
LWE Continued
&

Continuous LWE

Yi Tang

February 23, 2021
Last updated on June 5, 2021

Table of Contents

LWE and Related Lattice Problems
LWE and Its Variants
Lattice Problems

Reduction to LWE
Reduction from Lattice Problems to DGS
Reduction from DGS to LWE

Encryption Schemes from LWE

CLWE
CLWE and Its Variants
Reduction to CLWE
Misc. about CLWE

Recall: Definition of LWE

▶ Gaussian kernel: ρs(x) := exp(−π∥x/s∥2) (σ = s/
√
2π)

▶ Gaussian distribution Ds : density ρs/s
n (n = dim x)

▶ Sample distribution As,α for s ∈ Zn
p: (a, b = ⟨a, s⟩+ ep) where

a ∼ Zn
p and ep = ⌊pe⌉ mod p ∈ Zp, e ∼ Dα

▶ Learning with errors LWEp,s :
▶ Search: Given samples from As,α, find s
▶ Decision: Distinguish between As,α and U(Zn+1

p)

Recall: Definition of LWE

▶ Gaussian kernel: ρs(x) := exp(−π∥x/s∥2) (σ = s/
√
2π)

▶ Gaussian distribution Ds : density ρs/s
n (n = dim x)

▶ Sample distribution As,α for s ∈ Zn
p: (a, b = ⟨a, s⟩+ ep) where

a ∼ Zn
p and ep = ⌊pe⌉ mod p ∈ Zp, e ∼ Dα

▶ Learning with errors LWEp,s :
▶ Search: Given samples from As,α, find s
▶ Decision: Distinguish between As,α and U(Zn+1

p)

Recall: Definition of LWE

▶ Gaussian kernel: ρs(x) := exp(−π∥x/s∥2) (σ = s/
√
2π)

▶ Gaussian distribution Ds : density ρs/s
n (n = dim x)

▶ Sample distribution As,α for s ∈ Zn
p: (a, b = ⟨a, s⟩+ ep) where

a ∼ Zn
p and ep = ⌊pe⌉ mod p ∈ Zp, e ∼ Dα

▶ Learning with errors LWEp,s :
▶ Search: Given samples from As,α, find s
▶ Decision: Distinguish between As,α and U(Zn+1

p)

Recall: Definition of LWE

▶ Gaussian kernel: ρs(x) := exp(−π∥x/s∥2) (σ = s/
√
2π)

▶ Gaussian distribution Ds : density ρs/s
n (n = dim x)

▶ Sample distribution As,α for s ∈ Zn
p: (a, b = ⟨a, s⟩+ ep) where

a ∼ Zn
p and ep = ⌊pe⌉ mod p ∈ Zp, e ∼ Dα

▶ Learning with errors LWEp,s :
▶ Search: Given samples from As,α, find s
▶ Decision: Distinguish between As,α and U(Zn+1

p)

Variants of LWE

▶ Worst/average cases: whether s ∈ Zn
p is arbitrary or uniform

▶ “Continuous” variant of As,α: (a, b = [⟨a, s⟩/p + e] mod 1)
▶ Reductions among variants:

1. “Continuous” to discrete: discretize b ∈ [0, 1) to ⌊pb⌉ mod p
2. Worst- to average-case: pick t ∼ Zn

p and transform worst-case
samples (a, b) to (a, b + ⟨a, t⟩) ∼ As+t,α

3. Search to decision: transform LWE samples (a, b) to
(a+ ℓei , b + ℓk) where ℓ ∼ Zp, which ∼ As,α if k = si and is
uniform (requiring prime p) otherwise, and brute-force si
(requiring poly p)

4. Decision to search: search & verify

▶ As a result,

1. Want reduction to “continuous”, worst-case, decisional LWE
2. Build applications on arbitrary (discrete, average-case) LWE

Variants of LWE

▶ Worst/average cases: whether s ∈ Zn
p is arbitrary or uniform

▶ “Continuous” variant of As,α: (a, b = [⟨a, s⟩/p + e] mod 1)
▶ Reductions among variants:

1. “Continuous” to discrete: discretize b ∈ [0, 1) to ⌊pb⌉ mod p
2. Worst- to average-case: pick t ∼ Zn

p and transform worst-case
samples (a, b) to (a, b + ⟨a, t⟩) ∼ As+t,α

3. Search to decision: transform LWE samples (a, b) to
(a+ ℓei , b + ℓk) where ℓ ∼ Zp, which ∼ As,α if k = si and is
uniform (requiring prime p) otherwise, and brute-force si
(requiring poly p)

4. Decision to search: search & verify

▶ As a result,

1. Want reduction to “continuous”, worst-case, decisional LWE
2. Build applications on arbitrary (discrete, average-case) LWE

Variants of LWE

▶ Worst/average cases: whether s ∈ Zn
p is arbitrary or uniform

▶ “Continuous” variant of As,α: (a, b = [⟨a, s⟩/p + e] mod 1)
▶ Reductions among variants:

1. “Continuous” to discrete: discretize b ∈ [0, 1) to ⌊pb⌉ mod p
2. Worst- to average-case: pick t ∼ Zn

p and transform worst-case
samples (a, b) to (a, b + ⟨a, t⟩) ∼ As+t,α

3. Search to decision: transform LWE samples (a, b) to
(a+ ℓei , b + ℓk) where ℓ ∼ Zp, which ∼ As,α if k = si and is
uniform (requiring prime p) otherwise, and brute-force si
(requiring poly p)

4. Decision to search: search & verify

▶ As a result,

1. Want reduction to “continuous”, worst-case, decisional LWE
2. Build applications on arbitrary (discrete, average-case) LWE

Variants of LWE

▶ Worst/average cases: whether s ∈ Zn
p is arbitrary or uniform

▶ “Continuous” variant of As,α: (a, b = [⟨a, s⟩/p + e] mod 1)
▶ Reductions among variants:

