The Shift PUF: Technique for Squaring the Machine Learning Complexity of Arbiter-based PUFs

Yi Tang 1 Donghang Wu 2 Yongzhi Cao 2 Marian Margraf 3

1University of Michigan
2Peking University
3Freie Universität Berlin

CASES 2020 WiP
Physically Unclonable Functions (PUFs)

- Hardware cryptographic identification primitive;
- Exploiting inevitable manufacturing variations;
- Hence “physically unclonable.”

A PUF Instance is identified by its behavior as a (probabilistic) mapping from inputs (challenges) to outputs (responses).
Physically Unclonable Functions (PUFs)

- Hardware cryptographic identification primitive;
- Exploiting inevitable manufacturing variations;
- Hence “physically unclonable.”

A PUF Instance is identified by its behavior as a (probabilistic) mapping from inputs (challenges) to outputs (responses).
Arbiter PUFs (APUFs)

1. Challenge decides the paths: either parallel or crossing.
2. Two signals are triggered simultaneously and propagate along the decided paths.
3. *Arbiter* judges the race and yields the result as response.

The inevitable manufacturing variations of the signal delays lead to unique challenge-response behaviors.

Arbiter PUFs (APUFs)

1 Challenge decides the paths: either parallel or crossing.

Two signals are triggered simultaneously and propagate along the decided paths.

Arbiter judges the race and yields the result as response.

The inevitable manufacturing variations of the signal delays lead to unique challenge-response behaviors.

1 Figure from Georg T. Becker, “The Gap Between Promise and Reality: On the Insecurity of XOR Arbiter PUFs”, 2015.
Desired Properties of a PUF design

- **Being lightweight**: low time and circuit complexities of the hardware;
- **Being strong**: huge challenge space, thus huge PUF instance space;
- **Reliability**: the same challenge results in the same response w.h.p.;
- **Security**: hard to predict with high accuracy the challenge-response behavior given reasonable amount of information.
Security of APUFs

- lightweight, strong, and reliable.
- However insecure. Challenge-response behavior $r(c)$ of m-bit APUF:

$$r(c) = [\Delta(c) \geq 0] , \quad \Delta(c) = w^\top p ,$$

- w: $(m + 1)$-d vector that is only a function of the signal delays in the APUF instance,
- p (parity): $(m + 1)$-d vector that is only a function of the challenge c.
- Linear classification model; easy to learn given reasonable number of challenge-response pairs (CRPs).
Security of APUFs

- Lightweight, strong, and reliable.
- However insecure. Challenge-response behavior $r(c)$ of m-bit APUF:

 $$r(c) = [\Delta(c) \geq 0], \quad \Delta(c) = w^\top p,$$

 w: $(m + 1)$-d vector that is only a function of the signal delays in the APUF instance,
 p (parity): $(m + 1)$-d vector that is only a function of the challenge c.

- Linear classification model; easy to learn given reasonable number of challenge-response pairs (CRPs).
Arbiter-based PUFs: XOR APUFs

k-XOR APUF:
- XOR-sum of k APUF instances (sharing the challenge).
- #CRPs required in learning is believed to be exponential in k.
- Empirically vulnerable to *reliability-based attacks*, where the *reliability* information (probability of getting the same response) is accessible besides merely the response.
k-XOR APUF:

- XOR-sum of k APUF instances (sharing the challenge).
- #CRPs required in learning is believed to be exponential in k.
- Empirically vulnerable to *reliability-based attacks*, where the *reliability* information (probability of getting the same response) is accessible besides merely the response.
Arbiter-based PUFs: XOR APUFs

k-XOR APUF:

- XOR-sum of k APUF instances (sharing the challenge).
- #CRPs required in learning is believed to be exponential in k.
- Empirically vulnerable to *reliability-based attacks*, where the reliability information (probability of getting the same response) is accessible besides merely the response.
(x, y)-iPUF:

- Use two XOR APUFs as follows:

\[r(c) = r_2(c_1, r_1(c), c_2), \]

- \(r_1 \) and \(r_2 \): respectively an \(x \)-XOR APUF and a \(y \)-XOR APUF, \((c_1, c_2)\): some fixed split of \(c \).

