LWE Continued & Continuous LWE

Yi Tang

February 23, 2021 Last updated on June 5, 2021

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

LWE and Related Lattice Problems

LWE and Its Variants Lattice Problems

Reduction to LWE

Reduction from Lattice Problems to DGS Reduction from DGS to LWE

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Encryption Schemes from LWE

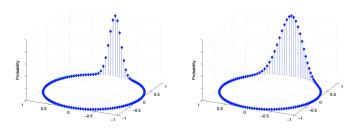
CLWE

CLWE and Its Variants Reduction to CLWE Misc. about CLWE

• Gaussian kernel: $\rho_s(\mathbf{x}) := \exp(-\pi \|\mathbf{x}/s\|^2) \ (\sigma = s/\sqrt{2\pi})$

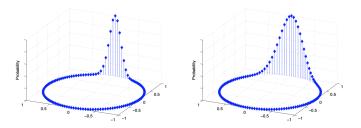
• Gaussian distribution D_s : density ρ_s/s^n $(n = \dim \mathbf{x})$

- Sample distribution $A_{\mathbf{s},\alpha}$ for $\mathbf{s} \in \mathbb{Z}_p^n$: $(\mathbf{a}, b = \langle \mathbf{a}, \mathbf{s} \rangle + e_p)$ where $\mathbf{a} \sim \mathbb{Z}_p^n$ and $e_p = \lfloor pe \rfloor \mod p \in \mathbb{Z}_p$, $e \sim D_{\alpha}$
- Learning with errors LWE_{p,s}:
 - Search: Given samples from $A_{s,\alpha}$, find **s**
 - ▶ Decision: Distinguish between $A_{s,\alpha}$ and $U(\mathbb{Z}_p^{n+1})$



・ロト ・ 何ト ・ ヨト ・ ヨト … ヨ

- Gaussian kernel: $\rho_s(\mathbf{x}) := \exp(-\pi \|\mathbf{x}/s\|^2) \ (\sigma = s/\sqrt{2\pi})$
- Gaussian distribution D_s : density ρ_s/s^n $(n = \dim \mathbf{x})$
- Sample distribution A_{s,α} for s ∈ Zⁿ_p: (a, b = ⟨a, s⟩ + e_p) where a ~ Zⁿ_p and e_p = ⌊pe⌉ mod p ∈ Z_p, e ~ D_α
 Learning with errors LWE_{p,s}:
 - **•** Search: Given samples from $A_{s,\alpha}$, find **s**
 - Decision: Distinguish between $A_{s,\alpha}$ and $U(\mathbb{Z}_p^{n+1})$



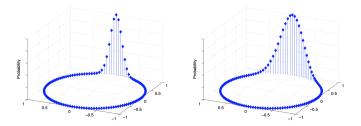
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣

- Gaussian kernel: $\rho_s(\mathbf{x}) := \exp(-\pi \|\mathbf{x}/s\|^2) \ (\sigma = s/\sqrt{2\pi})$
- Gaussian distribution D_s : density ρ_s/s^n $(n = \dim \mathbf{x})$
- Sample distribution $A_{\mathbf{s},\alpha}$ for $\mathbf{s} \in \mathbb{Z}_p^n$: $(\mathbf{a}, b = \langle \mathbf{a}, \mathbf{s} \rangle + e_p)$ where $\mathbf{a} \sim \mathbb{Z}_p^n$ and $e_p = \lfloor pe \rfloor \mod p \in \mathbb{Z}_p$, $e \sim D_\alpha$

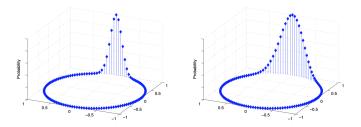
Learning with errors LWE_{p,s}:

Search: Given samples from $A_{s,\alpha}$, find **s**

• Decision: Distinguish between $A_{s,\alpha}$ and $U(\mathbb{Z}_p^{n+1})$



- Gaussian kernel: $\rho_s(\mathbf{x}) := \exp(-\pi \|\mathbf{x}/s\|^2) \ (\sigma = s/\sqrt{2\pi})$
- Gaussian distribution D_s : density ρ_s/s^n $(n = \dim \mathbf{x})$
- Sample distribution $A_{\mathbf{s},\alpha}$ for $\mathbf{s} \in \mathbb{Z}_p^n$: $(\mathbf{a}, b = \langle \mathbf{a}, \mathbf{s} \rangle + e_p)$ where $\mathbf{a} \sim \mathbb{Z}_p^n$ and $e_p = \lfloor pe \rfloor \mod p \in \mathbb{Z}_p$, $e \sim D_\alpha$
- Learning with errors LWE_{p,s}:
 - Search: Given samples from $A_{s,\alpha}$, find **s**
 - Decision: Distinguish between $A_{s,\alpha}$ and $U(\mathbb{Z}_p^{n+1})$



・ロト ・四ト ・ヨト ・ヨト ・ヨ

▶ Worst/average cases: whether $\mathbf{s} \in \mathbb{Z}_p^n$ is arbitrary or uniform

- "Continuous" variant of $A_{s,\alpha}$: $(\mathbf{a}, b = [\langle \mathbf{a}, \mathbf{s} \rangle / p + e] \mod 1)$
- Reductions among variants:
 - 1. "Continuous" to discrete: discretize $b \in [0, 1)$ to $\lfloor pb \rfloor \mod p$
 - 2. Worst- to average-case: pick $\mathbf{t} \sim \mathbb{Z}_{\rho}^{n}$ and transform worst-case samples (\mathbf{a}, b) to $(\mathbf{a}, b + \langle \mathbf{a}, \mathbf{t} \rangle) \sim A_{\mathbf{s}+\mathbf{t},\alpha}$
 - Search to decision: transform LWE samples (a, b) to (a + le_i, b + lk) where l ~ Z_p, which ~ A_{s,α} if k = s_i and is uniform (requiring prime p) otherwise, and brute-force s_i (requiring poly p)
 - 4. Decision to search: search & verify
- As a result,
 - 1. Want reduction to "continuous", worst-case, decisional LWE
 - 2. Build applications on arbitrary (discrete, average-case) LWE

- ▶ Worst/average cases: whether $\mathbf{s} \in \mathbb{Z}_p^n$ is arbitrary or uniform
- "Continuous" variant of $A_{\mathbf{s},\alpha}$: $(\mathbf{a}, \mathbf{b} = [\langle \mathbf{a}, \mathbf{s} \rangle / p + e] \mod 1)$
- Reductions among variants:
 - 1. "Continuous" to discrete: discretize $b \in [0, 1)$ to $\lfloor pb \rfloor \mod p$
 - 2. Worst- to average-case: pick $\mathbf{t} \sim \mathbb{Z}_{\rho}^{n}$ and transform worst-case samples (\mathbf{a}, b) to $(\mathbf{a}, b + \langle \mathbf{a}, \mathbf{t} \rangle) \sim A_{\mathbf{s}+\mathbf{t},\alpha}$
 - Search to decision: transform LWE samples (a, b) to (a + le_i, b + lk) where l ~ Z_p, which ~ A_{s,α} if k = s_i and is uniform (requiring prime p) otherwise, and brute-force s_i (requiring poly p)
 - 4. Decision to search: search & verify
- As a result,
 - 1. Want reduction to "continuous", worst-case, decisional LWE
 - 2. Build applications on arbitrary (discrete, average-case) LWE

- ▶ Worst/average cases: whether $\mathbf{s} \in \mathbb{Z}_p^n$ is arbitrary or uniform
- "Continuous" variant of $A_{\mathbf{s},\alpha}$: $(\mathbf{a}, \mathbf{b} = [\langle \mathbf{a}, \mathbf{s} \rangle / p + e] \mod 1)$
- Reductions among variants:
 - 1. "Continuous" to discrete: discretize $b \in [0, 1)$ to $\lfloor pb \rceil \mod p$
 - 2. Worst- to average-case: pick $\mathbf{t} \sim \mathbb{Z}_{\rho}^{n}$ and transform worst-case samples (\mathbf{a}, b) to $(\mathbf{a}, b + \langle \mathbf{a}, \mathbf{t} \rangle) \sim A_{\mathbf{s}+\mathbf{t},\alpha}$
 - Search to decision: transform LWE samples (a, b) to (a + le_i, b + lk) where l ~ Z_p, which ~ A_{s,α} if k = s_i and is uniform (requiring prime p) otherwise, and brute-force s_i (requiring poly p)
 - 4. Decision to search: search & verify
- As a result,
 - 1. Want reduction to "continuous", worst-case, decisional LWE
 - 2. Build applications on arbitrary (discrete, average-case) LWE