1. “Continuous” to discrete: discretize b ∈ [0, 1) to ⌊pb⌉ mod p
2. Worst- to average-case: pick t ∼ Zn

p and transform worst-case
samples (a, b) to (a, b + ⟨a, t⟩) ∼ As+t,α

3. Search to decision: transform LWE samples (a, b) to
(a+ ℓei , b + ℓk) where ℓ ∼ Zp, which ∼ As,α if k = si and is
uniform (requiring prime p) otherwise, and brute-force si
(requiring poly p)

4. Decision to search: search & verify

▶ As a result,

1. Want reduction to “continuous”, worst-case, decisional LWE
2. Build applications on arbitrary (discrete, average-case) LWE

Variants of LWE

▶ Worst/average cases: whether s ∈ Zn
p is arbitrary or uniform

▶ “Continuous” variant of As,α: (a, b = [⟨a, s⟩/p + e] mod 1)
▶ Reductions among variants:

1. “Continuous” to discrete: discretize b ∈ [0, 1) to ⌊pb⌉ mod p
2. Worst- to average-case: pick t ∼ Zn

p and transform worst-case
samples (a, b) to (a, b + ⟨a, t⟩) ∼ As+t,α

3. Search to decision: transform LWE samples (a, b) to
(a+ ℓei , b + ℓk) where ℓ ∼ Zp, which ∼ As,α if k = si and is
uniform (requiring prime p) otherwise, and brute-force si
(requiring poly p)

4. Decision to search: search & verify

▶ As a result,

1. Want reduction to “continuous”, worst-case, decisional LWE
2. Build applications on arbitrary (discrete, average-case) LWE

Variants of LWE

▶ Worst/average cases: whether s ∈ Zn
p is arbitrary or uniform

▶ “Continuous” variant of As,α: (a, b = [⟨a, s⟩/p + e] mod 1)
▶ Reductions among variants:

1. “Continuous” to discrete: discretize b ∈ [0, 1) to ⌊pb⌉ mod p
2. Worst- to average-case: pick t ∼ Zn

p and transform worst-case
samples (a, b) to (a, b + ⟨a, t⟩) ∼ As+t,α

3. Search to decision: transform LWE samples (a, b) to
(a+ ℓei , b + ℓk) where ℓ ∼ Zp, which ∼ As,α if k = si and is
uniform (requiring prime p) otherwise, and brute-force si
(requiring poly p)

4. Decision to search: search & verify

▶ As a result,

1. Want reduction to “continuous”, worst-case, decisional LWE
2. Build applications on arbitrary (discrete, average-case) LWE

Lattice Problems

▶ Shortest vector problem SVPγ : Given rank-n lattice L, find
nonzero v ∈ L such that ∥v∥ ≤ γ(n) · λ1(L)

▶ GapSVPγ : Given rank-n lattice L and length d , distinguish
between YES: λ1(L) ≤ d and NO: λ1(L) > γ(n) · d

▶ Shortest independent vectors problem SIVPγ : Given rank-n
lattice L, find linearly independent v1, . . . , vn ∈ L such that
maxi∥vi∥ ≤ γ(n) · λn(L) 1

1λn: λn(L) = min{maxi∥vi∥ : v1, . . . , vn ∈ L and lin. ind.},
“successive minima”

Lattice Problems

▶ Shortest vector problem SVPγ : Given rank-n lattice L, find
nonzero v ∈ L such that ∥v∥ ≤ γ(n) · λ1(L)

▶ GapSVPγ : Given rank-n lattice L and length d , distinguish
between YES: λ1(L) ≤ d and NO: λ1(L) > γ(n) · d

▶ Shortest independent vectors problem SIVPγ : Given rank-n
lattice L, find linearly independent v1, . . . , vn ∈ L such that
maxi∥vi∥ ≤ γ(n) · λn(L) 1

1λn: λn(L) = min{maxi∥vi∥ : v1, . . . , vn ∈ L and lin. ind.},
“successive minima”

Lattice Problems

▶ Shortest vector problem SVPγ : Given rank-n lattice L, find
nonzero v ∈ L such that ∥v∥ ≤ γ(n) · λ1(L)

▶ GapSVPγ : Given rank-n lattice L and length d , distinguish
between YES: λ1(L) ≤ d and NO: λ1(L) > γ(n) · d

▶ Shortest independent vectors problem SIVPγ : Given rank-n
lattice L, find linearly independent v1, . . . , vn ∈ L such that
maxi∥vi∥ ≤ γ(n) · λn(L) 1

1λn: λn(L) = min{maxi∥vi∥ : v1, . . . , vn ∈ L and lin. ind.},
“successive minima”

Lattice Problems: Discrete Gaussian

▶ Discrete Gaussian distribution DL,s : over L, probability
distribution ρs(v)/

∑
v∈L ρs(v)

▶ Discrete Gaussian sampling DGSφ: Given rank-n lattice L and

width r ≥ φ(L), sample with distribution
s
≈ DL,r

Lattice Problems: Discrete Gaussian

▶ Discrete Gaussian distribution DL,s : over L, probability
distribution ρs(v)/

∑
v∈L ρs(v)

▶ Discrete Gaussian sampling DGSφ: Given rank-n lattice L and

width r ≥ φ(L), sample with distribution
s
≈ DL,r

Reduction from Lattice Problems to DGS

Results:

▶ GapSVP100
√
nγ(n) to DGS√nγ(n)/ λ1(L∗)

▶ SIVP2
√
nγ(n) to DGSγ(n)λn(L), for large enough γ (in particular

γ(n)λn(L) ≥
√
2 ηε(L),2 ε ≤ 1/10)

Setting parameters:

