
The Shift PUF: Technique for Squaring the
Machine Learning Complexity of Arbiter-based

PUFs: Work-in-Progress
Yi Tang

New York University, NY
yt1433@nyu.edu

Donghang Wu
Peking University, China

sdlwwdh@pku.edu.cn

Yongzhi Cao
Peking University, China

caoyz@pku.edu.cn

Marian Margraf
Freie Universität Berlin, Germany

Marian.Margraf@fu-berlin.de

The physically unclonable function (PUF) is a hardware
cryptographic primitive that provides identifications based on
inevitable manufacturing variations, thus, as the name states,
being physically unclonable. The arbiter PUF (APUF, [5]) is
a well-studied PUF design based on variational signal delays
in silicon/electronic components. Using APUFs as building
blocks, XOR APUF ([12]), lightweight secure PUF ([9]), feed
forward APUF ([6], [7]), etc. are proposed and expected to
be more secure PUF designs. However, it is discovered that
all of these canonical arbiter-based PUF designs suffer from
machine learning modeling attacks ([1], [3], [11]). Recently,
the interpose PUF (iPUF, [10]) is proposed as a new arbiter-
based PUF design that is resilient to state-of-the-art machine
learning attacks. In this paper we propose a new PUF design
called shift PUF that directly enhances APUF (which, to
remark, is the building block of all arbiter-based PUF designs)
by, as a conjecture, squaring its machine learning complexity,
and consequently brings the same squaring benefit to all
arbiter-based PUFs as well. To emphasize, the shift PUF itself
is not a secure PUF design, and the technique of substituting
APUFs with shift PUFs also not necessarily turns insecure
PUF designs into secure PUF designs (the notion of security
immediately follows in the next paragraph); nevertheless the
technique greatly benefits already secure arbiter-based PUF
designs with squared machine learning complexities.

We start with reviewing some of the most desirable prop-
erties of an ideally secure PUF design. As an identification
primitive, a PUF instance is identified by its behavior as a
(potentially probabilistic) mapping from inputs (often referred
to as challenges) to outputs (as responses). Judging from
practical considerations, a PUF design is desired to have the
following properties:

• Being lightweight, which means the time and the circuit
complexities of the hardware is efficient (often, linear)
with regard to the size of challenges;

• Being strong, which means the challenge space is huge
(often, exponential) compared to the size of challenges,
and thus the PUF instance space is enormously huge
(double exponential);

• Reliability, which means the same challenge results in the
same response with high probability;

• Most importantly and demandingly, security, which
means it is hard to clone, i.e., to simulate with high accu-
racy the challenge-response behavior of a PUF instance
given any reasonable partial information of its challenge-
response behavior.

Due to the versatility of identification primitive, an ideal PUF
design leads to various meaningful applications ([5]–[8], [12]),
especially in cloud computing and IoT settings where the
lightweight-ness and the security are both of great importance.

In this paper we focus on arbiter-based PUF designs. The
APUF acts as a central building block in this category. The
challenge-response behavior r(c) of an m-bit APUF can be
expressed by a linear classification model

∆(c) = w>p , r(c) = [∆(c) ≥ 0] , (1)

where w is an (m+ 1)-dimensional vector that is function of
the signal delays in the APUF instance, and p is the corre-
sponding parity vector of the challenge vector c; formally,

pi =

m∏
j=i

(−1)cj , 1 ≤ i ≤ m , pm+1 = 1 . (2)

Since APUFs are captured by this linear classification model,
they can be easily modeled and simulated by machine learning
attacks (using e.g. logistic regression or support vector ma-
chine) given some reasonable number of challenge-response
pairs (CRPs).

Using APUFs as building blocks, an XOR APUF paral-
lelizes multiple APUF instances, passes the same challenge to
all of them, and XOR-sums up their responses as the overall
response. It is straightforward that the model of an m-bit k-
XOR APUF is

r(c) =

k⊕
j=1

rj(c) , (3)

where rj is the model of the j-th m-bit APUF instance.
The complexity of modeling XOR APUFs is believed to be
exponential in k if given merely CRPs ([11], [13]). Neverthe-
less, [3] proposes a novel reliability-based machine learning
approach that leverages the reliability information, i.e., the
probability of getting the same response under a challenge. It is
empirically verified ([1], [3]) that the complexity of modeling



XOR APUFs is no longer exponential in k following this
reliability-based approach.