- As secure as \((x/2 + y)\)-XOR APUF, while moreover resilient to reliability-based attacks.
Arbiter-based PUFs: Interpose PUFs (iPUFs)

\[(x, y)-iPUF:
- Use two XOR APUFs as follows:
 \[r(c) = r_2(c_1, r_1(c), c_2), \]
 where
 - \(r_1 \) and \(r_2 \) are respectively an \(x \)-XOR APUF and a \(y \)-XOR APUF,
 - \((c_1, c_2)\): some fixed split of \(c \).
- As secure as \((x/2 + y)\)-XOR APUF, while moreover resilient to reliability-based attacks.
Our Contribution: Shift PUFs

\[\mathbf{c} = [c_1, \ldots, c_m] \]

\[\mathbf{c}^{(\ell)} = [c_{\ell+1}, \ldots, c_m, c_1, \ldots, c_{\ell}] \to \text{APUF Instance} \to r \]

- Prepend to APUF a (w.l.o.g., left) \textit{circular shift} operation.
- Model of challenge-response behavior \(r(\mathbf{c}) \) becomes:

\[
r(\mathbf{c}) = [\Delta_{\text{Shift}}(\mathbf{c}) \geq 0], \quad \Delta_{\text{Shift}}(\mathbf{c}) = \Delta(\mathbf{c}^{(\ell)}),
\]

\(\mathbf{c}^{(\ell)} \): the circular shift of \(\mathbf{c} \) by \(\ell \) bits.
Shift Displacement ℓ in Shift PUFs

- If ℓ is known by attacker, then the attacker could easily preprocess out the effect of the circular shift.
- Recall: securely generating some secret ℓ is exactly among the applications of PUFs.
- Could use *PUF-based key generation* with the underlying APUF instance to securely generate ℓ;
- ℓ is only log m bits long; will not harm the efficiency badly.

$$c = [c_1, \ldots, c_m] \quad \ell \quad \text{PUF-based Key Gen}$$

$$c^{(\ell)} = [c_{\ell+1}, \ldots, c_m, c_1, \ldots, c_\ell] \quad \text{APUF Instance} \quad r$$
Shift Displacement ℓ in Shift PUFs

- If ℓ is known by attacker, then the attacker could easily preprocess out the effect of the circular shift.
- Recall: securely generating some secret ℓ is exactly among the applications of PUFs.
- Could use *PUF-based key generation* with the underlying APUF instance to securely generate ℓ;
- ℓ is only $\log m$ bits long; will not harm the efficiency badly.

\[
\mathbf{c} = [c_1, \ldots, c_m] \quad \ell \quad \text{PUF-based Key Gen} \quad \mathbf{c}(\ell) = [c_{\ell+1}, \ldots, c_m, c_1, \ldots, c_\ell] \quad \text{APUF Instance} \quad r
\]
Shift Displacement ℓ in Shift PUFs

- If ℓ is known by attacker, then the attacker could easily preprocess out the effect of the circular shift.
- Recall: securely generating some secret ℓ is exactly among the applications of PUFs.
- Could use *PUF-based key generation* with the underlying APUF instance to securely generate ℓ;
 - ℓ is only $\log m$ bits long; will not harm the efficiency badly.

\[c = [c_1, \ldots, c_m] \]
\[\ell \rightarrow \text{PUF-based Key Gen} \]
\[c^{(\ell)} = [c_{\ell+1}, \ldots, c_m, c_1, \ldots, c_\ell] \rightarrow \text{APUF Instance} \rightarrow r \]
Shift Displacement ℓ in Shift PUFs

- If ℓ is known by attacker, then the attacker could easily preprocess out the effect of the circular shift.
- Recall: securely generating some secret ℓ is exactly among the applications of PUFs.
- Could use PUF-based key generation with the underlying APUF instance to securely generate ℓ;
- ℓ is only $\log m$ bits long; will not harm the efficiency badly.

