
Lattice-based Laconic Function Evaluation (LFE)

Yi Tang

October 10, 2024

Definition of LFE

Syntax [QWW18]:

Setup

pp Digest [f] df

x Enc c Dec [f] y

Properties:

▶ Correctness: y = f (x).

▶ Security: Enc(pp, df , x)
c
≈ S(pp, f , df , f (x)); adaptive: f , x chosen by A(pp).

▶ Efficiency: laconic, |pp|, |df | ≪ |f |.

Definition of LFE

Syntax [QWW18]:

Setup

pp Digest [f] df

x Enc c Dec [f] y

Properties:

▶ Correctness: y = f (x).

▶ Security: Enc(pp, df , x)
c
≈ S(pp, f , df , f (x)); adaptive: f , x chosen by A(pp).

▶ Efficiency: laconic, |pp|, |df | ≪ |f |.

Definition of LFE

Syntax [QWW18]:

Setup

pp Digest [f] df

x Enc c Dec [f] y

Properties:

▶ Correctness: y = f (x).

▶ Security: Enc(pp, df , x)
c
≈ S(pp, f , df , f (x)); adaptive: f , x chosen by A(pp).

▶ Efficiency: laconic, |pp|, |df | ≪ |f |.

Definition of LFE

Syntax [QWW18]:

Setup

pp Digest [f] df

x Enc c Dec [f] y

Properties:

▶ Correctness: y = f (x).

▶ Security: Enc(pp, df , x)
c
≈ S(pp, f , df , f (x)); adaptive: f , x chosen by A(pp).

▶ Efficiency: laconic, |pp|, |df | ≪ |f |.

Applications of LFE

Motivation: f = fD for a large dataset D.

Applications:

▶ “Bob-optimized” 2-round 2PC. (Cf., FHE solution is “Alice-optimized”.)

▶ “Online-optimized” MPC.

▶ (Alternative construction of) succinct (1-key) functional encryption (FE),
then reusable garbled circuit by [GKP+13].

Applications of LFE

Motivation: f = fD for a large dataset D.

Applications:

▶ “Bob-optimized” 2-round 2PC. (Cf., FHE solution is “Alice-optimized”.)

▶ “Online-optimized” MPC.

▶ (Alternative construction of) succinct (1-key) functional encryption (FE),
then reusable garbled circuit by [GKP+13].

Applications of LFE

Motivation: f = fD for a large dataset D.

Applications:

▶ “Bob-optimized” 2-round 2PC. (Cf., FHE solution is “Alice-optimized”.)

▶ “Online-optimized” MPC.

▶ (Alternative construction of) succinct (1-key) functional encryption (FE),
then reusable garbled circuit by [GKP+13].

Applications of LFE

Motivation: f = fD for a large dataset D.

Applications:

▶ “Bob-optimized” 2-round 2PC. (Cf., FHE solution is “Alice-optimized”.)

▶ “Online-optimized” MPC.

▶ (Alternative construction of) succinct (1-key) functional encryption (FE),
then reusable garbled circuit by [GKP+13].

Recap 1/3: Learning with Errors (LWE)

LWE:

▶ Take A← Zn×m
q , s← Zn

q, and sufficiently large noise e.

▶ Then (A; s⊤A+ e⊤)
c
≈ (A;U), by hardness of lattice problems (e.g. SVP).

Recap 2/3: GSW FHE

Gadget g := (1, 2, . . . , 2ℓ−1), Gn := In ⊗ g ∈ Zn×nℓ
q , ℓ = ⌈log2 q⌉.

GSW FHE [GSW13]:

▶ Secret key k = s = (−s̄; 1).
▶ By LWE, sample A = (Ā; s̄⊤Ā+ e⊤) satisfies A

c
≈ U and s⊤A = e⊤ ≈ 0⊤.

▶ Enc(k = s, x ∈ {0, 1}): C = A+ x · G.
(For bit string (row vector) x , C = A+ x ⊗ G.)

▶ HEvalpub[+]((C1,C2)) = C1 + C2 = (A1 + A2) + (x1 + x2) · G;
HEvalpub[×]((C1,C2)) = C1 · G−1(C2) = (A1 · G−1(C2) + x1 · A2) + (x1x2) · G.