The iPUF uses two XOR APUF instances as building
blocks; an (x, y)-iPUF works as described by the model

r(c) = r2(c1, r1(c), c2) , (4)

where r1 and r2 are the models of respectively an x-XOR
APUF and a y-XOR APUF, and (c1, c2) is a (fixed) split of
c. (x, y)-iPUF is believed to enjoy the same machine learning
complexity as (x/2+y)-XOR APUF while moreover resilient
to reliability-based attacks. Despite the fact that [2], [14] find
novel attack strategies against iPUFs, [14] acknowledges that
certain iPUF variants with more complicated structures are
still considered secure.

We now present the shift PUF, an enhancement to the
APUF. The shift PUF composes the APUF with a (without
loss of generality, left) circular shift operation, as illustrated by
Figure 1; formally, an m-bit shift PUF contains an underlying
m-bit APUF, and its challenge-response behavior is modeled
by

∆Shift(c) = ∆(c(`)) , r(c) = [∆Shift(c) ≥ 0] , (5)

where c(`) is the (left) circular shift of c, with ` being the
displacement of the shift. Obviously, if the displacement `
is known by the attacker, then the enhancement brought by
the shift PUF completely degenerates as the attacker could
easily preprocess out the effect of the circular shift. Recall
that securely generating some secret ` is exactly among the
applications of PUFs, so we propose to use PUF-based key
generation (see e.g. [8, Chapter 6], based on fuzzy extractors
([4])) on the underlying APUF1 to determine `; also note that
` is only logm bits long, and thus this approach will not harm
the efficiency badly.

We then elaborate some evidences supporting the conjecture
that the shift PUF enhances the APUF by squaring m, i.e., an
m-bit shift PUF is no less secure than a Θ(m2)-bit APUF. As
a remark, the enhancement of Θ(m2) is the best one could
expect for the shift PUF, as the attacker can always enumerate
all m possibilities of the displacement ` (and assume any
machine learning attack requires Ω(m) efforts). We are going
to show that the attacker cannot shortcut this enumeration in
certain sense. By definition,

∆(c(`)) = w>p(`) , (6)

(note that p(`) is the corresponding parity vector of c(`) instead
of the circular shift of p) and by calculation,

p(`) =
[
p`+1(p1p`+1) · · · pm(p1p`+1) p1p`+1 · · · p`p`+1 1

]>
.

(7)
The challenge-response behavior has the form of a linear clas-
sification model in terms of p(`), but however ` is unknown to

1It is also valid to use a separate APUF instance or some other kind of
PUF to securely generate `. This approach might (slightly) improve the time
performance due to the parallelism, but is less efficient in terms of circuit
complexity and potentially opens extra side channels to the attackers.

the attacker and therefore2 linear methods are not applicable.
Since it does not matter to add unrelated parameters in linear
classification, the attacker could form a linear classification
models using all p(`) for all ` to eliminate the unknown `
(which is essentially enumerating all possibilities of `). By
listing all p(`) for all ` = 0, 1, . . . ,m− 1 together as follows,[
p(0) p(1) · · · p(m−1)

]
=

p1 p1 p1 · · · p1 p1

p2 p1p2p3 p1p3p4 · · · p1pm−1pm pmp1

p3 p1p2p4 p1p3p5 . .
.

pm−1p1 pmp2

...
... . .

.
. .
. ...

...
pm−1 p1p2pm p3p1 · · · pm−1pm−3 pmpm−2

pm p2p1 p3p2 · · · pm−1pm−2 pmpm−1

1 1 1 · · · 1 1


,

(8)
it can be observed that all terms except the first and last
lines are distinct and there are m(m − 1) + 2 = Θ(m2)
different terms. Hence the attacker cannot circumvent the
Θ(m2) enhancement.

By substituting APUFs with shift PUFs, all arbiter-based
PUF designs might benefit from this squaring enhancement.
We remark that the enhancement is not necessarily turning
insecure design into secure design (for polynomial squared is
still polynomial), but is targeting at substantially adding diffi-
culties to the attacks, or reducing the time and/or the circuit
complexities of the hardware while preserving the machine
learning complexity. Taking the XOR APUF as an example,
in response-based attacks, its machine learning complexity
is believed to be mΘ(k). Then squaring m is equivalently
doubling k, which might help alleviate the manufacturing issue
that k-XOR APUF for large k has dramatically worsening
reliability due to the interference among the internal APUF
instances ([13]). More interestingly, for (empirically) secure
PUF designs such as iPUF, the squaring enhancement could
further consolidate the intractability of attacks on them, further
protecting them from smarter brute-force attacks, or alterna-
tively, as previously mentioned, reduce the hardware costs
while maintaining a matching machine learning complexity.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science
Foundation of China (No. 61772035).