- ▶ Worst/average cases: whether $\mathbf{s} \in \mathbb{Z}_p^n$ is arbitrary or uniform
- "Continuous" variant of $A_{\mathbf{s},\alpha}$: $(\mathbf{a}, b = [\langle \mathbf{a}, \mathbf{s} \rangle / p + e] \mod 1)$
- Reductions among variants:
 - 1. "Continuous" to discrete: discretize $b \in [0,1)$ to $\lfloor pb \rceil \mod p$
 - 2. Worst- to average-case: pick $\mathbf{t} \sim \mathbb{Z}_p^n$ and transform worst-case samples (\mathbf{a}, b) to $(\mathbf{a}, b + \langle \mathbf{a}, \mathbf{t} \rangle) \sim A_{\mathbf{s}+\mathbf{t},\alpha}$
 - Search to decision: transform LWE samples (a, b) to (a + le_i, b + lk) where l ~ Z_p, which ~ A_{s,α} if k = s_i and is uniform (requiring prime p) otherwise, and brute-force s_i (requiring poly p)
 - 4. Decision to search: search & verify
- As a result,
 - 1. Want reduction to "continuous", worst-case, decisional LWE
 - 2. Build applications on arbitrary (discrete, average-case) LWE

- ▶ Worst/average cases: whether $\mathbf{s} \in \mathbb{Z}_p^n$ is arbitrary or uniform
- "Continuous" variant of $A_{\mathbf{s},\alpha}$: $(\mathbf{a}, b = [\langle \mathbf{a}, \mathbf{s} \rangle / p + e] \mod 1)$
- Reductions among variants:
 - 1. "Continuous" to discrete: discretize $b \in [0, 1)$ to $\lfloor pb \rceil \mod p$
 - 2. Worst- to average-case: pick $\mathbf{t} \sim \mathbb{Z}_p^n$ and transform worst-case samples (\mathbf{a}, b) to $(\mathbf{a}, b + \langle \mathbf{a}, \mathbf{t} \rangle) \sim A_{\mathbf{s}+\mathbf{t},\alpha}$
 - 3. Search to decision: transform LWE samples (\mathbf{a}, b) to $(\mathbf{a} + \ell \mathbf{e}_i, b + \ell k)$ where $\ell \sim \mathbb{Z}_p$, which $\sim A_{\mathbf{s},\alpha}$ if $k = s_i$ and is uniform (requiring prime p) otherwise, and brute-force s_i (requiring poly p)
 - 4. Decision to search: search & verify
- As a result,
 - 1. Want reduction to "continuous", worst-case, decisional LWE
 - 2. Build applications on arbitrary (discrete, average-case) LWE

- ▶ Worst/average cases: whether $\mathbf{s} \in \mathbb{Z}_p^n$ is arbitrary or uniform
- "Continuous" variant of $A_{\mathbf{s},\alpha}$: $(\mathbf{a}, b = [\langle \mathbf{a}, \mathbf{s} \rangle / p + e] \mod 1)$
- Reductions among variants:
 - 1. "Continuous" to discrete: discretize $b \in [0, 1)$ to $\lfloor pb \rceil \mod p$
 - 2. Worst- to average-case: pick $\mathbf{t} \sim \mathbb{Z}_p^n$ and transform worst-case samples (\mathbf{a}, b) to $(\mathbf{a}, b + \langle \mathbf{a}, \mathbf{t} \rangle) \sim A_{\mathbf{s}+\mathbf{t},\alpha}$
 - 3. Search to decision: transform LWE samples (\mathbf{a}, b) to $(\mathbf{a} + \ell \mathbf{e}_i, b + \ell k)$ where $\ell \sim \mathbb{Z}_p$, which $\sim A_{\mathbf{s},\alpha}$ if $k = s_i$ and is uniform (requiring prime p) otherwise, and brute-force s_i (requiring poly p)
 - 4. Decision to search: search & verify
- As a result,
 - 1. Want reduction to "continuous", worst-case, decisional LWE
 - 2. Build applications on arbitrary (discrete, average-case) LWE

- Shortest vector problem SVP_γ: Given rank-n lattice *L*, find nonzero v ∈ *L* such that ||v|| ≤ γ(n) · λ₁(*L*)
- GapSVP_γ: Given rank-n lattice L and length d, distinguish between YES: λ₁(L) ≤ d and NO: λ₁(L) > γ(n) ⋅ d
- Shortest independent vectors problem SIVP_{γ}: Given rank-*n* lattice \mathcal{L} , find linearly independent $\mathbf{v}_1, \ldots, \mathbf{v}_n \in \mathcal{L}$ such that $\max_i \|\mathbf{v}_i\| \leq \gamma(n) \cdot \lambda_n(\mathcal{L})^{-1}$

 ${}^{1}\lambda_{n}: \lambda_{n}(\mathcal{L}) = \min\{\max_{i} \|\mathbf{v}_{i}\| : \mathbf{v}_{1}, \dots, \mathbf{v}_{n} \in \mathcal{L} \text{ and lin. ind.}\},$ "successive minima"

- Shortest vector problem SVP_γ: Given rank-n lattice *L*, find nonzero **v** ∈ *L* such that ||**v**|| ≤ γ(n) · λ₁(*L*)
- GapSVP_γ: Given rank-*n* lattice *L* and length *d*, distinguish between YES: λ₁(*L*) ≤ *d* and NO: λ₁(*L*) > γ(*n*) ⋅ *d*

Shortest independent vectors problem SIVP_{γ}: Given rank-*n* lattice \mathcal{L} , find linearly independent $\mathbf{v}_1, \ldots, \mathbf{v}_n \in \mathcal{L}$ such that $\max_i ||\mathbf{v}_i|| \le \gamma(n) \cdot \lambda_n(\mathcal{L})^{-1}$

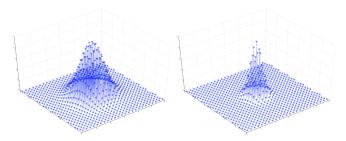
 ${}^{1}\lambda_{n}: \lambda_{n}(\mathcal{L}) = \min\{\max_{i} \|\mathbf{v}_{i}\| : \mathbf{v}_{1}, \dots, \mathbf{v}_{n} \in \mathcal{L} \text{ and lin. ind.}\},$ "successive minima"

- Shortest vector problem SVP_γ: Given rank-n lattice *L*, find nonzero v ∈ *L* such that ||v|| ≤ γ(n) · λ₁(*L*)
- GapSVP_γ: Given rank-*n* lattice *L* and length *d*, distinguish between YES: λ₁(*L*) ≤ *d* and NO: λ₁(*L*) > γ(*n*) ⋅ *d*
- Shortest independent vectors problem SIVP_γ: Given rank-n lattice *L*, find linearly independent v₁,..., v_n ∈ *L* such that max_i||v_i|| ≤ γ(n) · λ_n(*L*)¹

 ${}^{1}\lambda_{n}: \lambda_{n}(\mathcal{L}) = \min\{\max_{i} \|\mathbf{v}_{i}\| : \mathbf{v}_{1}, \dots, \mathbf{v}_{n} \in \mathcal{L} \text{ and lin. ind.}\},$ "successive minima"

Lattice Problems: Discrete Gaussian

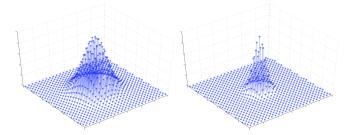
- Discrete Gaussian distribution D_{L,s}: over L, probability distribution ρ_s(**v**) / Σ_{**v**∈L} ρ_s(**v**)
- ▶ Discrete Gaussian sampling DGS_{φ} : Given rank-*n* lattice \mathcal{L} and width $r \ge \varphi(\mathcal{L})$, sample with distribution $\stackrel{s}{\approx} D_{\mathcal{L},r}$



・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Lattice Problems: Discrete Gaussian

- Discrete Gaussian distribution D_{L,s}: over L, probability distribution ρ_s(**v**) / Σ_{**v**∈L} ρ_s(**v**)
- ► Discrete Gaussian sampling DGS_{φ} : Given rank-*n* lattice \mathcal{L} and width $r \ge \varphi(\mathcal{L})$, sample with distribution $\stackrel{s}{\approx} D_{\mathcal{L},r}$