Recap 2/3: GSW FHE

Gadget g := (1, 2, . . . , 2ℓ−1), Gn := In ⊗ g ∈ Zn×nℓ
q , ℓ = ⌈log2 q⌉.

GSW FHE [GSW13]:

▶ Secret key k = s = (−s̄; 1).
▶ By LWE, sample A = (Ā; s̄⊤Ā+ e⊤) satisfies A

c
≈ U and s⊤A = e⊤ ≈ 0⊤.

▶ Enc(k = s, x ∈ {0, 1}): C = A+ x · G.
(For bit string (row vector) x , C = A+ x ⊗ G.)

▶ HEvalpub[+]((C1,C2)) = C1 + C2 = (A1 + A2) + (x1 + x2) · G;
HEvalpub[×]((C1,C2)) = C1 · G−1(C2) = (A1 · G−1(C2) + x1 · A2) + (x1x2) · G.

Recap 2/3: GSW FHE

Gadget g := (1, 2, . . . , 2ℓ−1), Gn := In ⊗ g ∈ Zn×nℓ
q , ℓ = ⌈log2 q⌉.

GSW FHE [GSW13]:

▶ Secret key k = s = (−s̄; 1).
▶ By LWE, sample A = (Ā; s̄⊤Ā+ e⊤) satisfies A

c
≈ U and s⊤A = e⊤ ≈ 0⊤.

▶ Enc(k = s, x ∈ {0, 1}): C = A+ x · G.
(For bit string (row vector) x , C = A+ x ⊗ G.)

▶ HEvalpub[+]((C1,C2)) = C1 + C2 = (A1 + A2) + (x1 + x2) · G;
HEvalpub[×]((C1,C2)) = C1 · G−1(C2) = (A1 · G−1(C2) + x1 · A2) + (x1x2) · G.

Recap 2/3: GSW FHE

Gadget g := (1, 2, . . . , 2ℓ−1), Gn := In ⊗ g ∈ Zn×nℓ
q , ℓ = ⌈log2 q⌉.

GSW FHE [GSW13]:

▶ Secret key k = s = (−s̄; 1).
▶ By LWE, sample A = (Ā; s̄⊤Ā+ e⊤) satisfies A

c
≈ U and s⊤A = e⊤ ≈ 0⊤.

▶ Enc(k = s, x ∈ {0, 1}): C = A+ x · G.
(For bit string (row vector) x , C = A+ x ⊗ G.)

▶ HEvalpub[+]((C1,C2)) = C1 + C2 = (A1 + A2) + (x1 + x2) · G;
HEvalpub[×]((C1,C2)) = C1 · G−1(C2) = (A1 · G−1(C2) + x1 · A2) + (x1x2) · G.

Recap 2/3: GSW FHE

Gadget g := (1, 2, . . . , 2ℓ−1), Gn := In ⊗ g ∈ Zn×nℓ
q , ℓ = ⌈log2 q⌉.

GSW FHE [GSW13]:

▶ Secret key k = s = (−s̄; 1).
▶ By LWE, sample A = (Ā; s̄⊤Ā+ e⊤) satisfies A

c
≈ U and s⊤A = e⊤ ≈ 0⊤.

▶ Enc(k = s, x ∈ {0, 1}): C = A+ x · G.
(For bit string (row vector) x , C = A+ x ⊗ G.)

▶ HEvalpub[+]((C1,C2)) = C1 + C2 = (A1 + A2) + (x1 + x2) · G;
HEvalpub[×]((C1,C2)) = C1 · G−1(C2) = (A1 · G−1(C2) + x1 · A2) + (x1x2) · G.

Recap 3/3: GSW/BGGHNSVV Homomorphism

HEvalpub[+]((C1,C2)) = C1 + C2 = (A1 + A2) + (x1 + x2) · G
HEvalpub[×]((C1,C2)) = C1 · G−1(C2) = (A1 · G−1(C2) + x1 · A2) + (x1x2) · G

BGGHNSVV ABE’s attribute encoding [BGG+14]:

▶ Take uniform M (cf. C) and attribute encoding A = M− x ⊗ G.

▶ Same HEvalpub over M.

