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Definition of LFE

Syntax [QWW18]:

Setup

pp Digest [f ] df

x Enc c Dec [f ] y

Properties:

▶ Correctness: y = f (x).

▶ Security: Enc(pp, df , x)
c
≈ S(pp, f , df , f (x)); adaptive: f , x chosen by A(pp).

▶ Efficiency: laconic, |pp|, |df | ≪ |f |.
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Applications of LFE

Motivation: f = fD for a large dataset D.

Applications:

▶ “Bob-optimized” 2-round 2PC. (Cf., FHE solution is “Alice-optimized”.)

▶ “Online-optimized” MPC.

▶ (Alternative construction of) succinct (1-key) functional encryption (FE),
then reusable garbled circuit by [GKP+13].
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Recap 1/3: Learning with Errors (LWE)

LWE:

▶ Take A← Zn×m
q , s← Zn

q, and sufficiently large noise e.

▶ Then (A; s⊤A+ e⊤)
c
≈ (A;U), by hardness of lattice problems (e.g. SVP).



Recap 2/3: GSW FHE

Gadget g := (1, 2, . . . , 2ℓ−1), Gn := In ⊗ g ∈ Zn×nℓ
q , ℓ = ⌈log2 q⌉.

GSW FHE [GSW13]:

▶ Secret key k = s = (−s̄; 1).
▶ By LWE, sample A = (Ā; s̄⊤Ā+ e⊤) satisfies A

c
≈ U and s⊤A = e⊤ ≈ 0⊤.

▶ Enc(k = s, x ∈ {0, 1}): C = A+ x · G.
(For bit string (row vector) x , C = A+ x ⊗ G.)

▶ HEvalpub[+]((C1,C2)) = C1 + C2 = (A1 + A2) + (x1 + x2) · G;
HEvalpub[×]((C1,C2)) = C1 · G−1(C2) = (A1 · G−1(C2) + x1 · A2) + (x1x2) · G.
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c
≈ U and s⊤A = e⊤ ≈ 0⊤.

▶ Enc(k = s, x ∈ {0, 1}): C = A+ x · G.
(For bit string (row vector) x , C = A+ x ⊗ G.)

▶ HEvalpub[+]((C1,C2)) = C1 + C2 = (A1 + A2) + (x1 + x2) · G;
HEvalpub[×]((C1,C2)) = C1 · G−1(C2) = (A1 · G−1(C2) + x1 · A2) + (x1x2) · G.



Recap 2/3: GSW FHE

Gadget g := (1, 2, . . . , 2ℓ−1), Gn := In ⊗ g ∈ Zn×nℓ
q , ℓ = ⌈log2 q⌉.

GSW FHE [GSW13]:

▶ Secret key k = s = (−s̄; 1).
▶ By LWE, sample A = (Ā; s̄⊤Ā+ e⊤) satisfies A
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▶ Same HEvalpub over M.

▶ HEval[+]((A1,A2), (−,−), (−,−)) = A1 + A2,
HEval[×]((A1,A2), (−,M2), (x1,−)) = A1 · G−1(M2) + x1 · A2.

▶ S.t., HEval[f ](A,M, x) = HEvalpub[f ](M)− f (x)⊗ G.
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Attribute-based LFE (AB-LFE)

Syntax: (ABE-like, public x and secret µ)

Setup

pp Digest [f ] df

µ Enc[x ] c Dec [f , x ] µ′
[when f (x) = 0]

Properties:

▶ Correctness: µ′ = µ when f (x) = 0.

▶ Security: c hides µ.

Interpretation: LFE for “conditional disclosure” f̂ (x , µ) := (x , µ · (1− f (x))).

Generalization: f (x) ∈ {0, 1}O , have µ1, . . . , µO , and require µ′
j = µj when fj(x) = 0.
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AB-LFE from LWE

Construction: Suppose f : {0, 1}I → {0, 1}O .
▶ Setup(1n): pp = M← Zn×Inℓ

q .

▶ Digest(M, f ): df = Mf = HEvalpub[f ](M) ∈ Zn×Onℓ
q .

▶ Enc(M,Mf , x , µ ∈ {0, 1}O·L): sample s← Zn
q and LWE errors ex , eµ, sample

Rj ← G−1(U(Zn×L
q )) ∈ {0, 1}nℓ×L, output c = (R, cx , cµ) where R = diag({Rj}j),

c⊤x = s⊤(M− x ⊗ G︸ ︷︷ ︸
A

) + e⊤x ∈ ZInℓ
q , c⊤µ = s⊤MfR+ e⊤µ + ⌊q/2⌉ · µ ∈ ZOL

q .