▶ Will use DGS√2n ηε(L)/α
(for negligible ε), corresponding to

▶ GapSVPO(n/α) (ηε(L)λ1(L∗) ≤
√
n for ε = 2−n)

▶ SIVP
Õ(n/α)

(ηε(L)/ λn(L) ≤ polylog(n))

2ηε: “smoothing parameter”, beyond which the discrete Gaussian “behaves
like” continuous Gaussian with the same width

Reduction from Lattice Problems to DGS

Results:

▶ GapSVP100
√
nγ(n) to DGS√nγ(n)/ λ1(L∗)

▶ SIVP2
√
nγ(n) to DGSγ(n)λn(L), for large enough γ (in particular

γ(n)λn(L) ≥
√
2 ηε(L),2 ε ≤ 1/10)

Setting parameters:

▶ Will use DGS√2n ηε(L)/α
(for negligible ε), corresponding to

▶ GapSVPO(n/α) (ηε(L)λ1(L∗) ≤
√
n for ε = 2−n)

▶ SIVP
Õ(n/α)

(ηε(L)/ λn(L) ≤ polylog(n))

2ηε: “smoothing parameter”, beyond which the discrete Gaussian “behaves
like” continuous Gaussian with the same width

Reduction from Lattice Problems to DGS

Results:

▶ GapSVP100
√
nγ(n) to DGS√nγ(n)/ λ1(L∗)

▶ SIVP2
√
nγ(n) to DGSγ(n)λn(L), for large enough γ (in particular

γ(n)λn(L) ≥
√
2 ηε(L),2 ε ≤ 1/10)

Setting parameters:

▶ Will use DGS√2n ηε(L)/α
(for negligible ε), corresponding to

▶ GapSVPO(n/α) (ηε(L)λ1(L∗) ≤
√
n for ε = 2−n)

▶ SIVP
Õ(n/α)

(ηε(L)/ λn(L) ≤ polylog(n))

2ηε: “smoothing parameter”, beyond which the discrete Gaussian “behaves
like” continuous Gaussian with the same width

Reduction from DGS to LWE: Overview

▶ Bootstrapping: DGS22n λn(L) is efficiently sampleable
(LLL-reduce, sample from continuous, and round)

▶ Iteratively “refine” the samples, using LWEp,α oracle, via
intermediate problem BDD

▶ Finally reach desired DGS√2n ηε(L)/α
(ηε / λn = Ω(1/n))

(modern name for the specific CVP is BDD; omitting some
√
2 factors)

Reduction from DGS to LWE: Overview

▶ Bootstrapping: DGS22n λn(L) is efficiently sampleable
(LLL-reduce, sample from continuous, and round)

▶ Iteratively “refine” the samples, using LWEp,α oracle, via
intermediate problem BDD

▶ Finally reach desired DGS√2n ηε(L)/α
(ηε / λn = Ω(1/n))

(modern name for the specific CVP is BDD; omitting some
√
2 factors)

Reduction from DGS to LWE: BDD

▶ (Closest vector problem CVPγ : Given rank-n lattice L and
target t, find v ∈ L such that dist(t, v) ≤ γ(n) · dist(t,L))

▶ Bounded distance decoding BDDφ: Given rank-n lattice L
and target t satisfying dist(t,L) ≤ φ(L), find v ∈ L such that
dist(t, v) = dist(t,L)

Why BDD?

▶ How to sample from DG if with quantum?

▶ Fourier transform of DG: D̂L,r ≈ exp(−π(r · dist(t,L∗))2)
▶ Easy to “compute”: t = u+ t′, where u ∼ L∗, t′ ∼ Dn

1/r

▶ While quantum requires reversibility / “uncomputing”;
i.e. given t = u+ t′, find u / find t′;
i.e. BDD!

Why BDD?

▶ How to sample from DG if with quantum?

▶ Fourier transform of DG: D̂L,r ≈ exp(−π(r · dist(t,L∗))2)
▶ Easy to “compute”: t = u+ t′, where u ∼ L∗, t′ ∼ Dn

1/r

▶ While quantum requires reversibility / “uncomputing”;
i.e. given t = u+ t′, find u / find t′;
i.e. BDD!

Why BDD?

▶ How to sample from DG if with quantum?

▶ Fourier transform of DG: D̂L,r ≈ exp(−π(r · dist(t,L∗))2)
▶ Easy to “compute”: t = u+ t′, where u ∼ L∗, t′ ∼ Dn

1/r

▶ While quantum requires reversibility / “uncomputing”;
i.e. given t = u+ t′, find u / find t′;
i.e. BDD!

Why BDD?

▶ How to sample from DG if with quantum?

▶ Fourier transform of DG: D̂L,r ≈ exp(−π(r · dist(t,L∗))2)
▶ Easy to “compute”: t = u+ t′, where u ∼ L∗, t′ ∼ Dn

1/r

▶ While quantum requires reversibility / “uncomputing”;
i.e. given t = u+ t′, find u / find t′;
i.e. BDD!

Why BDD?

▶ How to sample from DG if with quantum?

▶ Fourier transform of DG: D̂L,r ≈ exp(−π(r · dist(t,L∗))2)
▶ Easy to “compute”: t = u+ t′, where u ∼ L∗, t′ ∼ Dn

1/r

▶ While quantum requires reversibility / “uncomputing”;
i.e. given t = u+ t′, find u / find t′;
i.e. BDD!

Why BDD?

▶ How to sample from DG if with quantum?

▶ Fourier transform of DG: D̂L,r ≈ exp(−π(r · dist(t,L∗))2)
▶ Easy to “compute”: t = u+ t′, where u ∼ L∗, t′ ∼ Dn

1/r

▶ While quantum requires reversibility / “uncomputing”;
i.e. given t = u+ t′, find u / find t′;
i.e. BDD!