・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Results:

GapSVP_{100√nγ(n)} to DGS_{√nγ(n)/λ1(L*)}
SIVP_{2√nγ(n)} to DGS_{γ(n)λn(L)}, for large enough γ (in particular γ(n)λ_n(L) ≥ √2 η_ε(L),² ε ≤ 1/10)

Setting parameters:

- ► Will use $DGS_{\sqrt{2n}\eta_{\varepsilon}(\mathcal{L})/\alpha}$ (for negligible ε), corresponding to
- GapSVP_{O(n/ α)} $(\eta_{\varepsilon}(\mathcal{L}) \lambda_1(\mathcal{L}^*) \leq \sqrt{n} \text{ for } \varepsilon = 2^{-n})$
- ► SIVP_{$\tilde{O}(n/\alpha)$} $(\eta_{\varepsilon}(\mathcal{L})/\lambda_n(\mathcal{L}) \leq \operatorname{polylog}(n))$

 $^{{}^{2}\}eta_{\varepsilon}$: "smoothing parameter", beyond which the discrete Gaussian "behaves like" continuous Gaussian with the same width $(\Box \rightarrow \langle \Box \rangle \langle \Xi \rightarrow \langle \Xi \rangle \rangle \equiv \langle \neg \land \rangle$

Results:

GapSVP_{100√nγ(n)} to DGS_{√nγ(n)/λ1(L*)}
SIVP_{2√nγ(n)} to DGS_{γ(n)λn(L)}, for large enough γ (in particular γ(n)λ_n(L) ≥ √2 η_ε(L),² ε ≤ 1/10)

Setting parameters:

- ► Will use $DGS_{\sqrt{2n}\eta_{\varepsilon}(\mathcal{L})/\alpha}$ (for negligible ε), corresponding to
- ► GapSVP_{O(n/ α)} $(\eta_{\varepsilon}(\mathcal{L}) \lambda_1(\mathcal{L}^*) \leq \sqrt{n} \text{ for } \varepsilon = 2^{-n})$
- ► SIVP_{$\tilde{O}(n/\alpha)$} $(\eta_{\varepsilon}(\mathcal{L})/\lambda_n(\mathcal{L}) \leq \text{polylog}(n))$

 $^{{}^{2}\}eta_{\varepsilon}$: "smoothing parameter", beyond which the discrete Gaussian "behaves like" continuous Gaussian with the same width $\Box \to \langle \sigma \rangle = \langle \sigma \rangle = \langle \sigma \rangle$

Results:

GapSVP_{100√nγ(n)} to DGS_{√nγ(n)/λ1(L*)}
 SIVP_{2√nγ(n)} to DGS_{γ(n)λn(L)}, for large enough γ (in particular γ(n)λ_n(L) ≥ √2 η_ε(L),² ε ≤ 1/10)

Setting parameters:

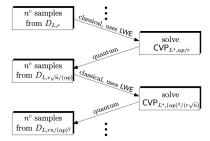
- ► Will use $DGS_{\sqrt{2n}\eta_{\varepsilon}(\mathcal{L})/\alpha}$ (for negligible ε), corresponding to
- ► GapSVP_{O(n/ α)} ($\eta_{\varepsilon}(\mathcal{L}) \lambda_1(\mathcal{L}^*) \leq \sqrt{n}$ for $\varepsilon = 2^{-n}$)
- ► SIVP_{$\tilde{O}(n/\alpha)$} $(\eta_{\varepsilon}(\mathcal{L})/\lambda_n(\mathcal{L}) \leq \text{polylog}(n))$

 $^{{}^{2}\}eta_{\varepsilon}$: "smoothing parameter", beyond which the discrete Gaussian "behaves like" continuous Gaussian with the same width $\Box \to \langle \sigma \rangle = \langle \sigma \rangle = \langle \sigma \rangle$

Reduction from DGS to LWE: Overview

- Bootstrapping: DGS_{2²ⁿ λ_n(L)} is efficiently sampleable (LLL-reduce, sample from continuous, and round)
- ▶ Iteratively "refine" the samples, using LWE_{p,α} oracle, via intermediate problem BDD

Finally reach desired $DGS_{\sqrt{2n}\eta_{\varepsilon}(\mathcal{L})/\alpha} (\eta_{\varepsilon} / \lambda_n = \Omega(1/n))$

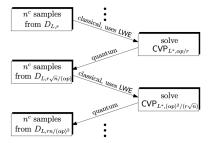


(modern name for the specific CVP is BDD; omitting some $\sqrt{2}$ factors)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Reduction from DGS to LWE: Overview

- Bootstrapping: DGS_{2²ⁿ λ_n(L)} is efficiently sampleable (LLL-reduce, sample from continuous, and round)
- Iteratively "refine" the samples, using LWE_{p,α} oracle, via intermediate problem BDD
- ► Finally reach desired $DGS_{\sqrt{2n}\eta_{\varepsilon}(\mathcal{L})/\alpha}$ $(\eta_{\varepsilon} / \lambda_n = \Omega(1/n))$



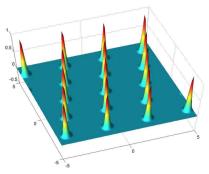
(modern name for the specific CVP is BDD; omitting some $\sqrt{2}$ factors)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

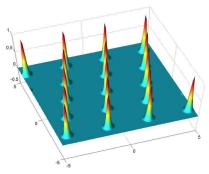
- Closest vector problem CVP_γ: Given rank-*n* lattice *L* and target **t**, find **v** ∈ *L* such that dist(**t**, **v**) ≤ γ(*n*) · dist(**t**, *L*))
- Bounded distance decoding BDD_φ: Given rank-*n* lattice *L* and target t satisfying dist(t, *L*) ≤ φ(*L*), find v ∈ *L* such that dist(t, v) = dist(t, *L*)

► How to sample from DG if *with quantum*?

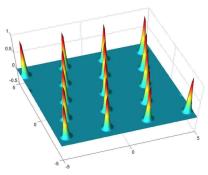
- Fourier transform of DG: $\widehat{D}_{\mathcal{L},r} \approx \exp(-\pi(r \cdot \operatorname{dist}(\mathbf{t}, \mathcal{L}^*))^2)$
- ▶ Easy to "compute": $\mathbf{t} = \mathbf{u} + \mathbf{t}'$, where $\mathbf{u} \sim \mathcal{L}^*, \mathbf{t}' \sim D_{1/r}^n$
- While quantum requires reversibility / "uncomputing"; i.e. given t = u + t', find u / find t'; i.e. BDD!



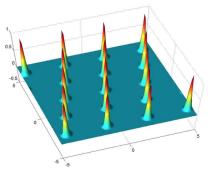
- How to sample from DG if with quantum?
- Fourier transform of DG: $\widehat{D}_{\mathcal{L},r} \approx \exp(-\pi (r \cdot \operatorname{dist}(\mathbf{t}, \mathcal{L}^*))^2)$
- ▶ Easy to "compute": $\mathbf{t} = \mathbf{u} + \mathbf{t}'$, where $\mathbf{u} \sim \mathcal{L}^*, \mathbf{t}' \sim D_{1/r}^n$
- While quantum requires reversibility / "uncomputing"; i.e. given t = u + t', find u / find t'; i.e. BDD!



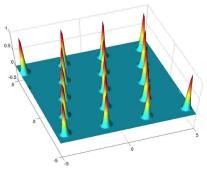
- How to sample from DG if *with quantum*?
- Fourier transform of DG: $\widehat{D}_{\mathcal{L},r} \approx \exp(-\pi (r \cdot \operatorname{dist}(\mathbf{t}, \mathcal{L}^*))^2)$
- ▶ Easy to "compute": $\mathbf{t} = \mathbf{u} + \mathbf{t}'$, where $\mathbf{u} \sim \mathcal{L}^*, \mathbf{t}' \sim D_{1/r}^n$
- While quantum requires reversibility / "uncomputing"; i.e. given t = u + t', find u / find t'; i.e. BDD!