REFERENCES

[1] Georg T. Becker. The gap between promise and reality: On the insecurity
of XOR arbiter pufs. In CHES, volume 9293 of Lecture Notes in
Computer Science, pages 535–555. Springer, 2015.

[2] Durba Chatterjee, Debdeep Mukhopadhyay, and Aritra Hazra. Interpose
PUF can be PAC learned. IACR Cryptol. ePrint Arch., 2020:471, 2020.

[3] Jeroen Delvaux and Ingrid Verbauwhede. Side channel modeling attacks
on 65nm arbiter pufs exploiting CMOS device noise. In HOST, pages
137–142. IEEE Computer Society, 2013.

2Say if ` is generated using PUF-based key generation with the underlying
APUF, then the attacker needs to model the underlying APUF accurately to
compute `, while the attacker also needs to know ` first in order to model the
APUF using linear methods.



c = [c1, . . . , cm] `

c(`) = [c`+1, . . . , cm, c1, . . . , c`] Underlying APUF Instance

PUF-based Key Generation

r

Fig. 1. Structure of the shift PUF: the challenge c is (left-)shifted by ` bits before being sent into the underlying APUF instance, whose response r is the
overall response of the shift PUF; ` might be determined using PUF-based key generation on the underlying APUF instance.

[4] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam D. Smith.
Fuzzy extractors: How to generate strong keys from biometrics and other
noisy data. SIAM J. Comput., 38(1):97–139, 2008. Preliminary version
in EUROCRYPT 2004.

[5] Blaise Gassend, Dwaine E. Clarke, Marten van Dijk, and Srinivas
Devadas. Silicon physical random functions. In ACM Conference on
Computer and Communications Security, pages 148–160. ACM, 2002.

[6] Blaise Gassend, Daihyun Lim, Dwaine E. Clarke, Marten van Dijk, and
Srinivas Devadas. Identification and authentication of integrated circuits.
Concurr. Pract. Exp., 16(11):1077–1098, 2004.

[7] Daihyun Lim, Jae W. Lee, Blaise Gassend, G. Edward Suh, Marten
van Dijk, and Srinivas Devadas. Extracting secret keys from integrated
circuits. IEEE Trans. Very Large Scale Integr. Syst., 13(10):1200–1205,
2005.

[8] Roel Maes. Physically Unclonable Functions - Constructions, Properties
and Applications. Springer, 2013.

[9] Mehrdad Majzoobi, Farinaz Koushanfar, and Miodrag Potkonjak.
Lightweight secure pufs. In ICCAD, pages 670–673. IEEE Computer
Society, 2008.

[10] Phuong Ha Nguyen, Durga Prasad Sahoo, Chenglu Jin, Kaleel Mah-
mood, Ulrich Rührmair, and Marten van Dijk. The interpose PUF: secure
PUF design against state-of-the-art machine learning attacks. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2019(4):243–290, 2019.

[11] Ulrich Rührmair, Frank Sehnke, Jan Sölter, Gideon Dror, Srinivas
Devadas, and Jürgen Schmidhuber. Modeling attacks on physical unclon-
able functions. In ACM Conference on Computer and Communications
Security, pages 237–249. ACM, 2010.

[12] G. Edward Suh and Srinivas Devadas. Physical unclonable functions for
device authentication and secret key generation. In DAC, pages 9–14.
IEEE, 2007.

[13] Nils Wisiol and Marian Margraf. Why attackers lose: design and
security analysis of arbitrarily large XOR arbiter pufs. J. Cryptographic
Engineering, 9(3):221–230, 2019. Preliminary version in CHES 2017.

[14] Nils Wisiol, Christopher Mühl, Niklas Pirnay, Phuong Ha Nguyen, Mar-
ian Margraf, Jean-Pierre Seifert, Marten van Dijk, and Ulrich Rührmair.
Splitting the interpose PUF: A novel modeling attack strategy. IACR
Cryptol. ePrint Arch., 2019:1473, 2019.


