s in detection and 1.02 Gb/s
in decoding (five iterations), consuming 26.5 and 103 mW,
respectively.
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