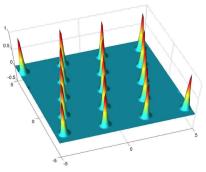
- How to sample from DG if with quantum?
- Fourier transform of DG: $\widehat{D}_{\mathcal{L},r} \approx \exp(-\pi (r \cdot \operatorname{dist}(\mathbf{t}, \mathcal{L}^*))^2)$
- ▶ Easy to "compute": $\mathbf{t} = \mathbf{u} + \mathbf{t}'$, where $\mathbf{u} \sim \mathcal{L}^*, \mathbf{t}' \sim D_{1/r}^n$
- While quantum requires reversibility / "uncomputing"; i.e. given t = u + t', find u / find t'; i.e. BDD!



- How to sample from DG if with quantum?
- Fourier transform of DG: $\widehat{D}_{\mathcal{L},r} \approx \exp(-\pi (r \cdot \operatorname{dist}(\mathbf{t}, \mathcal{L}^*))^2)$
- ▶ Easy to "compute": $\mathbf{t} = \mathbf{u} + \mathbf{t}'$, where $\mathbf{u} \sim \mathcal{L}^*, \mathbf{t}' \sim D_{1/r}^n$
- While quantum requires reversibility / "uncomputing"; i.e. given t = u + t', find u / find t'; i.e. BDD!



- How to sample from DG if with quantum?
- Fourier transform of DG: $\widehat{D}_{\mathcal{L},r} \approx \exp(-\pi (r \cdot \operatorname{dist}(\mathbf{t}, \mathcal{L}^*))^2)$
- ▶ Easy to "compute": $\mathbf{t} = \mathbf{u} + \mathbf{t}'$, where $\mathbf{u} \sim \mathcal{L}^*, \mathbf{t}' \sim D_{1/r}^n$
- While quantum requires reversibility / "uncomputing"; i.e. given t = u + t', find u / find t'; i.e. BDD!



 $\mathsf{DGS}_{\sqrt{n}/(\sqrt{2}\varphi(\mathcal{L}^*))}$ to BDD with bound $\varphi(\mathcal{L}^*)$, for small enough φ (in particular $\varphi < \lambda_1/2$, *unique decoding*)

- Using quantum
- DGS on *L* always reduced to BDD on *L** (writing "with bound" instead of BDD_{\u03c6} for less ambiguity)

- ▶ Want to reduce BDD to DGS with larger width
- However can only do so with roughly width $1/\varphi(\mathcal{L}^*)$
- LWE for help!

 $\mathsf{DGS}_{\sqrt{n}/(\sqrt{2}\varphi(\mathcal{L}^*))}$ to BDD with bound $\varphi(\mathcal{L}^*)$, for small enough φ (in particular $\varphi < \lambda_1/2$, *unique decoding*)

- Using quantum
- DGS on *L* always reduced to BDD on *L** (writing "with bound" instead of BDD_{\u03c6} for less ambiguity)

- ▶ Want to reduce BDD to DGS with larger width
- However can only do so with roughly width $1/\varphi(\mathcal{L}^*)$
- LWE for help!

 $\text{DGS}_{\sqrt{n}/(\sqrt{2}\varphi(\mathcal{L}^*))}$ to BDD with bound $\varphi(\mathcal{L}^*)$, for small enough φ (in particular $\varphi < \lambda_1/2$, *unique decoding*)

- Using quantum
- DGS on *L* always reduced to BDD on *L** (writing "with bound" instead of BDD_{\u03c6} for less ambiguity)

- Want to reduce BDD to DGS with larger width
- However can only do so with roughly width $1/\varphi(\mathcal{L}^*)$
- LWE for help!

 $\mathsf{DGS}_{\sqrt{n}/(\sqrt{2}\varphi(\mathcal{L}^*))}$ to BDD with bound $\varphi(\mathcal{L}^*)$, for small enough φ (in particular $\varphi < \lambda_1/2$, *unique decoding*)

- Using quantum
- DGS on *L* always reduced to BDD on *L** (writing "with bound" instead of BDD_{\u03c6} for less ambiguity)

- Want to reduce BDD to DGS with larger width
- However can only do so with roughly width $1/\varphi(\mathcal{L}^*)$
- LWE for help!

 $\text{DGS}_{\sqrt{n}/(\sqrt{2}\varphi(\mathcal{L}^*))}$ to BDD with bound $\varphi(\mathcal{L}^*)$, for small enough φ (in particular $\varphi < \lambda_1/2$, *unique decoding*)

- Using quantum
- DGS on *L* always reduced to BDD on *L** (writing "with bound" instead of BDD_{\u03c6} for less ambiguity)

- Want to reduce BDD to DGS with larger width
- However can only do so with roughly width $1/\varphi(\mathcal{L}^*)$
- LWE for help!

Reduction from BDD to DGS + (Search) LWE

BDD with bound $\alpha p/\sqrt{2}r$ to DGS_r + search LWE_{p, α}, for large enough r (in particular $r > \sqrt{2}p \eta_{\varepsilon}(\mathcal{L})$)

• Given $D_{\mathcal{L},r}$ samples (*instead of oracle*) and LWE oracle

- Want to solve BDD instance (L*, t) (remark: the L* part is always the same)
- Transform DG samples **v** to LWE samples $(\mathcal{L}^{-1}\mathbf{v} \mod p, [\langle \mathbf{v}, \mathbf{t} \rangle / p + e] \mod 1)$ where $e \sim D_{\alpha/\sqrt{2}}$
 - Suppose $\mathbf{v} = \mathcal{L}(\mathbf{a} + p\mathbf{a}')$, $\mathbf{a} \in \mathbb{Z}_p^n$, and $\mathbf{t} = \mathcal{L}^*\mathbf{s} + \mathbf{t}'$, $\mathcal{L}^*\mathbf{s}$ is CV
 - $\blacktriangleright \langle \mathcal{L}(p\mathbf{a}'), \mathcal{L}^*\mathbf{s} \rangle / p \bmod 1 = 0$
 - ► $\langle \mathbf{v}, \mathbf{t}' \rangle / p \stackrel{*}{\approx}$ Gaussian noise of width $r \| \mathbf{t}' \| / p \le \alpha / \sqrt{2}$ (large enough r, "behaves like" continuous Gaussian!)

Samples $\stackrel{s}{\approx}$ (**a**, [$\langle \mathbf{a}, \mathbf{s} \rangle / p + e'$] mod 1) where $e' \sim D_{\leq \alpha}$, $\mathbf{a} \stackrel{s}{\approx} U$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Find $\mathbf{s}_0 = \mathbf{s} \mod p$ using (enhanced) LWE oracle
- Recurse with (t L*s₀)/p for next base-p digits of s (this reduces ||t'|| by p so finally can apply trivial algorithm)

Reduction from BDD to DGS + (Search) LWE

BDD with bound $\alpha p/\sqrt{2}r$ to DGS_r + search LWE_{p, α}, for large enough r (in particular $r > \sqrt{2}p \eta_{\varepsilon}(\mathcal{L})$)

- Given $D_{\mathcal{L},r}$ samples (*instead of oracle*) and LWE oracle
- Want to solve BDD instance (L*, t) (remark: the L* part is always the same)
- Transform DG samples **v** to LWE samples $(\mathcal{L}^{-1}\mathbf{v} \mod p, [\langle \mathbf{v}, \mathbf{t} \rangle / p + e] \mod 1)$ where $e \sim D_{\alpha/\sqrt{2}}$
 - Suppose $\mathbf{v} = \mathcal{L}(\mathbf{a} + p\mathbf{a}')$, $\mathbf{a} \in \mathbb{Z}_p^n$, and $\mathbf{t} = \mathcal{L}^*\mathbf{s} + \mathbf{t}'$, $\mathcal{L}^*\mathbf{s}$ is CV
 - $\blacktriangleright \langle \mathcal{L}(p\mathbf{a}'), \mathcal{L}^*\mathbf{s} \rangle / p \bmod 1 = 0$
 - ► $\langle \mathbf{v}, \mathbf{t}' \rangle / p \stackrel{*}{\approx}$ Gaussian noise of width $r \| \mathbf{t}' \| / p \leq \alpha / \sqrt{2}$ (large enough r, "behaves like" continuous Gaussian!)