Reduction from DGS to BDD

DGS√n/(
√
2φ(L∗)) to BDD with bound φ(L∗), for small enough φ

(in particular φ < λ1 /2, unique decoding)

▶ Using quantum

▶ DGS on L always reduced to BDD on L∗
(writing “with bound” instead of BDDφ for less ambiguity)

Next step:

▶ Want to reduce BDD to DGS with larger width

▶ However can only do so with roughly width 1/φ(L∗)
▶ LWE for help!

Reduction from DGS to BDD

DGS√n/(
√
2φ(L∗)) to BDD with bound φ(L∗), for small enough φ

(in particular φ < λ1 /2, unique decoding)

▶ Using quantum

▶ DGS on L always reduced to BDD on L∗
(writing “with bound” instead of BDDφ for less ambiguity)

Next step:

▶ Want to reduce BDD to DGS with larger width

▶ However can only do so with roughly width 1/φ(L∗)
▶ LWE for help!

Reduction from DGS to BDD

DGS√n/(
√
2φ(L∗)) to BDD with bound φ(L∗), for small enough φ

(in particular φ < λ1 /2, unique decoding)

▶ Using quantum

▶ DGS on L always reduced to BDD on L∗
(writing “with bound” instead of BDDφ for less ambiguity)

Next step:

▶ Want to reduce BDD to DGS with larger width

▶ However can only do so with roughly width 1/φ(L∗)
▶ LWE for help!

Reduction from DGS to BDD

DGS√n/(
√
2φ(L∗)) to BDD with bound φ(L∗), for small enough φ

(in particular φ < λ1 /2, unique decoding)

▶ Using quantum

▶ DGS on L always reduced to BDD on L∗
(writing “with bound” instead of BDDφ for less ambiguity)

Next step:

▶ Want to reduce BDD to DGS with larger width

▶ However can only do so with roughly width 1/φ(L∗)
▶ LWE for help!

Reduction from DGS to BDD

DGS√n/(
√
2φ(L∗)) to BDD with bound φ(L∗), for small enough φ

(in particular φ < λ1 /2, unique decoding)

▶ Using quantum

▶ DGS on L always reduced to BDD on L∗
(writing “with bound” instead of BDDφ for less ambiguity)

Next step:

▶ Want to reduce BDD to DGS with larger width

▶ However can only do so with roughly width 1/φ(L∗)
▶ LWE for help!

Reduction from BDD to DGS + (Search) LWE

BDD with bound αp/
√
2r to DGSr + search LWEp,α, for large

enough r (in particular r >
√
2p ηε(L))

▶ Given DL,r samples (instead of oracle) and LWE oracle

▶ Want to solve BDD instance (L∗, t)
(remark: the L∗ part is always the same)

▶ Transform DG samples v to LWE samples
(L−1v mod p, [⟨v, t⟩/p + e] mod 1) where e ∼ Dα/

√
2

▶ Suppose v = L(a+ pa′), a ∈ Zn
p, and t = L∗s+ t′, L∗s is CV

▶ ⟨L(pa′),L∗s⟩/p mod 1 = 0

▶ ⟨v, t′⟩/p
s
≈ Gaussian noise of width r∥t′∥/p ≤ α/

√
2

(large enough r , “behaves like” continuous Gaussian!)

▶ Samples
s
≈ (a, [⟨a, s⟩/p + e′] mod 1) where e′ ∼ D≤α, a

s
≈ U

▶ Find s0 = s mod p using (enhanced) LWE oracle

▶ Recurse with (t− L∗s0)/p for next base-p digits of s
(this reduces ∥t′∥ by p so finally can apply trivial algorithm)

Reduction from BDD to DGS + (Search) LWE

BDD with bound αp/
√
2r to DGSr + search LWEp,α, for large

enough r (in particular r >
√
2p ηε(L))

▶ Given DL,r samples (instead of oracle) and LWE oracle

▶ Want to solve BDD instance (L∗, t)
(remark: the L∗ part is always the same)

▶ Transform DG samples v to LWE samples
(L−1v mod p, [⟨v, t⟩/p + e] mod 1) where e ∼ Dα/

√
2

▶ Suppose v = L(a+ pa′), a ∈ Zn
p, and t = L∗s+ t′, L∗s is CV

▶ ⟨L(pa′),L∗s⟩/p mod 1 = 0

▶ ⟨v, t′⟩/p
s
≈ Gaussian noise of width r∥t′∥/p ≤ α/

√
2

(large enough r , “behaves like” continuous Gaussian!)

▶ Samples
s
≈ (a, [⟨a, s⟩/p + e′] mod 1) where e′ ∼ D≤α, a

s
≈ U

▶ Find s0 = s mod p using (enhanced) LWE oracle

▶ Recurse with (t− L∗s0)/p for next base-p digits of s
(this reduces ∥t′∥ by p so finally can apply trivial algorithm)

Reduction from BDD to DGS + (Search) LWE

BDD with bound αp/
√
2r to DGSr + search LWEp,α, for large

enough r (in particular r >
√
2p ηε(L))

▶ Given DL,r samples (instead of oracle) and LWE oracle

▶ Want to solve BDD instance (L∗, t)
(remark: the L∗ part is always the same)

▶ Transform DG samples v to LWE samples
(L−1v mod p, [⟨v, t⟩/p + e] mod 1) where e ∼ Dα/

√
2

▶ Suppose v = L(a+ pa′), a ∈ Zn
p, and t = L∗s+ t′, L∗s is CV

▶ ⟨L(pa′),L∗s⟩/p mod 1 = 0

▶ ⟨v, t′⟩/p
s
≈ Gaussian noise of width r∥t′∥/p ≤ α/

√
2

(large enough r , “behaves like” continuous Gaussian!)