▶ HEval[+]((A1,A2), (−,−), (−,−)) = A1 + A2,
HEval[×]((A1,A2), (−,M2), (x1,−)) = A1 · G−1(M2) + x1 · A2.

▶ S.t., HEval[f](A,M, x) = HEvalpub[f](M)− f (x)⊗ G.

Recap 3/3: GSW/BGGHNSVV Homomorphism

HEvalpub[+]((C1,C2)) = C1 + C2 = (A1 + A2) + (x1 + x2) · G
HEvalpub[×]((C1,C2)) = C1 · G−1(C2) = (A1 · G−1(C2) + x1 · A2) + (x1x2) · G

BGGHNSVV ABE’s attribute encoding [BGG+14]:

▶ Take uniform M (cf. C) and attribute encoding A = M− x ⊗ G.

▶ Same HEvalpub over M.

▶ HEval[+]((A1,A2), (−,−), (−,−)) = A1 + A2,
HEval[×]((A1,A2), (−,M2), (x1,−)) = A1 · G−1(M2) + x1 · A2.

▶ S.t., HEval[f](A,M, x) = HEvalpub[f](M)− f (x)⊗ G.

Recap 3/3: GSW/BGGHNSVV Homomorphism

HEvalpub[+]((C1,C2)) = C1 + C2 = (A1 + A2) + (x1 + x2) · G
HEvalpub[×]((C1,C2)) = C1 · G−1(C2) = (A1 · G−1(C2) + x1 · A2) + (x1x2) · G

BGGHNSVV ABE’s attribute encoding [BGG+14]:

▶ Take uniform M (cf. C) and attribute encoding A = M− x ⊗ G.

▶ Same HEvalpub over M.

▶ HEval[+]((A1,A2), (−,−), (−,−)) = A1 + A2,
HEval[×]((A1,A2), (−,M2), (x1,−)) = A1 · G−1(M2) + x1 · A2.

▶ S.t., HEval[f](A,M, x) = HEvalpub[f](M)− f (x)⊗ G.

Recap 3/3: GSW/BGGHNSVV Homomorphism

HEvalpub[+]((C1,C2)) = C1 + C2 = (A1 + A2) + (x1 + x2) · G
HEvalpub[×]((C1,C2)) = C1 · G−1(C2) = (A1 · G−1(C2) + x1 · A2) + (x1x2) · G

BGGHNSVV ABE’s attribute encoding [BGG+14]:

▶ Take uniform M (cf. C) and attribute encoding A = M− x ⊗ G.

▶ Same HEvalpub over M.

▶ HEval[+]((A1,A2), (−,−), (−,−)) = A1 + A2,
HEval[×]((A1,A2), (−,M2), (x1,−)) = A1 · G−1(M2) + x1 · A2.

▶ S.t., HEval[f](A,M, x) = HEvalpub[f](M)− f (x)⊗ G.

Recap 3/3: GSW/BGGHNSVV Homomorphism

HEvalpub[+]((C1,C2)) = C1 + C2 = (A1 + A2) + (x1 + x2) · G
HEvalpub[×]((C1,C2)) = C1 · G−1(C2) = (A1 · G−1(C2) + x1 · A2) + (x1x2) · G

BGGHNSVV ABE’s attribute encoding [BGG+14]:

▶ Take uniform M (cf. C) and attribute encoding A = M− x ⊗ G.

▶ Same HEvalpub over M.

▶ HEval[+]((A1,A2), (−,−), (−,−)) = A1 + A2,
HEval[×]((A1,A2), (−,M2), (x1,−)) = A1 · G−1(M2) + x1 · A2.

▶ S.t., HEval[f](A,M, x) = HEvalpub[f](M)− f (x)⊗ G.

Attribute-based LFE (AB-LFE)

Syntax: (ABE-like, public x and secret µ)

Setup

pp Digest [f] df

µ Enc[x] c Dec [f , x] µ′
[when f (x) = 0]

Properties:

▶ Correctness: µ′ = µ when f (x) = 0.

▶ Security: c hides µ.

Interpretation: LFE for “conditional disclosure” f̂ (x , µ) := (x , µ · (1− f (x))).

Generalization: f (x) ∈ {0, 1}O , have µ1, . . . , µO , and require µ′
j = µj when fj(x) = 0.