Samples $\stackrel{s}{\approx}$ (**a**, [$\langle \mathbf{a}, \mathbf{s} \rangle / p + e'$] mod 1) where $e' \sim D_{\leq \alpha}$, $\mathbf{a} \stackrel{s}{\approx} U$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Find $\mathbf{s}_0 = \mathbf{s} \mod p$ using (enhanced) LWE oracle
- Recurse with (t L*s₀)/p for next base-p digits of s (this reduces ||t'|| by p so finally can apply trivial algorithm)

BDD with bound $\alpha p/\sqrt{2}r$ to DGS_r + search LWE_{p, α}, for large enough r (in particular $r > \sqrt{2}p \eta_{\varepsilon}(\mathcal{L})$)

- Given $D_{\mathcal{L},r}$ samples (*instead of oracle*) and LWE oracle
- Want to solve BDD instance (L*, t) (remark: the L* part is always the same)
- ► Transform DG samples **v** to LWE samples $(\mathcal{L}^{-1}\mathbf{v} \mod p, [\langle \mathbf{v}, \mathbf{t} \rangle / p + e] \mod 1)$ where $e \sim D_{\alpha/\sqrt{2}}$
 - Suppose $\mathbf{v} = \mathcal{L}(\mathbf{a} + p\mathbf{a}')$, $\mathbf{a} \in \mathbb{Z}_p^n$, and $\mathbf{t} = \mathcal{L}^*\mathbf{s} + \mathbf{t}'$, $\mathcal{L}^*\mathbf{s}$ is CV $\mathcal{L}(p\mathbf{a}'), \mathcal{L}^*\mathbf{s}/p \mod 1 = 0$
 - $\langle \mathbf{v}, \mathbf{t}' \rangle / p \stackrel{\sim}{\approx} \text{Gaussian noise of width } r \| \mathbf{t}' \| / p \leq \alpha / \sqrt{2}$ (large enough *r*, "behaves like" continuous Gaussian!)

Samples $\stackrel{s}{\approx}$ (**a**, [$\langle \mathbf{a}, \mathbf{s} \rangle / p + e'$] mod 1) where $e' \sim D_{\leq \alpha}$, $\mathbf{a} \stackrel{s}{\approx} U$

- Find $\mathbf{s}_0 = \mathbf{s} \mod p$ using (enhanced) LWE oracle
- Recurse with (t L*s₀)/p for next base-p digits of s (this reduces ||t'|| by p so finally can apply trivial algorithm)

BDD with bound $\alpha p/\sqrt{2}r$ to DGS_r + search LWE_{p, α}, for large enough r (in particular $r > \sqrt{2}p \eta_{\varepsilon}(\mathcal{L})$)

- Given $D_{\mathcal{L},r}$ samples (*instead of oracle*) and LWE oracle
- Want to solve BDD instance (L*, t) (remark: the L* part is always the same)
- ► Transform DG samples **v** to LWE samples $(\mathcal{L}^{-1}\mathbf{v} \mod p, [\langle \mathbf{v}, \mathbf{t} \rangle / p + e] \mod 1)$ where $e \sim D_{\alpha/\sqrt{2}}$
 - Suppose $\mathbf{v} = \mathcal{L}(\mathbf{a} + p\mathbf{a}')$, $\mathbf{a} \in \mathbb{Z}_p^n$, and $\mathbf{t} = \mathcal{L}^*\mathbf{s} + \mathbf{t}'$, $\mathcal{L}^*\mathbf{s}$ is CV $\mathcal{L}(p\mathbf{a}'), \mathcal{L}^*\mathbf{s}/p \mod 1 = 0$
 - $\langle \mathbf{v}, \mathbf{t}' \rangle / p \stackrel{s}{\approx} \text{Gaussian noise of width } r \|\mathbf{t}'\| / p \leq \alpha / \sqrt{2}$ (large enough *r*, "behaves like" continuous Gaussian!)

Samples $\stackrel{s}{\approx}$ (**a**, [$\langle \mathbf{a}, \mathbf{s} \rangle / p + e'$] mod 1) where $e' \sim D_{\leq \alpha}$, $\mathbf{a} \stackrel{s}{\approx} U$

- Find $\mathbf{s}_0 = \mathbf{s} \mod p$ using (enhanced) LWE oracle
- Recurse with (t L*s₀)/p for next base-p digits of s (this reduces ||t'|| by p so finally can apply trivial algorithm)

BDD with bound $\alpha p/\sqrt{2}r$ to DGS_r + search LWE_{p, α}, for large enough r (in particular $r > \sqrt{2}p \eta_{\varepsilon}(\mathcal{L})$)

- Given $D_{\mathcal{L},r}$ samples (*instead of oracle*) and LWE oracle
- Want to solve BDD instance (L*, t) (remark: the L* part is always the same)
- ► Transform DG samples **v** to LWE samples $(\mathcal{L}^{-1}\mathbf{v} \mod p, [\langle \mathbf{v}, \mathbf{t} \rangle / p + e] \mod 1)$ where $e \sim D_{\alpha/\sqrt{2}}$
 - Suppose $\mathbf{v} = \mathcal{L}(\mathbf{a} + p\mathbf{a}')$, $\mathbf{a} \in \mathbb{Z}_p^n$, and $\mathbf{t} = \mathcal{L}^*\mathbf{s} + \mathbf{t}'$, $\mathcal{L}^*\mathbf{s}$ is CV $\mathcal{L}(p\mathbf{a}'), \mathcal{L}^*\mathbf{s}/p \mod 1 = 0$
 - ⟨v,t'⟩/p ≈ Gaussian noise of width r||t'||/p ≤ α/√2 (large enough r, "behaves like" continuous Gaussian!)
 Samples ≈ (a, [⟨a,s⟩/p + e'] mod 1) where e' ~ D_{≤α}, a ≈ U

- Find $\mathbf{s}_0 = \mathbf{s} \mod p$ using (enhanced) LWE oracle
- Recurse with (t L*s₀)/p for next base-p digits of s (this reduces ||t'|| by p so finally can apply trivial algorithm)

BDD with bound $\alpha p/\sqrt{2}r$ to DGS_r + search LWE_{p, α}, for large enough r (in particular $r > \sqrt{2}p \eta_{\varepsilon}(\mathcal{L})$)

- Given $D_{\mathcal{L},r}$ samples (*instead of oracle*) and LWE oracle
- Want to solve BDD instance (L*, t) (remark: the L* part is always the same)
- ► Transform DG samples **v** to LWE samples $(\mathcal{L}^{-1}\mathbf{v} \mod p, [\langle \mathbf{v}, \mathbf{t} \rangle / p + e] \mod 1)$ where $e \sim D_{\alpha/\sqrt{2}}$
 - Suppose $\mathbf{v} = \mathcal{L}(\mathbf{a} + p\mathbf{a}')$, $\mathbf{a} \in \mathbb{Z}_p^n$, and $\mathbf{t} = \mathcal{L}^*\mathbf{s} + \mathbf{t}'$, $\mathcal{L}^*\mathbf{s}$ is CV
 - $\blacktriangleright \langle \mathcal{L}(p\mathbf{a}'), \mathcal{L}^*\mathbf{s} \rangle / p \bmod 1 = 0$
 - ⟨v,t'⟩/p ≈ Gaussian noise of width r||t'||/p ≤ α/√2 (large enough r, "behaves like" continuous Gaussian!)

Samples $\stackrel{*}{\approx}$ (**a**, [$\langle \mathbf{a}, \mathbf{s} \rangle / p + e'$] mod 1) where $e' \sim D_{\leq \alpha}$, $\mathbf{a} \stackrel{*}{\approx} U$

- Find $\mathbf{s}_0 = \mathbf{s} \mod p$ using (enhanced) LWE oracle
- Recurse with (t L*s₀)/p for next base-p digits of s (this reduces ||t'|| by p so finally can apply trivial algorithm)

BDD with bound $\alpha p/\sqrt{2}r$ to DGS_r + search LWE_{p, α}, for large enough r (in particular $r > \sqrt{2}p \eta_{\varepsilon}(\mathcal{L})$)