▶ Samples
s
≈ (a, [⟨a, s⟩/p + e′] mod 1) where e′ ∼ D≤α, a

s
≈ U

▶ Find s0 = s mod p using (enhanced) LWE oracle

▶ Recurse with (t− L∗s0)/p for next base-p digits of s
(this reduces ∥t′∥ by p so finally can apply trivial algorithm)

Reduction from BDD to DGS + (Search) LWE

BDD with bound αp/
√
2r to DGSr + search LWEp,α, for large

enough r (in particular r >
√
2p ηε(L))

▶ Given DL,r samples (instead of oracle) and LWE oracle

▶ Want to solve BDD instance (L∗, t)
(remark: the L∗ part is always the same)

▶ Transform DG samples v to LWE samples
(L−1v mod p, [⟨v, t⟩/p + e] mod 1) where e ∼ Dα/

√
2

▶ Suppose v = L(a+ pa′), a ∈ Zn
p, and t = L∗s+ t′, L∗s is CV

▶ ⟨L(pa′),L∗s⟩/p mod 1 = 0

▶ ⟨v, t′⟩/p
s
≈ Gaussian noise of width r∥t′∥/p ≤ α/

√
2

(large enough r , “behaves like” continuous Gaussian!)

▶ Samples
s
≈ (a, [⟨a, s⟩/p + e′] mod 1) where e′ ∼ D≤α, a

s
≈ U

▶ Find s0 = s mod p using (enhanced) LWE oracle

▶ Recurse with (t− L∗s0)/p for next base-p digits of s
(this reduces ∥t′∥ by p so finally can apply trivial algorithm)

Reduction from BDD to DGS + (Search) LWE

BDD with bound αp/
√
2r to DGSr + search LWEp,α, for large

enough r (in particular r >
√
2p ηε(L))

▶ Given DL,r samples (instead of oracle) and LWE oracle

▶ Want to solve BDD instance (L∗, t)
(remark: the L∗ part is always the same)

▶ Transform DG samples v to LWE samples
(L−1v mod p, [⟨v, t⟩/p + e] mod 1) where e ∼ Dα/

√
2

▶ Suppose v = L(a+ pa′), a ∈ Zn
p, and t = L∗s+ t′, L∗s is CV

▶ ⟨L(pa′),L∗s⟩/p mod 1 = 0

▶ ⟨v, t′⟩/p
s
≈ Gaussian noise of width r∥t′∥/p ≤ α/

√
2

(large enough r , “behaves like” continuous Gaussian!)

▶ Samples
s
≈ (a, [⟨a, s⟩/p + e′] mod 1) where e′ ∼ D≤α, a

s
≈ U

▶ Find s0 = s mod p using (enhanced) LWE oracle

▶ Recurse with (t− L∗s0)/p for next base-p digits of s
(this reduces ∥t′∥ by p so finally can apply trivial algorithm)

Reduction from BDD to DGS + (Search) LWE

BDD with bound αp/
√
2r to DGSr + search LWEp,α, for large

enough r (in particular r >
√
2p ηε(L))

▶ Given DL,r samples (instead of oracle) and LWE oracle

▶ Want to solve BDD instance (L∗, t)
(remark: the L∗ part is always the same)

▶ Transform DG samples v to LWE samples
(L−1v mod p, [⟨v, t⟩/p + e] mod 1) where e ∼ Dα/

√
2

▶ Suppose v = L(a+ pa′), a ∈ Zn
p, and t = L∗s+ t′, L∗s is CV

▶ ⟨L(pa′),L∗s⟩/p mod 1 = 0

▶ ⟨v, t′⟩/p
s
≈ Gaussian noise of width r∥t′∥/p ≤ α/

√
2

(large enough r , “behaves like” continuous Gaussian!)

▶ Samples
s
≈ (a, [⟨a, s⟩/p + e′] mod 1) where e′ ∼ D≤α, a

s
≈ U

▶ Find s0 = s mod p using (enhanced) LWE oracle

▶ Recurse with (t− L∗s0)/p for next base-p digits of s
(this reduces ∥t′∥ by p so finally can apply trivial algorithm)

Reduction from BDD to DGS + (Search) LWE

BDD with bound αp/
√
2r to DGSr + search LWEp,α, for large

enough r (in particular r >
√
2p ηε(L))

▶ Given DL,r samples (instead of oracle) and LWE oracle

▶ Want to solve BDD instance (L∗, t)
(remark: the L∗ part is always the same)

▶ Transform DG samples v to LWE samples
(L−1v mod p, [⟨v, t⟩/p + e] mod 1) where e ∼ Dα/

√
2

▶ Suppose v = L(a+ pa′), a ∈ Zn
p, and t = L∗s+ t′, L∗s is CV

▶ ⟨L(pa′),L∗s⟩/p mod 1 = 0

▶ ⟨v, t′⟩/p
s
≈ Gaussian noise of width r∥t′∥/p ≤ α/

√
2

(large enough r , “behaves like” continuous Gaussian!)

▶ Samples
s
≈ (a, [⟨a, s⟩/p + e′] mod 1) where e′ ∼ D≤α, a

s
≈ U

▶ Find s0 = s mod p using (enhanced) LWE oracle

▶ Recurse with (t− L∗s0)/p for next base-p digits of s
(this reduces ∥t′∥ by p so finally can apply trivial algorithm)

Reduction from BDD to DGS + (Search) LWE

BDD with bound αp/
√
2r to DGSr + search LWEp,α, for large

enough r (in particular r >
√
2p ηε(L))

▶ Given DL,r samples (instead of oracle) and LWE oracle

▶ Want to solve BDD instance (L∗, t)
(remark: the L∗ part is always the same)

▶ Transform DG samples v to LWE samples
(L−1v mod p, [⟨v, t⟩/p + e] mod 1) where e ∼ Dα/

√
2

▶ Suppose v = L(a+ pa′), a ∈ Zn
p, and t = L∗s+ t′, L∗s is CV

▶ ⟨L(pa′),L∗s⟩/p mod 1 = 0

▶ ⟨v, t′⟩/p
s
≈ Gaussian noise of width r∥t′∥/p ≤ α/

√
2

(large enough r , “behaves like” continuous Gaussian!)