Attribute-based LFE (AB-LFE)

Syntax: (ABE-like, public x and secret µ)

Setup

pp Digest [f] df

µ Enc[x] c Dec [f , x] µ′
[when f (x) = 0]

Properties:

▶ Correctness: µ′ = µ when f (x) = 0.

▶ Security: c hides µ.

Interpretation: LFE for “conditional disclosure” f̂ (x , µ) := (x , µ · (1− f (x))).

Generalization: f (x) ∈ {0, 1}O , have µ1, . . . , µO , and require µ′
j = µj when fj(x) = 0.

Attribute-based LFE (AB-LFE)

Syntax: (ABE-like, public x and secret µ)

Setup

pp Digest [f] df

µ Enc[x] c Dec [f , x] µ′
[when f (x) = 0]

Properties:

▶ Correctness: µ′ = µ when f (x) = 0.

▶ Security: c hides µ.

Interpretation: LFE for “conditional disclosure” f̂ (x , µ) := (x , µ · (1− f (x))).

Generalization: f (x) ∈ {0, 1}O , have µ1, . . . , µO , and require µ′
j = µj when fj(x) = 0.

Attribute-based LFE (AB-LFE)

Syntax: (ABE-like, public x and secret µ)

Setup

pp Digest [f] df

µ Enc[x] c Dec [f , x] µ′
[when f (x) = 0]

Properties:

▶ Correctness: µ′ = µ when f (x) = 0.

▶ Security: c hides µ.

Interpretation: LFE for “conditional disclosure” f̂ (x , µ) := (x , µ · (1− f (x))).

Generalization: f (x) ∈ {0, 1}O , have µ1, . . . , µO , and require µ′
j = µj when fj(x) = 0.

AB-LFE from LWE

Construction: Suppose f : {0, 1}I → {0, 1}O .
▶ Setup(1n): pp = M← Zn×Inℓ

q .

▶ Digest(M, f): df = Mf = HEvalpub[f](M) ∈ Zn×Onℓ
q .

▶ Enc(M,Mf , x , µ ∈ {0, 1}O·L): sample s← Zn
q and LWE errors ex , eµ, sample

Rj ← G−1(U(Zn×L
q)) ∈ {0, 1}nℓ×L, output c = (R, cx , cµ) where R = diag({Rj}j),

c⊤x = s⊤(M− x ⊗ G︸ ︷︷ ︸
A

) + e⊤x ∈ ZInℓ
q , c⊤µ = s⊤MfR+ e⊤µ + ⌊q/2⌉ · µ ∈ ZOL

q .

▶ Dec(M, f , x , (R, cx , cµ)): compute c⊤f ,x = HEval[f](c⊤x ,M, x), and for fj(x) = 0,

extract µj by checking |c⊤f ,xR− c⊤µ | > q/4 on the j-th block.

Correctness: by c⊤f ,x ≈ s⊤(Mf − f (x)⊗ G). Security: by LWE.

AB-LFE from LWE

Construction: Suppose f : {0, 1}I → {0, 1}O .
▶ Setup(1n): pp = M← Zn×Inℓ

q .

▶ Digest(M, f): df = Mf = HEvalpub[f](M) ∈ Zn×Onℓ
q .

▶ Enc(M,Mf , x , µ ∈ {0, 1}O·L): sample s← Zn
q and LWE errors ex , eµ, sample

Rj ← G−1(U(Zn×L
q)) ∈ {0, 1}nℓ×L, output c = (R, cx , cµ) where R = diag({Rj}j),

c⊤x = s⊤(M− x ⊗ G︸ ︷︷ ︸
A

) + e⊤x ∈ ZInℓ
q , c⊤µ = s⊤MfR+ e⊤µ + ⌊q/2⌉ · µ ∈ ZOL

q .

▶ Dec(M, f , x , (R, cx , cµ)): compute c⊤f ,x = HEval[f](c⊤x ,M, x), and for fj(x) = 0,

extract µj by checking |c⊤f ,xR− c⊤µ | > q/4 on the j-th block.

Correctness: by c⊤f ,x ≈ s⊤(Mf − f (x)⊗ G). Security: by LWE.

AB-LFE from LWE

Construction: Suppose f : {0, 1}I → {0, 1}O .
▶ Setup(1n): pp = M← Zn×Inℓ

q .