- Given $D_{\mathcal{L},r}$ samples (*instead of oracle*) and LWE oracle
- Want to solve BDD instance (L*, t) (remark: the L* part is always the same)
- Transform DG samples **v** to LWE samples $(\mathcal{L}^{-1}\mathbf{v} \mod p, [\langle \mathbf{v}, \mathbf{t} \rangle / p + e] \mod 1)$ where $e \sim D_{\alpha/\sqrt{2}}$
 - Suppose $\mathbf{v} = \mathcal{L}(\mathbf{a} + p\mathbf{a}')$, $\mathbf{a} \in \mathbb{Z}_p^n$, and $\mathbf{t} = \mathcal{L}^*\mathbf{s} + \mathbf{t}'$, $\mathcal{L}^*\mathbf{s}$ is CV $\mathcal{L}(p\mathbf{a}'), \mathcal{L}^*\mathbf{s}/p \mod 1 = 0$
 - $\langle \mathbf{v}, \mathbf{t}' \rangle / p \approx \text{Gaussian noise of width } r \|\mathbf{t}'\| / p < \alpha / \sqrt{2}$
 - (large enough r, "behaves like" continuous Gaussian!)
 - ► Samples $\stackrel{s}{\approx}$ (**a**, [\langle **a**, **s** $\rangle/p + e'$] mod 1) where $e' \sim D_{\leq \alpha}$, **a** $\stackrel{s}{\approx} U$

- Find $\mathbf{s}_0 = \mathbf{s} \mod p$ using (enhanced) LWE oracle
- ► Recurse with (t L*s₀)/p for next base-p digits of s (this reduces ||t'|| by p so finally can apply trivial algorithm)

BDD with bound $\alpha p/\sqrt{2}r$ to DGS_r + search LWE_{p, α}, for large enough r (in particular $r > \sqrt{2}p \eta_{\varepsilon}(\mathcal{L})$)

- Given $D_{\mathcal{L},r}$ samples (*instead of oracle*) and LWE oracle
- Want to solve BDD instance (L*, t) (remark: the L* part is always the same)
- Transform DG samples **v** to LWE samples $(\mathcal{L}^{-1}\mathbf{v} \mod p, [\langle \mathbf{v}, \mathbf{t} \rangle / p + e] \mod 1)$ where $e \sim D_{\alpha/\sqrt{2}}$
 - Suppose $\mathbf{v} = \mathcal{L}(\mathbf{a} + p\mathbf{a}')$, $\mathbf{a} \in \mathbb{Z}_p^n$, and $\mathbf{t} = \mathcal{L}^*\mathbf{s} + \mathbf{t}'$, $\mathcal{L}^*\mathbf{s}$ is CV
 - $\blacktriangleright \langle \mathcal{L}(p\mathbf{a}'), \mathcal{L}^*\mathbf{s} \rangle / p \bmod 1 = 0$
 - ► $\langle \mathbf{v}, \mathbf{t}' \rangle / p \stackrel{s}{\approx}$ Gaussian noise of width $r \|\mathbf{t}'\| / p \le \alpha / \sqrt{2}$ (large enough r, "behaves like" continuous Gaussian!)
 - ► Samples $\stackrel{s}{\approx}$ (**a**, [\langle **a**, **s** $\rangle/p + e'$] mod 1) where $e' \sim D_{\leq \alpha}$, **a** $\stackrel{s}{\approx} U$

- Find $\mathbf{s}_0 = \mathbf{s} \mod p$ using (enhanced) LWE oracle
- ▶ Recurse with (t L*s₀)/p for next base-p digits of s (this reduces ||t'|| by p so finally can apply trivial algorithm)

BDD with bound $\alpha p/\sqrt{2}r$ to DGS_r + search LWE_{p, α}, for large enough r (in particular $r > \sqrt{2}p \eta_{\varepsilon}(\mathcal{L})$)

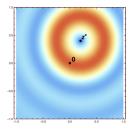
- Given $D_{\mathcal{L},r}$ samples (*instead of oracle*) and LWE oracle
- Want to solve BDD instance (L*, t) (remark: the L* part is always the same)
- Transform DG samples **v** to LWE samples $(\mathcal{L}^{-1}\mathbf{v} \mod p, [\langle \mathbf{v}, \mathbf{t} \rangle / p + e] \mod 1)$ where $e \sim D_{\alpha/\sqrt{2}}$
 - Suppose $\mathbf{v} = \mathcal{L}(\mathbf{a} + p\mathbf{a}')$, $\mathbf{a} \in \mathbb{Z}_p^n$, and $\mathbf{t} = \mathcal{L}^*\mathbf{s} + \mathbf{t}'$, $\mathcal{L}^*\mathbf{s}$ is CV
 - $\blacktriangleright \langle \mathcal{L}(p\mathbf{a}'), \mathcal{L}^*\mathbf{s} \rangle / p \bmod 1 = 0$
 - ► $\langle \mathbf{v}, \mathbf{t}' \rangle / p \stackrel{s}{\approx}$ Gaussian noise of width $r \| \mathbf{t}' \| / p \le \alpha / \sqrt{2}$ (large enough r, "behaves like" continuous Gaussian!)

► Samples $\stackrel{s}{\approx}$ (**a**, [\langle **a**, **s** $\rangle/p + e'$] mod 1) where $e' \sim D_{\leq \alpha}$, **a** $\stackrel{s}{\approx} U$

- Find $\mathbf{s}_0 = \mathbf{s} \mod p$ using (enhanced) LWE oracle
- ► Recurse with (t L*s₀)/p for next base-p digits of s (this reduces ||t'|| by p so finally can apply trivial algorithm)

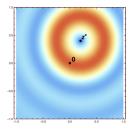
Reduction from BDD to DGS + Decisional LWE

- ► Transform samples in a similar way as in the search case, except with t ← t z where z would be "guess" of t'
- If z is good guess then get LWE samples of small error; otherwise get LWE samples of large error i.e. close to uniform
- Use generic algorithm for oracle hidden center problem
- ▶ (Requiring full flexibility of DGS: D_{L,ri} samples for {r_i ≥ r}_i; fortunately the demand for r_i is still "static", regardless of t)



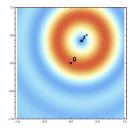
Reduction from BDD to DGS + Decisional LWE

- ► Transform samples in a similar way as in the search case, except with t ← t z where z would be "guess" of t'
- If z is good guess then get LWE samples of small error; otherwise get LWE samples of large error i.e. close to uniform
- Use generic algorithm for oracle hidden center problem
- ▶ (Requiring full flexibility of DGS: D_{L,ri} samples for {r_i ≥ r}_i; fortunately the demand for r_i is still "static", regardless of t)



Reduction from BDD to DGS + Decisional LWE

- ► Transform samples in a similar way as in the search case, except with t ← t z where z would be "guess" of t'
- If z is good guess then get LWE samples of small error; otherwise get LWE samples of large error i.e. close to uniform
- Use generic algorithm for oracle hidden center problem
- ▶ (Requiring full flexibility of DGS: D_L,r_i samples for {r_i ≥ r}_i; fortunately the demand for r_i is still "static", regardless of t)



• Gen:
$$1^n \mapsto \mathbf{s}$$
 where $\mathbf{s} \sim \mathbb{Z}_p^n$

► Enc:
$$(\mathbf{s}, m) \mapsto (\mathbf{a}, \langle \mathbf{a}, \mathbf{s} \rangle + e_p + m \lfloor p/2 \rfloor)$$
 where $\mathbf{a} \sim \mathbb{Z}_p^n$

• Dec:
$$(\mathbf{s}, c = (\mathbf{a}, b)) \mapsto [|b - \langle \mathbf{a}, \mathbf{s} \rangle| \ge p/4]$$

Correctness: $|e_p| \le p/4$ w.h.p.

Security: Enc(0) $\stackrel{\sim}{\approx} U$ from LWE; then Enc(1) $\stackrel{\sim}{\approx} U$ as well by adding $\lfloor p/2 \rfloor$; also multi-message as LWE supports multi-sample Efficiency: key size $O(n \log p)$, message size $\times O(n \log p)$

• Gen:
$$1^n \mapsto \mathbf{s}$$
 where $\mathbf{s} \sim \mathbb{Z}_p^n$

► Enc: $(\mathbf{s}, m) \mapsto (\mathbf{a}, \langle \mathbf{a}, \mathbf{s} \rangle + e_p + m \lfloor p/2 \rfloor)$ where $\mathbf{a} \sim \mathbb{Z}_p^n$

▶ Dec:
$$(\mathbf{s}, c = (\mathbf{a}, b)) \mapsto [|b - \langle \mathbf{a}, \mathbf{s} \rangle| \ge p/4]$$

Correctness: $|e_p| \le p/4$ w.h.p.

