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Recall: Definition of LWE

▶ Gaussian kernel: ρs(x) := exp(−π∥x/s∥2) (σ = s/
√
2π)

▶ Gaussian distribution Ds : density ρs/s
n (n = dim x)

▶ Sample distribution As,α for s ∈ Zn
p: (a, b = ⟨a, s⟩+ ep) where

a ∼ Zn
p and ep = ⌊pe⌉ mod p ∈ Zp, e ∼ Dα

▶ Learning with errors LWEp,s :
▶ Search: Given samples from As,α, find s
▶ Decision: Distinguish between As,α and U(Zn+1

p )
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Variants of LWE

▶ Worst/average cases: whether s ∈ Zn
p is arbitrary or uniform

▶ “Continuous” variant of As,α: (a, b = [⟨a, s⟩/p + e] mod 1)
▶ Reductions among variants:

1. “Continuous” to discrete: discretize b ∈ [0, 1) to ⌊pb⌉ mod p
2. Worst- to average-case: pick t ∼ Zn

p and transform worst-case
samples (a, b) to (a, b + ⟨a, t⟩) ∼ As+t,α

3. Search to decision: transform LWE samples (a, b) to
(a+ ℓei , b + ℓk) where ℓ ∼ Zp, which ∼ As,α if k = si and is
uniform (requiring prime p) otherwise, and brute-force si
(requiring poly p)

4. Decision to search: search & verify

▶ As a result,

1. Want reduction to “continuous”, worst-case, decisional LWE
2. Build applications on arbitrary (discrete, average-case) LWE
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Lattice Problems

▶ Shortest vector problem SVPγ : Given rank-n lattice L, find
nonzero v ∈ L such that ∥v∥ ≤ γ(n) · λ1(L)

▶ GapSVPγ : Given rank-n lattice L and length d , distinguish
between YES: λ1(L) ≤ d and NO: λ1(L) > γ(n) · d

▶ Shortest independent vectors problem SIVPγ : Given rank-n
lattice L, find linearly independent v1, . . . , vn ∈ L such that
maxi∥vi∥ ≤ γ(n) · λn(L) 1

1λn: λn(L) = min{maxi∥vi∥ : v1, . . . , vn ∈ L and lin. ind.},
“successive minima”
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Lattice Problems: Discrete Gaussian

▶ Discrete Gaussian distribution DL,s : over L, probability
distribution ρs(v)/

∑
v∈L ρs(v)

▶ Discrete Gaussian sampling DGSφ: Given rank-n lattice L and

width r ≥ φ(L), sample with distribution
s
≈ DL,r
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Reduction from Lattice Problems to DGS

Results:

▶ GapSVP100
√
nγ(n) to DGS√nγ(n)/ λ1(L∗)

▶ SIVP2
√
nγ(n) to DGSγ(n)λn(L), for large enough γ (in particular

γ(n)λn(L) ≥
√
2 ηε(L),2 ε ≤ 1/10)

Setting parameters:

▶ Will use DGS√2n ηε(L)/α
(for negligible ε), corresponding to

▶ GapSVPO(n/α) (ηε(L)λ1(L∗) ≤
√
n for ε = 2−n)

▶ SIVP
Õ(n/α)

(ηε(L)/ λn(L) ≤ polylog(n))

2ηε: “smoothing parameter”, beyond which the discrete Gaussian “behaves
like” continuous Gaussian with the same width
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Reduction from DGS to LWE: Overview

▶ Bootstrapping: DGS22n λn(L) is efficiently sampleable
(LLL-reduce, sample from continuous, and round)

▶ Iteratively “refine” the samples, using LWEp,α oracle, via
intermediate problem BDD

▶ Finally reach desired DGS√2n ηε(L)/α
(ηε / λn = Ω(1/n))

(modern name for the specific CVP is BDD; omitting some
√
2 factors)
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Reduction from DGS to LWE: BDD

▶ (Closest vector problem CVPγ : Given rank-n lattice L and
target t, find v ∈ L such that dist(t, v) ≤ γ(n) · dist(t,L))

▶ Bounded distance decoding BDDφ: Given rank-n lattice L
and target t satisfying dist(t,L) ≤ φ(L), find v ∈ L such that
dist(t, v) = dist(t,L)



Why BDD?

▶ How to sample from DG if with quantum?

▶ Fourier transform of DG: D̂L,r ≈ exp(−π(r · dist(t,L∗))2)
▶ Easy to “compute”: t = u+ t′, where u ∼ L∗, t′ ∼ Dn

1/r

▶ While quantum requires reversibility / “uncomputing”;
i.e. given t = u+ t′, find u / find t′;
i.e. BDD!
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Reduction from DGS to BDD

DGS√n/(
√
2φ(L∗)) to BDD with bound φ(L∗), for small enough φ

(in particular φ < λ1 /2, unique decoding)

▶ Using quantum

▶ DGS on L always reduced to BDD on L∗
(writing “with bound” instead of BDDφ for less ambiguity)

Next step:

▶ Want to reduce BDD to DGS with larger width

▶ However can only do so with roughly width 1/φ(L∗)
▶ LWE for help!
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Reduction from BDD to DGS + (Search) LWE

BDD with bound αp/
√
2r to DGSr + search LWEp,α, for large

enough r (in particular r >
√
2p ηε(L))

▶ Given DL,r samples (instead of oracle) and LWE oracle

▶ Want to solve BDD instance (L∗, t)
(remark: the L∗ part is always the same)

▶ Transform DG samples v to LWE samples
(L−1v mod p, [⟨v, t⟩/p + e] mod 1) where e ∼ Dα/

√
2

▶ Suppose v = L(a+ pa′), a ∈ Zn
p, and t = L∗s+ t′, L∗s is CV

▶ ⟨L(pa′),L∗s⟩/p mod 1 = 0

▶ ⟨v, t′⟩/p
s
≈ Gaussian noise of width r∥t′∥/p ≤ α/

√
2

(large enough r , “behaves like” continuous Gaussian!)