$$c = [c_1, \ldots, c_m] \quad \ell \quad \text{PUF-based Key Gen}$$

$$c^{(\ell)} = [c_{\ell+1}, \ldots, c_m, c_1, \ldots, c_{\ell}] \quad \text{APUF Instance} \quad r$$
Shift Displacement ℓ in Shift PUFs

- If ℓ is known by attacker, then the attacker could easily preprocess out the effect of the circular shift.
- Recall: securely generating some secret ℓ is exactly among the applications of PUFs.
- Could use *PUF-based key generation* with the underlying APUF instance to securely generate ℓ;
- ℓ is only $\log m$ bits long; will not harm the efficiency badly.

\[
c = [c_1, \ldots, c_m]
\]
\[
c^{(\ell)} = [c_{\ell+1}, \ldots, c_m, c_1, \ldots, c]\]
Security of Shift PUFs

- Linear classification model w.r.t. \(p^{(\ell)} \), the parity of \(c^{(\ell)} \), instead of \(p \).
- However \(\ell \) is unknown to the attacker; cannot apply linear methods.
- Eliminate the effect of \(\ell \) by enumerating all \(\ell = 0, 1, \ldots, m - 1 \).
- Natural and general approach: a \(\Theta(m^2) \)-d linear classification model.

\[
\begin{bmatrix}
 p_1 & p_1 & p_1 & \cdots & p_1 & p_1 \\
p_2 & p_1p_2p_3 & p_1p_3p_4 & \cdots & p_1p_{m-1}p_m & p_1p_mp_1 \\
p_3 & p_1p_2p_4 & p_1p_3p_5 & \cdots & p_m-1p_1 & p_mp_2 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
p_{m-1} & p_1p_2p_m & p_3p_1 & \cdots & p_{m-1}p_{m-3} & p_mp_{m-2} \\
p_m & p_2p_1 & p_3p_2 & \cdots & p_{m-1}p_{m-2} & p_mp_{m-1} \\
1 & 1 & 1 & \cdots & 1 & 1 \\
\end{bmatrix}
\]

- Conjecture: the attacker cannot do better than this approach.
Security of Shift PUFs

- Linear classification model w.r.t. $p^{(\ell)}$, the parity of $c^{(\ell)}$, instead of p.
- However ℓ is unknown to the attacker; cannot apply linear methods.
- Eliminate the effect of ℓ by enumerating all $\ell = 0, 1, \ldots, m - 1$.
- Natural and general approach: a $\Theta(m^2)$-d linear classification model.

$$
\begin{bmatrix}
 p_1 & p_1 & p_1 & \cdots & p_1 & p_1 \\
 p_2 & p_1p_2 & p_1 & \cdots & p_1p_{m-1} & p_m \\
 p_3 & p_1p_2 & p_1 & \cdots & p_{m-1} & p_m \\
 \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
 p_{m-1} & p_1p_2 & p_3 & \cdots & p_{m-1} & p_m \\
 p_m & p_2 & p_3 & \cdots & p_{m-1} & p_m \\
 1 & 1 & 1 & \cdots & 1 & 1
\end{bmatrix}
$$

- Conjecture: the attacker cannot do better than this approach.
Security of Shift PUFs

- Linear classification model w.r.t. $p^{(\ell)}$, the parity of $c^{(\ell)}$, instead of p.
- However ℓ is unknown to the attacker; cannot apply linear methods.
- Eliminate the effect of ℓ by enumerating all $\ell = 0, 1, \ldots, m - 1$.
- Natural and general approach: a $\Theta(m^2)$-d linear classification model.