▶ Dec(M, f , x , (R, cx , cµ)): compute c⊤f ,x = HEval[f ](c⊤x ,M, x), and for fj(x) = 0,

extract µj by checking |c⊤f ,xR− c⊤µ | > q/4 on the j-th block.

Correctness: by c⊤f ,x ≈ s⊤(Mf − f (x)⊗ G). Security: by LWE.
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Enhancing AB-LFE

Two-outcome mode of ABE/AB-LFE:

▶ Normal mode: Dec outputs µ if f (x) = 0 and ⊥ otherwise.

▶ Two-outcome mode: Enc takes µ(0), µ(1), and Dec outputs µ(f (x)).

▶ Construction: apply ABX to f̃ := f ∥ (1− f ).

Further compressing digest: By laconic OT [CDG+17], can improve |df | from
O · poly(n, d) (d is depth of f ) to just poly(n).
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Last Piece: Garbled Circuit

Syntax: (f : {0, 1}I → {0, 1}O .)
▶ Garble(1n, f ): output garbled circuit Γ and labels (Li ,0, Li ,1)i∈[I ].

▶ GEval(Γ, (Li )i∈[I ]): output evaluation y .

Correctness: GEval(Γ, (Li ,xi )i∈[I ]) = f (x).

Yao’s construction: gate by gate, so |Γ| = |f | · poly(n); also |Li ,b| = poly(n).
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Constructing LFE

Ingredients: two-outcome AB-LFE (toABLFE), FHE, garbled circuit (GC).

Construction:

▶ Setup(1n): same as toABLFE.Setup.

▶ Digest(pp, f ): f † := FHE.HEval[f ], output df = toABLFE.Digest(pp, f †).

▶ Enc(pp, df , x):
sample FHE secret k ← FHE.Gen(1n), compute cx = FHE.Enc(k , x),
compute (Γ, (Li ,0, Li ,1)i ) = Garble(1n,FHE.Dec(k , ·)),
compute c = toABLFE.Enc(pp, df , cx , (Li ,0)i , (Li ,1)i ),
output c ′ = (Γ, c).

▶ Dec(pp, f , (Γ, c)): (Li )i = toABLFE.Dec(pp, f †, c), output y = GEval(Γ, (Li )i ).
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Verifying the Correctness

f † := FHE.HEval[f ] , df = toABLFE.Digest(pp, f †) ,

cx = FHE.Enc(k , x) , (Γ, (Li ,0, Li ,1)i ) = Garble(1n,FHE.Dec(k , ·)) ,
c = toABLFE.Enc(pp, df , cx , (Li ,0)i , (Li ,1)i ) ,

(Li )i = toABLFE.Dec(pp, f †, c) , y = GEval(Γ, (Li )i ) .

Want: y = f (x).

▶ By toABLFE, Li = Li ,f †(cx )[i ].

▶ By FHE, f †(cx) = FHE.HEval[f ](cx) = cf (x).

▶ By GC, GEval(Γ, (Li ,cf (x)[i ])i ) = FHE.Dec(k, cf (x)) = f (x).
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Verifying the Efficiency

Unpack the construction:

▶ f † := FHE.HEval[f ], toABLFE uses f̃ † := FHE.HEval[f ] ∥ (1− FHE.HEval[f ]).
(Need to binary-compile FHE.HEval.)

▶ For f : {0, 1}I → {0, 1}O , get f̃ † : {0, 1}I ·poly(n,d) → {0, 1}2O·poly(n,d).

Hence |pp| = I · poly(n, d), and |df | = O · poly(n, d) (or |df | = poly(n) with LOT).
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Enhancing LFE

Adaptive security: by assuming certain adaptive version of LWE.

(Statistical) function hiding:

▶ Add H ∈ Zn×Nnℓ
q to pp, use d ′

f = df + (
∑

i∈[N] ri ,jHi )j∈[O] for ri ,j ← {0, 1}.
▶ Also encrypt c⊤H = s⊤H+ e⊤H = s⊤(H− 0⊗ G) + e⊤H .

▶ Interpretation: hide f by f ′(x , x ′) := f (x) + x ′ · R (over Zq integers), R = (ri ,j)i ,j .

More direct construction:

▶ “Dual use” technique [BTVW17]: take GSW FHE, reuse key s in ABLFE.Enc.

▶ No garbling, directly encrypt s⊤(M− cx ⊗ G) + e⊤x .

▶ “Automatic decryption”: by GSW, can extract f (x) from s⊤(cf (x) ⊗ G) + e⊤.
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