▶ Samples
s
≈ (a, [⟨a, s⟩/p + e′] mod 1) where e′ ∼ D≤α, a

s
≈ U

▶ Find s0 = s mod p using (enhanced) LWE oracle

▶ Recurse with (t− L∗s0)/p for next base-p digits of s
(this reduces ∥t′∥ by p so finally can apply trivial algorithm)

Reduction from BDD to DGS + (Search) LWE

BDD with bound αp/
√
2r to DGSr + search LWEp,α, for large

enough r (in particular r >
√
2p ηε(L))

▶ Given DL,r samples (instead of oracle) and LWE oracle

▶ Want to solve BDD instance (L∗, t)
(remark: the L∗ part is always the same)

▶ Transform DG samples v to LWE samples
(L−1v mod p, [⟨v, t⟩/p + e] mod 1) where e ∼ Dα/

√
2

▶ Suppose v = L(a+ pa′), a ∈ Zn
p, and t = L∗s+ t′, L∗s is CV

▶ ⟨L(pa′),L∗s⟩/p mod 1 = 0

▶ ⟨v, t′⟩/p
s
≈ Gaussian noise of width r∥t′∥/p ≤ α/

√
2

(large enough r , “behaves like” continuous Gaussian!)

▶ Samples
s
≈ (a, [⟨a, s⟩/p + e′] mod 1) where e′ ∼ D≤α, a

s
≈ U

▶ Find s0 = s mod p using (enhanced) LWE oracle

▶ Recurse with (t− L∗s0)/p for next base-p digits of s
(this reduces ∥t′∥ by p so finally can apply trivial algorithm)

Reduction from BDD to DGS + Decisional LWE

▶ Transform samples in a similar way as in the search case,
except with t← t− z where z would be “guess” of t′

▶ If z is good guess then get LWE samples of small error;
otherwise get LWE samples of large error i.e. close to uniform

▶ Use generic algorithm for oracle hidden center problem

▶ (Requiring full flexibility of DGS: DL,ri samples for {ri ≥ r}i ;
fortunately the demand for ri is still “static”, regardless of t)

Reduction from BDD to DGS + Decisional LWE

▶ Transform samples in a similar way as in the search case,
except with t← t− z where z would be “guess” of t′

▶ If z is good guess then get LWE samples of small error;
otherwise get LWE samples of large error i.e. close to uniform

▶ Use generic algorithm for oracle hidden center problem

▶ (Requiring full flexibility of DGS: DL,ri samples for {ri ≥ r}i ;
fortunately the demand for ri is still “static”, regardless of t)

Reduction from BDD to DGS + Decisional LWE

▶ Transform samples in a similar way as in the search case,
except with t← t− z where z would be “guess” of t′

▶ If z is good guess then get LWE samples of small error;
otherwise get LWE samples of large error i.e. close to uniform

▶ Use generic algorithm for oracle hidden center problem

▶ (Requiring full flexibility of DGS: DL,ri samples for {ri ≥ r}i ;
fortunately the demand for ri is still “static”, regardless of t)

SKE from LWE

Scheme (encrypting one bit):

▶ Gen: 1n 7→ s where s ∼ Zn
p

▶ Enc: (s,m) 7→ (a, ⟨a, s⟩+ ep +m⌊p/2⌋) where a ∼ Zn
p

▶ Dec: (s, c = (a, b)) 7→ [|b − ⟨a, s⟩| ≥ p/4]

Correctness: |ep| ≤ p/4 w.h.p.

Security: Enc(0)
c
≈ U from LWE; then Enc(1)

c
≈ U as well by

adding ⌊p/2⌋; also multi-message as LWE supports multi-sample

Efficiency: key size O(n log p), message size ×O(n log p)

SKE from LWE

Scheme (encrypting one bit):

▶ Gen: 1n 7→ s where s ∼ Zn
p

▶ Enc: (s,m) 7→ (a, ⟨a, s⟩+ ep +m⌊p/2⌋) where a ∼ Zn
p

▶ Dec: (s, c = (a, b)) 7→ [|b − ⟨a, s⟩| ≥ p/4]

Correctness: |ep| ≤ p/4 w.h.p.

Security: Enc(0)
c
≈ U from LWE; then Enc(1)

c
≈ U as well by

adding ⌊p/2⌋; also multi-message as LWE supports multi-sample

Efficiency: key size O(n log p), message size ×O(n log p)

SKE from LWE

Scheme (encrypting one bit):

▶ Gen: 1n 7→ s where s ∼ Zn
p

▶ Enc: (s,m) 7→ (a, ⟨a, s⟩+ ep +m⌊p/2⌋) where a ∼ Zn
p

▶ Dec: (s, c = (a, b)) 7→ [|b − ⟨a, s⟩| ≥ p/4]

Correctness: |ep| ≤ p/4 w.h.p.

Security: Enc(0)
c
≈ U from LWE; then Enc(1)

c
≈ U as well by

adding ⌊p/2⌋; also multi-message as LWE supports multi-sample

Efficiency: key size O(n log p), message size ×O(n log p)

SKE from LWE

Scheme (encrypting one bit):

▶ Gen: 1n 7→ s where s ∼ Zn
p

▶ Enc: (s,m) 7→ (a, ⟨a, s⟩+ ep +m⌊p/2⌋) where a ∼ Zn
p

▶ Dec: (s, c = (a, b)) 7→ [|b − ⟨a, s⟩| ≥ p/4]

Correctness: |ep| ≤ p/4 w.h.p.