▶ Digest(M, f): df = Mf = HEvalpub[f](M) ∈ Zn×Onℓ
q .

▶ Enc(M,Mf , x , µ ∈ {0, 1}O·L): sample s← Zn
q and LWE errors ex , eµ, sample

Rj ← G−1(U(Zn×L
q)) ∈ {0, 1}nℓ×L, output c = (R, cx , cµ) where R = diag({Rj}j),

c⊤x = s⊤(M− x ⊗ G︸ ︷︷ ︸
A

) + e⊤x ∈ ZInℓ
q , c⊤µ = s⊤MfR+ e⊤µ + ⌊q/2⌉ · µ ∈ ZOL

q .

▶ Dec(M, f , x , (R, cx , cµ)): compute c⊤f ,x = HEval[f](c⊤x ,M, x), and for fj(x) = 0,

extract µj by checking |c⊤f ,xR− c⊤µ | > q/4 on the j-th block.

Correctness: by c⊤f ,x ≈ s⊤(Mf − f (x)⊗ G). Security: by LWE.

AB-LFE from LWE

Construction: Suppose f : {0, 1}I → {0, 1}O .
▶ Setup(1n): pp = M← Zn×Inℓ

q .

▶ Digest(M, f): df = Mf = HEvalpub[f](M) ∈ Zn×Onℓ
q .

▶ Enc(M,Mf , x , µ ∈ {0, 1}O·L): sample s← Zn
q and LWE errors ex , eµ, sample

Rj ← G−1(U(Zn×L
q)) ∈ {0, 1}nℓ×L, output c = (R, cx , cµ) where R = diag({Rj}j),

c⊤x = s⊤(M− x ⊗ G︸ ︷︷ ︸
A

) + e⊤x ∈ ZInℓ
q , c⊤µ = s⊤MfR+ e⊤µ + ⌊q/2⌉ · µ ∈ ZOL

q .

▶ Dec(M, f , x , (R, cx , cµ)): compute c⊤f ,x = HEval[f](c⊤x ,M, x), and for fj(x) = 0,

extract µj by checking |c⊤f ,xR− c⊤µ | > q/4 on the j-th block.

Correctness: by c⊤f ,x ≈ s⊤(Mf − f (x)⊗ G). Security: by LWE.

AB-LFE from LWE

Construction: Suppose f : {0, 1}I → {0, 1}O .
▶ Setup(1n): pp = M← Zn×Inℓ

q .

▶ Digest(M, f): df = Mf = HEvalpub[f](M) ∈ Zn×Onℓ
q .

▶ Enc(M,Mf , x , µ ∈ {0, 1}O·L): sample s← Zn
q and LWE errors ex , eµ, sample

Rj ← G−1(U(Zn×L
q)) ∈ {0, 1}nℓ×L, output c = (R, cx , cµ) where R = diag({Rj}j),

c⊤x = s⊤(M− x ⊗ G︸ ︷︷ ︸
A

) + e⊤x ∈ ZInℓ
q , c⊤µ = s⊤MfR+ e⊤µ + ⌊q/2⌉ · µ ∈ ZOL

q .

▶ Dec(M, f , x , (R, cx , cµ)): compute c⊤f ,x = HEval[f](c⊤x ,M, x), and for fj(x) = 0,

extract µj by checking |c⊤f ,xR− c⊤µ | > q/4 on the j-th block.

Correctness: by c⊤f ,x ≈ s⊤(Mf − f (x)⊗ G). Security: by LWE.

AB-LFE from LWE

Construction: Suppose f : {0, 1}I → {0, 1}O .
▶ Setup(1n): pp = M← Zn×Inℓ

q .

▶ Digest(M, f): df = Mf = HEvalpub[f](M) ∈ Zn×Onℓ
q .

▶ Enc(M,Mf , x , µ ∈ {0, 1}O·L): sample s← Zn
q and LWE errors ex , eµ, sample

Rj ← G−1(U(Zn×L
q)) ∈ {0, 1}nℓ×L, output c = (R, cx , cµ) where R = diag({Rj}j),

c⊤x = s⊤(M− x ⊗ G︸ ︷︷ ︸
A

) + e⊤x ∈ ZInℓ
q , c⊤µ = s⊤MfR+ e⊤µ + ⌊q/2⌉ · µ ∈ ZOL

q .