Security: Enc(0) $\stackrel{\circ}{\approx} U$ from LWE; then Enc(1) $\stackrel{\circ}{\approx} U$ as well by adding $\lfloor p/2 \rfloor$; also multi-message as LWE supports multi-sample Efficiency: key size $O(n \log p)$, message size $\times O(n \log p)$

• Gen:
$$1^n \mapsto \mathbf{s}$$
 where $\mathbf{s} \sim \mathbb{Z}_p^n$

• Enc:
$$(\mathbf{s}, m) \mapsto (\mathbf{a}, \langle \mathbf{a}, \mathbf{s} \rangle + e_p + m \lfloor p/2 \rfloor)$$
 where $\mathbf{a} \sim \mathbb{Z}_p^n$

▶ Dec:
$$(\mathbf{s}, c = (\mathbf{a}, b)) \mapsto [|b - \langle \mathbf{a}, \mathbf{s} \rangle| \ge p/4]$$

Correctness: $|e_p| \le p/4$ w.h.p.

Security: $\text{Enc}(0) \stackrel{c}{\approx} U$ from LWE; then $\text{Enc}(1) \stackrel{c}{\approx} U$ as well by adding $\lfloor p/2 \rfloor$; also multi-message as LWE supports multi-sample

• Gen:
$$1^n \mapsto \mathbf{s}$$
 where $\mathbf{s} \sim \mathbb{Z}_p^n$

• Enc:
$$(\mathbf{s}, m) \mapsto (\mathbf{a}, \langle \mathbf{a}, \mathbf{s} \rangle + e_p + m \lfloor p/2 \rfloor)$$
 where $\mathbf{a} \sim \mathbb{Z}_p^n$

• Dec:
$$(\mathbf{s}, c = (\mathbf{a}, b)) \mapsto [|b - \langle \mathbf{a}, \mathbf{s} \rangle| \ge p/4]$$

Correctness: $|e_p| \le p/4$ w.h.p.

Security: $\operatorname{Enc}(0) \stackrel{c}{\approx} U$ from LWE; then $\operatorname{Enc}(1) \stackrel{c}{\approx} U$ as well by adding $\lfloor p/2 \rfloor$; also multi-message as LWE supports multi-sample Efficiency: key size $O(n \log p)$, message size $\times O(n \log p)$

Scheme (encrypting one bit):

- Gen: $1^n \mapsto (\mathbf{s}, \{(\mathbf{a}_i, b_i)\}_{i \in [k]})$ (s is the secret key) where $\mathbf{s}, \mathbf{a}_i \sim \mathbb{Z}_p^n$ and $b_i = \langle \mathbf{a}_i, \mathbf{s} \rangle + e_p^{(i)}$
- Enc: $(\{(\mathbf{a}_i, b_i)\}, m) \mapsto (\sum_{i \in S} \mathbf{a}_i, \sum_{i \in S} b_i + m \lfloor p/2 \rfloor)$ where $S \sim \mathcal{P}([k])$
- ▶ Dec: $(\mathbf{s}, c = (\mathbf{a}, b)) \mapsto [|b \langle \mathbf{a}, \mathbf{s} \rangle| \ge p/4]$

Correctness: $|ke_p| \le p/4$ w.h.p.

Security: $(\{(\mathbf{a}_i, b_i)\}, \operatorname{Enc}(0)) \stackrel{c}{\approx} (U, \operatorname{Enc}_U(0))$ from LWE; $(U, \operatorname{Enc}_U(0)) \stackrel{s}{\approx} U$ for $k \ge (1 + \delta)n \log p$; similar for Enc(1)

Efficiency: public key size $O(nk \log p)$, message size $\times O(n \log p)$

Potential optimization: \mathbf{a}_i can be fixed in advance (while $e_p^{(i)}$ still need to be fresh), reducing public key size to $O(k \log p)$

Scheme (encrypting one bit):

- Gen: 1ⁿ → (s, {(a_i, b_i)}_{i∈[k]}) (s is the secret key) where s, a_i ~ Zⁿ_p and b_i = ⟨a_i, s⟩ + e⁽ⁱ⁾_p
 Enc: ({(a_i, b_i)}, m) → (∑_{i∈S} a_i, ∑_{i∈S} b_i + m⌊p/2⌋) where S ~ P([k])
- ▶ Dec: $(\mathbf{s}, c = (\mathbf{a}, b)) \mapsto [|b \langle \mathbf{a}, \mathbf{s} \rangle| \ge p/4]$

Correctness: $|ke_p| \le p/4$ w.h.p.

Security: $(\{(\mathbf{a}_i, b_i)\}, \operatorname{Enc}(0)) \stackrel{c}{\approx} (U, \operatorname{Enc}_U(0))$ from LWE; $(U, \operatorname{Enc}_U(0)) \stackrel{s}{\approx} U$ for $k \ge (1 + \delta) n \log p$; similar for Enc(1) Efficiency: public key size $O(nk \log p)$, message size $\times O(n \log p)$ Potential optimization: \mathbf{a}_i can be fixed in advance (while $e_p^{(i)}$ still need to be fresh), reducing public key size to $O(k \log p)$

Scheme (encrypting one bit):

Gen: 1ⁿ → (s, {(a_i, b_i)}_{i∈[k]}) (s is the secret key) where s, a_i ~ Zⁿ_p and b_i = ⟨a_i, s⟩ + e⁽ⁱ⁾_p
Enc: ({(a_i, b_i)}, m) → (∑_{i∈S} a_i, ∑_{i∈S} b_i + m⌊p/2⌋) where S ~ P([k])

▶ Dec:
$$(\mathbf{s}, c = (\mathbf{a}, b)) \mapsto [|b - \langle \mathbf{a}, \mathbf{s} \rangle| \ge p/4]$$

Correctness: $|ke_p| \le p/4$ w.h.p.

Security: $(\{(\mathbf{a}_i, b_i)\}, \operatorname{Enc}(0)) \stackrel{c}{\approx} (U, \operatorname{Enc}_U(0))$ from LWE; $(U, \operatorname{Enc}_U(0)) \stackrel{s}{\approx} U$ for $k \ge (1 + \delta)n \log p$; similar for Enc(1)

Efficiency: public key size $O(nk \log p)$, message size $\times O(n \log p)$

Potential optimization: \mathbf{a}_i can be fixed in advance (while $e_p^{(i)}$ still need to be fresh), reducing public key size to $O(k \log p)$

Scheme (encrypting one bit):

▶ Dec:
$$(\mathbf{s}, c = (\mathbf{a}, b)) \mapsto [|b - \langle \mathbf{a}, \mathbf{s} \rangle| \ge p/4]$$

Correctness: $|ke_p| \le p/4$ w.h.p.

Security: $(\{(\mathbf{a}_i, b_i)\}, \operatorname{Enc}(0)) \stackrel{c}{\approx} (U, \operatorname{Enc}_U(0))$ from LWE; $(U, \operatorname{Enc}_U(0)) \stackrel{s}{\approx} U$ for $k \ge (1 + \delta)n \log p$; similar for Enc(1) Efficiency: public key size $O(nk \log p)$, message size $\times O(n \log p)$ Potential optimization: \mathbf{a}_i can be fixed in advance (while $e_p^{(i)}$ still

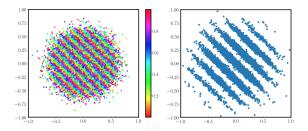
need to be fresh), reducing public key size to $O(k \log p)$

Definition of (H)CLWE

Sample distribution A_{w,β,γ}: (y, z = [γ⟨y, w⟩ + e] mod 1) where y ~ D₁ⁿ and e ~ D_β
 (cf. (a, b = [⟨a, s, /⟩p + e] mod 1), a ~ Z_pⁿ and e ~ D_α)

▶ Continuous LWE CLWE_{β,γ} (decision): Distinguish between $A_{\mathbf{w},\beta,\gamma}$ ³ and $D_1^n \times U([0,1))$

Homogeneous variant hCLWE_{β,γ}: Distinguish between H_{w,β,γ} and Dⁿ₁, where H_{w,β,γ}: y | (y, z) ~ A_{w,β,γ}, z = 0