Security: Enc(0)
c
≈ U from LWE; then Enc(1)

c
≈ U as well by

adding ⌊p/2⌋; also multi-message as LWE supports multi-sample

Efficiency: key size O(n log p), message size ×O(n log p)

PKE from LWE

Scheme (encrypting one bit):

▶ Gen: 1n 7→ (s, {(ai , bi)}i∈[k]) (s is the secret key) where

s, ai ∼ Zn
p and bi = ⟨ai , s⟩+ e

(i)
p

▶ Enc: ({(ai , bi)},m) 7→ (
∑

i∈S ai ,
∑

i∈S bi +m⌊p/2⌋) where
S ∼ P([k])

▶ Dec: (s, c = (a, b)) 7→ [|b − ⟨a, s⟩| ≥ p/4]

Correctness: |kep| ≤ p/4 w.h.p.

Security: ({(ai , bi)},Enc(0))
c
≈ (U,EncU(0)) from LWE;

(U,EncU(0))
s
≈ U for k ≥ (1 + δ)n log p; similar for Enc(1)

Efficiency: public key size O(nk log p), message size ×O(n log p)

Potential optimization: ai can be fixed in advance (while e
(i)
p still

need to be fresh), reducing public key size to O(k log p)

PKE from LWE

Scheme (encrypting one bit):

▶ Gen: 1n 7→ (s, {(ai , bi)}i∈[k]) (s is the secret key) where

s, ai ∼ Zn
p and bi = ⟨ai , s⟩+ e

(i)
p

▶ Enc: ({(ai , bi)},m) 7→ (
∑

i∈S ai ,
∑

i∈S bi +m⌊p/2⌋) where
S ∼ P([k])

▶ Dec: (s, c = (a, b)) 7→ [|b − ⟨a, s⟩| ≥ p/4]

Correctness: |kep| ≤ p/4 w.h.p.

Security: ({(ai , bi)},Enc(0))
c
≈ (U,EncU(0)) from LWE;

(U,EncU(0))
s
≈ U for k ≥ (1 + δ)n log p; similar for Enc(1)

Efficiency: public key size O(nk log p), message size ×O(n log p)

Potential optimization: ai can be fixed in advance (while e
(i)
p still

need to be fresh), reducing public key size to O(k log p)

PKE from LWE

Scheme (encrypting one bit):

▶ Gen: 1n 7→ (s, {(ai , bi)}i∈[k]) (s is the secret key) where

s, ai ∼ Zn
p and bi = ⟨ai , s⟩+ e

(i)
p

▶ Enc: ({(ai , bi)},m) 7→ (
∑

i∈S ai ,
∑

i∈S bi +m⌊p/2⌋) where
S ∼ P([k])

▶ Dec: (s, c = (a, b)) 7→ [|b − ⟨a, s⟩| ≥ p/4]

Correctness: |kep| ≤ p/4 w.h.p.

Security: ({(ai , bi)},Enc(0))
c
≈ (U,EncU(0)) from LWE;

(U,EncU(0))
s
≈ U for k ≥ (1 + δ)n log p; similar for Enc(1)

Efficiency: public key size O(nk log p), message size ×O(n log p)

Potential optimization: ai can be fixed in advance (while e
(i)
p still

need to be fresh), reducing public key size to O(k log p)

PKE from LWE

Scheme (encrypting one bit):

▶ Gen: 1n 7→ (s, {(ai , bi)}i∈[k]) (s is the secret key) where

s, ai ∼ Zn
p and bi = ⟨ai , s⟩+ e

(i)
p

▶ Enc: ({(ai , bi)},m) 7→ (
∑

i∈S ai ,
∑

i∈S bi +m⌊p/2⌋) where
S ∼ P([k])

▶ Dec: (s, c = (a, b)) 7→ [|b − ⟨a, s⟩| ≥ p/4]

Correctness: |kep| ≤ p/4 w.h.p.

Security: ({(ai , bi)},Enc(0))
c
≈ (U,EncU(0)) from LWE;

(U,EncU(0))
s
≈ U for k ≥ (1 + δ)n log p; similar for Enc(1)

Efficiency: public key size O(nk log p), message size ×O(n log p)

Potential optimization: ai can be fixed in advance (while e
(i)
p still

need to be fresh), reducing public key size to O(k log p)

Definition of (H)CLWE

▶ Sample distribution Aw,β,γ : (y, z = [γ⟨y,w⟩+ e] mod 1)
where y ∼ Dn

1 and e ∼ Dβ

(cf. (a, b = [⟨a, s, /⟩p + e] mod 1), a ∼ Zn
p and e ∼ Dα)

▶ Continuous LWE CLWEβ,γ (decision): Distinguish between
Aw,β,γ

3 and Dn
1 × U([0, 1))

▶ Homogeneous variant hCLWEβ,γ : Distinguish between Hw,β,γ

and Dn
1 , where Hw,β,γ : y | (y, z) ∼ Aw,β,γ , z = 0

3Average case: w is uniform unit vector

Definition of (H)CLWE

▶ Sample distribution Aw,β,γ : (y, z = [γ⟨y,w⟩+ e] mod 1)
where y ∼ Dn

1 and e ∼ Dβ

(cf. (a, b = [⟨a, s, /⟩p + e] mod 1), a ∼ Zn
p and e ∼ Dα)

▶ Continuous LWE CLWEβ,γ (decision): Distinguish between
Aw,β,γ

3 and Dn
1 × U([0, 1))

▶ Homogeneous variant hCLWEβ,γ : Distinguish between Hw,β,γ

and Dn
1 , where Hw,β,γ : y | (y, z) ∼ Aw,β,γ , z = 0

3Average case: w is uniform unit vector

Definition of (H)CLWE

▶ Sample distribution Aw,β,γ : (y, z = [γ⟨y,w⟩+ e] mod 1)
where y ∼ Dn

1 and e ∼ Dβ

(cf. (a, b = [⟨a, s, /⟩p + e] mod 1), a ∼ Zn
p and e ∼ Dα)

