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Preliminaries: Lattices

Lattice L: set of all integer linear combinations of a basis in Rn.

b1

b2

b1 + b2

b1 − b2

Figure: Example of a 2D lattice, generated by basis {b1,b2}.
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Preliminaries: Geometry of Lattices

λ1(L): shortest nonzero length in L.

λ1

Figure: λ1 for the 2D example.

We often refer to λ1(L) as the “scale” of L.
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Preliminaries: Flat Tori

Flat torus Rn/L: quotient space of Euclidean space by lattice;
elements: cosets of the form x + L.
Generalizes the standard 2D “torus” R2/Z2:

Figure: Transition between the 3D and the quotient representations of R2/Z2.
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Preliminaries: Distances in Flat Tori

Standard quotient metric on Rn/L:
distRn/L(x + L, y + L) = min distance between x + L and y + L.

1D Example: What is the distance between 0.2 and 0.8 in R/Z?

0 1

0.2 0.8

distR/Z(0.2 + Z, 0.8 + Z) = 0.4, the min distance between the cosets:

0 1 2

-0.2 0.2 0.8 1.2 1.8 2.2
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Preliminaries: Distances in Flat Tori cont.

2D Example: What is the distance between the colored points in the
following torus (dashed)?

Similarly the distance is not the one within parallelogram,
but again the min distance between corresponding cosets.
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Preliminaries: Distortion

Distortion of metric embedding f :M1 →M2:
the factor by which f changes the distance between two points;

definition:
expansion factor

contraction factor
.

Example: embed R/Z into Euclidean space R2.

0 1

Figure: Embedding f : x + Z 7→ (cos(2πx), sin(2πx)), whose distortion is π/2.
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Previous Literature

Question (Khot and Naor, 2005):
How to embed flat tori into Hilbert space with low distortion?

Lower bound (KN05): worst case Ω(
√
n).

Upper bound (KN05): embedding with distortion O(n3n/2).

Upper bound (Haviv and Regev, 2010):

embedding with distortion O(n
√

log n).
embedding with distortion O(

√
n log n) (under certain condition).

Our Contribution

For any torus Rn/L, we construct a metric embedding of Rn/L into
Hilbert space with distortion O(

√
n log n).
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Embed into Hilbert Space using Gaussians

Observation: for embedding f : Rn → L2(Rn), x 7→ Gaussian centered at x,
the L2 distance between two Gaussians f (x) and f (y)

“saturates” at certain distance, while

approx. ∝ distance between x and y before saturation.

x y1 xy2

x − y1 x − y2 x − y

L2 dist

Figure: L2 distance between Gaussians as function of difference of points in 1D.
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The Gaussian Embedding in HR10

The HR10 embedding with distortion O(
√
n log n):

Uses Gaussians in the construction.

Only works if distances to embed never exceed poly(n) · λ1.

“Saturates” at poly(n) · λ1, like single Gaussian.

Idea about next step:

first partition torus into direct sum of tori, each representing a
different scale;

then apply the HR10 embedding to each scale separately;

even if saturation happens at certain scale, a larger scale might
compensate.
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2D Example of Saturation

Consider two points in the following torus:

λ1

Note that λ1 is the scale in x-direction, while imagine the scale in
y -direction could be arbitrarily large.
Saturation happens and distances in y -direction are not captured.
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Partition of Scales in the 2D Example

Besides the original torus, also consider its projection on the y -axis:

λ1 of the projection is the scale in y -direction, and HR10 embedding of
the projection would capture distances in y -direction.
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Partition of Scales in General

General technique:

Take a chain of sublattices {0} = L0 ⊂ L1 ⊂ · · · ⊂ Lm = L;

Take projections of Rn/L orthogonal to Li for all i = 0, 1, . . . ,m − 1;

Proper choice of sublattices can partition the scales well.

For the 2D example:

m = 2, L1 = L ∩ x-axis.

To project orthogonally to L1 is to project onto y -axis.
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Pitfall of HR10

HR10 indeed uses the orthogonal projections.

They only get O(n
√

log n), losing a factor of
√
n.

Issue: distances in projected tori with large i get counted repeatedly.
For the last one the repetition is m, which at worst could be n.

For the 2D example, (small) distances in the y -direction get counted
twice — both in the original torus and the projection.
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Pitfall of HR10 cont.

Distances in projected tori with large i get counted repeatedly:

Consider the subspaces spanned by projected tori — they have
reversed subspace relationship from the end.

Orthogonally decompose the entire space according to the subspace
relationship, then the repeated counting is like:

1 1 1 . . . 1

1 1 . . . 1

1 . . . 1

. . .
...

1

(columns: orthogonal decomposition of the entire space,
rows: subspaces spanned by projected tori)
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Impossible to Isolate Block

Ideally want projection of L in each block (orthogonal component) of the
entire space separately to avoid repeated counting.

· · ·· · ·

However projecting into arbitrary block is invalid for general lattices.
For the 2D Example: projection onto x-axis is dense.
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Novel Contribution: Compressed Projections

Use compressed projections that compress the projected tori
recursively by a factor 0 < α < 1.

The repeated counting becomes:

1 α α2 . . . αm−1

1 α . . . αm−2

1 . . . αm−3

. . .
...

1

instead of
1 1 1 . . . 1

1 1 . . . 1

1 . . . 1

. . .
...

1

The geometric series suppresses the
√
n extra factor into constant.
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Using Compressed Projection in the 2D Example
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Proof Overview

Our entire embedding: first partition the scales using compressed
projections, and then apply the HR10 embedding to each scale.

Main technical lemma: the partition step has constant distortion.

Recall the HR10 embedding has distortion O(
√
n log n).

Hence our entire embedding has distortion O(1) · O(
√
n log n).
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Main Technical Lemma

Main technical lemma: the partition step has constant distortion (even
after taking care of the saturation issue of the HR10 embedding
afterwards).

Proving constant expansion of partition step: easy part, due to the
geometric series in compressed projections.

Proving constant contraction of partition step:

the main technical part, nontrivial while still elementary;
difficulty 1: compressed projections worsen the contraction — the
geometric series introduces some exponentially small factors;
difficulty 2: need to prove stronger contraction property that takes care
of the saturation issue so that the HR10 embedding works afterwards.
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Open Questions

Our result: O(
√
n log n), lower bound: worst case Ω(

√
n).

KN05, HR10 both give lattice-specific lower bounds as well.

Tighter bounds for every lattice in terms of lattice parameters?
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Thank you!
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