▶ Samples
s
≈ (a, [⟨a, s⟩/p + e′] mod 1) where e′ ∼ D≤α, a

s
≈ U

▶ Find s0 = s mod p using (enhanced) LWE oracle

▶ Recurse with (t− L∗s0)/p for next base-p digits of s
(this reduces ∥t′∥ by p so finally can apply trivial algorithm)
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Reduction from BDD to DGS + Decisional LWE

▶ Transform samples in a similar way as in the search case,
except with t← t− z where z would be “guess” of t′

▶ If z is good guess then get LWE samples of small error;
otherwise get LWE samples of large error i.e. close to uniform

▶ Use generic algorithm for oracle hidden center problem

▶ (Requiring full flexibility of DGS: DL,ri samples for {ri ≥ r}i ;
fortunately the demand for ri is still “static”, regardless of t)
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SKE from LWE

Scheme (encrypting one bit):

▶ Gen: 1n 7→ s where s ∼ Zn
p

▶ Enc: (s,m) 7→ (a, ⟨a, s⟩+ ep +m⌊p/2⌋) where a ∼ Zn
p

▶ Dec: (s, c = (a, b)) 7→ [|b − ⟨a, s⟩| ≥ p/4]

Correctness: |ep| ≤ p/4 w.h.p.

Security: Enc(0)
c
≈ U from LWE; then Enc(1)

c
≈ U as well by

adding ⌊p/2⌋; also multi-message as LWE supports multi-sample

Efficiency: key size O(n log p), message size ×O(n log p)
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PKE from LWE

Scheme (encrypting one bit):

▶ Gen: 1n 7→ (s, {(ai , bi )}i∈[k]) (s is the secret key) where

s, ai ∼ Zn
p and bi = ⟨ai , s⟩+ e

(i)
p

▶ Enc: ({(ai , bi )},m) 7→ (
∑

i∈S ai ,
∑

i∈S bi +m⌊p/2⌋) where
S ∼ P([k])

▶ Dec: (s, c = (a, b)) 7→ [|b − ⟨a, s⟩| ≥ p/4]

Correctness: |kep| ≤ p/4 w.h.p.

Security: ({(ai , bi )},Enc(0))
c
≈ (U,EncU(0)) from LWE;

(U,EncU(0))
s
≈ U for k ≥ (1 + δ)n log p; similar for Enc(1)

Efficiency: public key size O(nk log p), message size ×O(n log p)

Potential optimization: ai can be fixed in advance (while e
(i)
p still

need to be fresh), reducing public key size to O(k log p)
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Definition of (H)CLWE

▶ Sample distribution Aw,β,γ : (y, z = [γ⟨y,w⟩+ e] mod 1)
where y ∼ Dn

1 and e ∼ Dβ

(cf. (a, b = [⟨a, s, /⟩p + e] mod 1), a ∼ Zn
p and e ∼ Dα)

▶ Continuous LWE CLWEβ,γ (decision): Distinguish between
Aw,β,γ

3 and Dn
1 × U([0, 1))

▶ Homogeneous variant hCLWEβ,γ : Distinguish between Hw,β,γ

and Dn
1 , where Hw,β,γ : y | (y, z) ∼ Aw,β,γ , z = 0

3Average case: w is uniform unit vector
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Reduction to CLWE: Preview



Reduction to (H)CLWE

Reduction from DGS2
√
n ηε(L)/β to CLWEβ,γ for γ ≥ 2

√
n and poly

γ/β:

▶ Similar iterative reduction, reducing BDD to DGS + CLWE

▶ Transform to samples ((v + e1)/R, [⟨v, t⟩+ e2] mod 1) where
e1 ∼ Dn

s and e2 ∼ Dβ/
√
2, s = βr/(

√
2γ), R =

√
r2 + s2

(actually using ri as oracle is decisional thus applying OHCP)
(cf. (L−1v mod p, [⟨v, t⟩/p + e] mod 1) where e ∼ Dα/

√
2)

Reduction from CLWEβ,γ to hCLWE√
β2+δ2,γ

for poly 1/δ:

rejection sampling on z with width δ

(Reduction from HCLWE to HCLWE with multiple hidden discrete
directions: hybrid)
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Misc. about (H)CLWE

▶ (H)CLWE with β = 0 (“noiseless”) can be solved by LLL

▶ HCLWE can be solved by checking the eigenvalues of the
covariance matrix estimated from 2O(γ2) samples

▶ HCLWE gives hardness of estimating Gaussian mixtures

▶ Besides lattice-based hardness, HCLWE also enjoys concrete
statistical query hardness
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