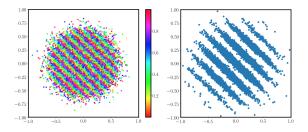


人口 医水黄 医水黄 医水黄素 化甘油

³Average case: **w** is uniform unit vector

Definition of (H)CLWE

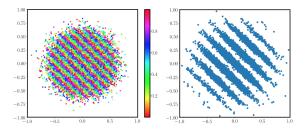
- Sample distribution A_{w,β,γ}: (y, z = [γ⟨y, w⟩ + e] mod 1) where y ~ D₁ⁿ and e ~ D_β
 (cf. (a, b = [⟨a, s, /⟩p + e] mod 1), a ~ Z_pⁿ and e ~ D_α)
- ▶ Continuous LWE CLWE_{β,γ} (decision): Distinguish between $A_{\mathbf{w},\beta,\gamma}$ ³ and $D_1^n \times U([0,1))$
- Homogeneous variant hCLWE_{β,γ}: Distinguish between H_{w,β,γ} and Dⁿ₁, where H_{w,β,γ}: y | (y, z) ~ A_{w,β,γ}, z = 0



³Average case: \mathbf{w} is uniform unit vector

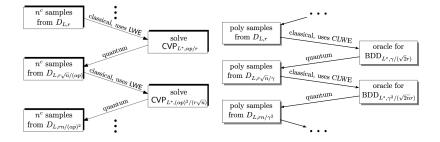
Definition of (H)CLWE

- Sample distribution A_{w,β,γ}: (y, z = [γ⟨y, w⟩ + e] mod 1) where y ~ D₁ⁿ and e ~ D_β (cf. (a, b = [⟨a, s, /⟩p + e] mod 1), a ~ Z_pⁿ and e ~ D_α)
- ► Continuous LWE CLWE_{β,γ} (decision): Distinguish between $A_{\mathbf{w},\beta,\gamma}^{3}$ and $D_{1}^{n} \times U([0,1))$
- Homogeneous variant hCLWE_{β,γ}: Distinguish between H_{w,β,γ} and Dⁿ₁, where H_{w,β,γ}: y | (y, z) ~ A_{w,β,γ}, z = 0



³Average case: \mathbf{w} is uniform unit vector

Reduction to CLWE: Preview



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Reduction from $DGS_{2\sqrt{n}\eta_{\varepsilon}(\mathcal{L})/\beta}$ to $CLWE_{\beta,\gamma}$ for $\gamma \geq 2\sqrt{n}$ and poly γ/β :

- Similar iterative reduction, reducing BDD to DGS + CLWE
- ► Transform to samples $((\mathbf{v} + \mathbf{e}_1)/R, [\langle \mathbf{v}, \mathbf{t} \rangle + e_2] \mod 1)$ where $\mathbf{e}_1 \sim D_s^n$ and $e_2 \sim D_{\beta/\sqrt{2}}$, $s = \beta r/(\sqrt{2}\gamma)$, $R = \sqrt{r^2 + s^2}$ (actually using r_i as oracle is decisional thus applying OHCP) (cf. $(\mathcal{L}^{-1}\mathbf{v} \mod p, [\langle \mathbf{v}, \mathbf{t} \rangle/p + e] \mod 1)$ where $e \sim D_{\alpha/\sqrt{2}}$)

Reduction from $\text{CLWE}_{\beta,\gamma}$ to $\text{hCLWE}_{\sqrt{\beta^2+\delta^2},\gamma}$ for poly $1/\delta$: rejection sampling on z with width δ

(Reduction from HCLWE to HCLWE with multiple hidden discrete directions: hybrid)

Reduction to (H)CLWE

Reduction from $DGS_{2\sqrt{n}\eta_{\varepsilon}(\mathcal{L})/\beta}$ to $CLWE_{\beta,\gamma}$ for $\gamma \geq 2\sqrt{n}$ and poly γ/β :

- Similar iterative reduction, reducing BDD to DGS + CLWE
- ► Transform to samples $((\mathbf{v} + \mathbf{e}_1)/R, [\langle \mathbf{v}, \mathbf{t} \rangle + e_2] \mod 1)$ where $\mathbf{e}_1 \sim D_s^n$ and $e_2 \sim D_{\beta/\sqrt{2}}$, $s = \beta r/(\sqrt{2}\gamma)$, $R = \sqrt{r^2 + s^2}$ (actually using r_i as oracle is decisional thus applying OHCP) (cf. $(\mathcal{L}^{-1}\mathbf{v} \mod p, [\langle \mathbf{v}, \mathbf{t} \rangle/p + e] \mod 1)$ where $e \sim D_{\alpha/\sqrt{2}}$)

Reduction from $\text{CLWE}_{\beta,\gamma}$ to $\text{hCLWE}_{\sqrt{\beta^2+\delta^2},\gamma}$ for poly $1/\delta$: rejection sampling on z with width δ

(Reduction from HCLWE to HCLWE with multiple hidden discrete directions: hybrid)

Reduction to (H)CLWE

Reduction from $DGS_{2\sqrt{n}\eta_{\varepsilon}(\mathcal{L})/\beta}$ to $CLWE_{\beta,\gamma}$ for $\gamma \geq 2\sqrt{n}$ and poly γ/β :

- Similar iterative reduction, reducing BDD to DGS + CLWE
- ► Transform to samples $((\mathbf{v} + \mathbf{e}_1)/R, [\langle \mathbf{v}, \mathbf{t} \rangle + e_2] \mod 1)$ where $\mathbf{e}_1 \sim D_s^n$ and $e_2 \sim D_{\beta/\sqrt{2}}$, $s = \beta r/(\sqrt{2}\gamma)$, $R = \sqrt{r^2 + s^2}$ (actually using r_i as oracle is decisional thus applying OHCP) (cf. $(\mathcal{L}^{-1}\mathbf{v} \mod p, [\langle \mathbf{v}, \mathbf{t} \rangle/p + e] \mod 1)$ where $e \sim D_{\alpha/\sqrt{2}}$)

Reduction from $\text{CLWE}_{\beta,\gamma}$ to $\text{hCLWE}_{\sqrt{\beta^2+\delta^2},\gamma}$ for poly $1/\delta$: rejection sampling on z with width δ

(Reduction from HCLWE to HCLWE with multiple hidden discrete directions: hybrid)

(日)(1)

Reduction from $DGS_{2\sqrt{n}\eta_{\varepsilon}(\mathcal{L})/\beta}$ to $CLWE_{\beta,\gamma}$ for $\gamma \geq 2\sqrt{n}$ and poly γ/β :

- Similar iterative reduction, reducing BDD to DGS + CLWE
- ► Transform to samples $((\mathbf{v} + \mathbf{e}_1)/R, [\langle \mathbf{v}, \mathbf{t} \rangle + e_2] \mod 1)$ where $\mathbf{e}_1 \sim D_s^n$ and $e_2 \sim D_{\beta/\sqrt{2}}$, $s = \beta r/(\sqrt{2}\gamma)$, $R = \sqrt{r^2 + s^2}$ (actually using r_i as oracle is decisional thus applying OHCP) (cf. $(\mathcal{L}^{-1}\mathbf{v} \mod p, [\langle \mathbf{v}, \mathbf{t} \rangle/p + e] \mod 1)$ where $e \sim D_{\alpha/\sqrt{2}}$)

Reduction from $\text{CLWE}_{\beta,\gamma}$ to $\text{hCLWE}_{\sqrt{\beta^2+\delta^2},\gamma}$ for poly $1/\delta$: rejection sampling on z with width δ

(Reduction from HCLWE to HCLWE with multiple hidden discrete directions: hybrid)

- (H)CLWE with $\beta = 0$ ("noiseless") can be solved by LLL
- HCLWE can be solved by checking the eigenvalues of the covariance matrix estimated from 2^{O(γ²)} samples
- HCLWE gives hardness of estimating Gaussian mixtures
- Besides lattice-based hardness, HCLWE also enjoys concrete statistical query hardness

References

[Reg09]: reduction to (search) LWE, reductions among LWE variants, PKE from LWE [PRSD17]: reduction to decisional LWE [BRST21]: (H)CLWE

Joan Bruna, Oded Regev, Min Jae Song, and Yi Tang.

Continuous IWF

In STOC'21—Proceedings of the 53th Annual ACM SIGACT Symposium on Theory of Computing, pages 694-707. ACM, New York, 2021.

Chris Peikert, Oded Regev, and Noah Stephens-Davidowitz. Pseudorandomness of ring-LWE for any ring and modulus.

In STOC'17—Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages 461-473. ACM, New York, 2017.

Oded Regev.

On lattices, learning with errors, random linear codes, and cryptography. J. ACM, 56(6):Art. 34, 40, 2009. Preliminary version in STOC 2005.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00