Introduction
- Complex neural networks need more
 - Hidden layers
 - Neurons per layer
 - Memory accesses
 - Computation
- Neural network ensembles
 - A set of weak learners creates a strong learner
 - Increases accuracy
 - Energy-hungry; all learners are active for each invocation
- Heterogeneity
 - Traditionally, each processor is specialized for a particular task
- Data heterogeneity
 - Specialize each network for a part of training set
 - One active network per invocation
 - Improve energy efficiency and performance

Background
- Feedforward fully-connected neural network
- Challenges
 - Monolithic
 - Ensemble
 - Implementation cost
 - Number of NNs

Motivation
- Different subsets of critical neurons
- Monolithic NN is overdesigned
- Partition datasets and design specialized NNs

Results
- For 100% accuracy of baseline, reduce energy to
 - 32% on ARM Cortex-M4 Microcontroller
 - 38% on Kryo 280 octa-core Mobile CPU
 - 35% on Adreno 540 Mobile GPU

Multi-dsNN System
- Replace a monolithic NN with a set of dsNNs
 - Lower energy consumption
 - Higher performance
 - Selectors
 - Predict error during runtime
 - Always active
 - Decision tree

Comparison with Boosting
- Energy conscious boosting: limit energy budget
- Multi-dsNN provides the most energy-efficient design

Partitioning Quality
- Huge input layer
 - The decision tree might not work well
 - Complex dsNNs to maintain accuracy

More than Two dsNNs
- Needs more complicated selector
- Increases the number of desirable configurations
- Does not improve accuracy and efficiency considerably