▶ Continuous LWE CLWEβ,γ (decision): Distinguish between
Aw,β,γ

3 and Dn
1 × U([0, 1))

▶ Homogeneous variant hCLWEβ,γ : Distinguish between Hw,β,γ

and Dn
1 , where Hw,β,γ : y | (y, z) ∼ Aw,β,γ , z = 0

3Average case: w is uniform unit vector

Reduction to CLWE: Preview

Reduction to (H)CLWE

Reduction from DGS2
√
n ηε(L)/β to CLWEβ,γ for γ ≥ 2

√
n and poly

γ/β:

▶ Similar iterative reduction, reducing BDD to DGS + CLWE

▶ Transform to samples ((v + e1)/R, [⟨v, t⟩+ e2] mod 1) where
e1 ∼ Dn

s and e2 ∼ Dβ/
√
2, s = βr/(

√
2γ), R =

√
r2 + s2

(actually using ri as oracle is decisional thus applying OHCP)
(cf. (L−1v mod p, [⟨v, t⟩/p + e] mod 1) where e ∼ Dα/

√
2)

Reduction from CLWEβ,γ to hCLWE√
β2+δ2,γ

for poly 1/δ:

rejection sampling on z with width δ

(Reduction from HCLWE to HCLWE with multiple hidden discrete
directions: hybrid)

Reduction to (H)CLWE

Reduction from DGS2
√
n ηε(L)/β to CLWEβ,γ for γ ≥ 2

√
n and poly

γ/β:

▶ Similar iterative reduction, reducing BDD to DGS + CLWE

▶ Transform to samples ((v + e1)/R, [⟨v, t⟩+ e2] mod 1) where
e1 ∼ Dn

s and e2 ∼ Dβ/
√
2, s = βr/(

√
2γ), R =

√
r2 + s2

(actually using ri as oracle is decisional thus applying OHCP)
(cf. (L−1v mod p, [⟨v, t⟩/p + e] mod 1) where e ∼ Dα/

√
2)

Reduction from CLWEβ,γ to hCLWE√
β2+δ2,γ

for poly 1/δ:

rejection sampling on z with width δ

(Reduction from HCLWE to HCLWE with multiple hidden discrete
directions: hybrid)

Reduction to (H)CLWE

Reduction from DGS2
√
n ηε(L)/β to CLWEβ,γ for γ ≥ 2

√
n and poly

γ/β:

▶ Similar iterative reduction, reducing BDD to DGS + CLWE

▶ Transform to samples ((v + e1)/R, [⟨v, t⟩+ e2] mod 1) where
e1 ∼ Dn

s and e2 ∼ Dβ/
√
2, s = βr/(

√
2γ), R =

√
r2 + s2

(actually using ri as oracle is decisional thus applying OHCP)
(cf. (L−1v mod p, [⟨v, t⟩/p + e] mod 1) where e ∼ Dα/

√
2)

Reduction from CLWEβ,γ to hCLWE√
β2+δ2,γ

for poly 1/δ:

rejection sampling on z with width δ

(Reduction from HCLWE to HCLWE with multiple hidden discrete
directions: hybrid)

Reduction to (H)CLWE

Reduction from DGS2
√
n ηε(L)/β to CLWEβ,γ for γ ≥ 2

√
n and poly

γ/β:

▶ Similar iterative reduction, reducing BDD to DGS + CLWE

▶ Transform to samples ((v + e1)/R, [⟨v, t⟩+ e2] mod 1) where
e1 ∼ Dn

s and e2 ∼ Dβ/
√
2, s = βr/(

√
2γ), R =

√
r2 + s2

(actually using ri as oracle is decisional thus applying OHCP)
(cf. (L−1v mod p, [⟨v, t⟩/p + e] mod 1) where e ∼ Dα/

√
2)

Reduction from CLWEβ,γ to hCLWE√
β2+δ2,γ

for poly 1/δ:

rejection sampling on z with width δ

(Reduction from HCLWE to HCLWE with multiple hidden discrete
directions: hybrid)

Misc. about (H)CLWE

▶ (H)CLWE with β = 0 (“noiseless”) can be solved by LLL

▶ HCLWE can be solved by checking the eigenvalues of the
covariance matrix estimated from 2O(γ2) samples

▶ HCLWE gives hardness of estimating Gaussian mixtures

▶ Besides lattice-based hardness, HCLWE also enjoys concrete
statistical query hardness

References

[Reg09]: reduction to (search) LWE, reductions among LWE
variants, PKE from LWE
[PRSD17]: reduction to decisional LWE
[BRST21]: (H)CLWE

Joan Bruna, Oded Regev, Min Jae Song, and Yi Tang.

Continuous LWE.

In STOC’21—Proceedings of the 53th Annual ACM SIGACT Symposium
on Theory of Computing, pages 694–707. ACM, New York, 2021.

Chris Peikert, Oded Regev, and Noah Stephens-Davidowitz.

Pseudorandomness of ring-LWE for any ring and modulus.

In STOC’17—Proceedings of the 49th Annual ACM SIGACT Symposium
on Theory of Computing, pages 461–473. ACM, New York, 2017.

Oded Regev.

On lattices, learning with errors, random linear codes, and cryptography.

J. ACM, 56(6):Art. 34, 40, 2009.

Preliminary version in STOC 2005.

	LWE and Related Lattice Problems
	LWE and Its Variants
	Lattice Problems

	Reduction to LWE
	Reduction from Lattice Problems to DGS
	Reduction from DGS to LWE

	Encryption Schemes from LWE
	CLWE
	CLWE and Its Variants
	Reduction to CLWE
	Misc. about CLWE

	References