\[
\begin{bmatrix}
 p_1 & p_1 & p_1 & \cdots & p_1 & p_1 \\
 p_2 & p_1 p_2 p_3 & p_1 p_3 p_4 & \cdots & p_1 p_{m-1} p_m & p_1 p_m p_1 \\
 p_3 & p_1 p_2 p_4 & p_1 p_3 p_5 & \cdots & p_m p_{m-1} p_1 & p_m p_1 p_2 \\
 \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
 p_{m-1} & p_1 p_2 p_{m-1} & p_3 p_1 & \cdots & p_{m-1} p_{m-3} p_{m-1} & p_{m-1} p_{m-2} p_{m-1} \\
 p_m & p_2 p_1 & p_3 p_2 & \cdots & p_{m-1} p_{m-2} & p_m p_{m-1} p_{m-1} \\
 1 & p_2 & 1 & \cdots & 1 & 1 \\
 \end{bmatrix}
\]

- Conjecture: the attacker cannot do better than this approach.
“Squaring” Arbiter-based PUFs

By substituting APUFs with shift PUFs, all arbiter-based PUF designs might benefit from the $\Theta(m^2)$ enhancement.

- Any machine learning complexity $T(m)$ becomes $T(m^2)$.\(^2\)
- Remark: not for turning insecure design into secure design.
- Substantially adding difficulties to the attacks.
- Alternatively, reducing time and/or circuit complexities of the hardware while preserving the machine learning complexity.

\(^2\)Strictly speaking it is $\Theta(T(m^2))$, as long as T is polynomial in m; also note that $\Theta(T(m^2)) = \Theta(T(m)^2)$ in such case.
“Squaring” Arbiter-based PUFs

By substituting APUFs with shift PUFs, all arbiter-based PUF designs might benefit from the $\Theta(m^2)$ enhancement.

- Any machine learning complexity $T(m)$ becomes $T(m^2)$.2
- Remark: not for turning insecure design into secure design.
- Substantially adding difficulties to the attacks.
- Alternatively, reducing time and/or circuit complexities of the hardware while preserving the machine learning complexity.

2Strictly speaking it is $\Theta(T(m^2))$, as long as T is polynomial in m; also note that $\Theta(T(m^2)) = \Theta(T(m)^2)$ in such case.
“Squaring” Arbiter-based PUFs

By substituting APUFs with shift PUFs, all arbiter-based PUF designs might benefit from the $\Theta(m^2)$ enhancement.

- Any machine learning complexity $T(m)$ becomes $T(m^2)$.
- Remark: not for turning insecure design into secure design.
- Substantially adding difficulties to the attacks.
- Alternatively, reducing time and/or circuit complexities of the hardware while preserving the machine learning complexity.

2Strictly speaking it is $\Theta(T(m^2))$, as long as T is polynomial in m; also note that $\Theta(T(m^2)) = \Theta(T(m)^2)$ in such case.
“Squaring” Arbiter-based PUFs

By substituting APUFs with shift PUFs, all arbiter-based PUF designs might benefit from the $\Theta(m^2)$ enhancement.

- Any machine learning complexity $T(m)$ becomes $T(m^2)$.

2Remark: not for turning insecure design into secure design.

- Substantially adding difficulties to the attacks.

- Alternatively, reducing time and/or circuit complexities of the hardware while preserving the machine learning complexity.

2Strictly speaking it is $\Theta(T(m^2))$, as long as T is polynomial in m; also note that $\Theta(T(m^2)) = \Theta(T(m)^2)$ in such case.
“Squaring” Arbiter-based PUFs

By substituting APUFs with shift PUFs, all arbiter-based PUF designs might benefit from the $\Theta(m^2)$ enhancement.

- Any machine learning complexity $T(m)$ becomes $T(m^2)$.\(^2\)
- Remark: not for turning insecure design into secure design.
- Substantially adding difficulties to the attacks.
- Alternatively, reducing time and/or circuit complexities of the hardware while preserving the machine learning complexity.

\(^2\text{Strictly speaking it is } \Theta(T(m^2)), \text{ as long as } T \text{ is polynomial in } m; \text{ also note that } \Theta(T(m^2)) = \Theta(T(m)^2) \text{ in such case.}\)
To empirically verify the conjecture: $T(m)$ becomes $T(m^2)$.

- Various kinds of arbiter-based PUFs.
- Various commonly used attacks.
Thank you.