Input-Specialized Heterogeneous Neural Networks

Babak Zamirai, Jiecao Yu, Salar Latifi, Scott Mahlke

Introduction
- More accurate neural networks need more
 - Hidden layers
 - Neurons per each layer
 - Memory accesses
 - Computation
- Neural network ensembles
 - A set of weak learners create a strong learner
 - Increases accuracy
 - All learners are active for each invocation
 - Energy-hungry
- Heterogeneity
 - Traditionally, each processor is specialized for a particular task
 - Data heterogeneity
 - Specialize each network for a part of training set
 - One active network per invocation, so consumes less energy
 - Each network focuses on a subset of data, so more accurate

Data Heterogeneity
- Main part: Small errors, dense
- Tail part: Large errors, sparse
- Partition training set systematically
- Use a specialized MLP (SMLP) for each part

Multilayer Perceptrons
- Feedforward fully-connected neural network
- Challenges
 - Model underfitting
 - High implementation cost
 - Accuracy limitation

Multis-SMLP System
- Replace a monolithic MLP with a set of SMLPs
 - Higher accuracy
 - Lower cost
 - Better performance
- Selector
 - Predict error during runtime
 - Always active
 - Decision tree

Result
- Beats boosting in terms of accuracy and energy
- Minimize error
 - Minimize energy

Minimize Error
- Reduce error by 66%
- Consuming 46% of the baseline energy

Neural Network Ensembles
- Replicating the baseline network
- Random sampling the training set
- Voting or weighted sum at the end
- Increase the overall energy multiplicatively

Heterogeneous Neural Processing Unit
- Hardware implementation of a 2-way multi-SMLP system

More than Two SMLPs
- Needs more complicated decision tree
- Increases the number of desirable configurations
- Does not improve accuracy and efficiency considerably