▶ Dec(M, f , x , (R, cx , cµ)): compute c⊤f ,x = HEval[f](c⊤x ,M, x), and for fj(x) = 0,

extract µj by checking |c⊤f ,xR− c⊤µ | > q/4 on the j-th block.

Correctness: by c⊤f ,x ≈ s⊤(Mf − f (x)⊗ G). Security: by LWE.

AB-LFE from LWE

Construction: Suppose f : {0, 1}I → {0, 1}O .
▶ Setup(1n): pp = M← Zn×Inℓ

q .

▶ Digest(M, f): df = Mf = HEvalpub[f](M) ∈ Zn×Onℓ
q .

▶ Enc(M,Mf , x , µ ∈ {0, 1}O·L): sample s← Zn
q and LWE errors ex , eµ, sample

Rj ← G−1(U(Zn×L
q)) ∈ {0, 1}nℓ×L, output c = (R, cx , cµ) where R = diag({Rj}j),

c⊤x = s⊤(M− x ⊗ G︸ ︷︷ ︸
A

) + e⊤x ∈ ZInℓ
q , c⊤µ = s⊤MfR+ e⊤µ + ⌊q/2⌉ · µ ∈ ZOL

q .

▶ Dec(M, f , x , (R, cx , cµ)): compute c⊤f ,x = HEval[f](c⊤x ,M, x), and for fj(x) = 0,

extract µj by checking |c⊤f ,xR− c⊤µ | > q/4 on the j-th block.

Correctness: by c⊤f ,x ≈ s⊤(Mf − f (x)⊗ G). Security: by LWE.

AB-LFE from LWE

Construction: Suppose f : {0, 1}I → {0, 1}O .
▶ Setup(1n): pp = M← Zn×Inℓ

q .

▶ Digest(M, f): df = Mf = HEvalpub[f](M) ∈ Zn×Onℓ
q .

▶ Enc(M,Mf , x , µ ∈ {0, 1}O·L): sample s← Zn
q and LWE errors ex , eµ, sample

Rj ← G−1(U(Zn×L
q)) ∈ {0, 1}nℓ×L, output c = (R, cx , cµ) where R = diag({Rj}j),

c⊤x = s⊤(M− x ⊗ G︸ ︷︷ ︸
A

) + e⊤x ∈ ZInℓ
q , c⊤µ = s⊤MfR+ e⊤µ + ⌊q/2⌉ · µ ∈ ZOL

q .

▶ Dec(M, f , x , (R, cx , cµ)): compute c⊤f ,x = HEval[f](c⊤x ,M, x), and for fj(x) = 0,

extract µj by checking |c⊤f ,xR− c⊤µ | > q/4 on the j-th block.

Correctness: by c⊤f ,x ≈ s⊤(Mf − f (x)⊗ G). Security: by LWE.

Enhancing AB-LFE

Two-outcome mode of ABE/AB-LFE:

▶ Normal mode: Dec outputs µ if f (x) = 0 and ⊥ otherwise.

▶ Two-outcome mode: Enc takes µ(0), µ(1), and Dec outputs µ(f (x)).

▶ Construction: apply ABX to f̃ := f ∥ (1− f).

Further compressing digest: By laconic OT [CDG+17], can improve |df | from
O · poly(n, d) (d is depth of f) to just poly(n).

Enhancing AB-LFE

Two-outcome mode of ABE/AB-LFE:

▶ Normal mode: Dec outputs µ if f (x) = 0 and ⊥ otherwise.

▶ Two-outcome mode: Enc takes µ(0), µ(1), and Dec outputs µ(f (x)).

▶ Construction: apply ABX to f̃ := f ∥ (1− f).

Further compressing digest: By laconic OT [CDG+17], can improve |df | from
O · poly(n, d) (d is depth of f) to just poly(n).

Enhancing AB-LFE

Two-outcome mode of ABE/AB-LFE:

▶ Normal mode: Dec outputs µ if f (x) = 0 and ⊥ otherwise.

▶ Two-outcome mode: Enc takes µ(0), µ(1), and Dec outputs µ(f (x)).

▶ Construction: apply ABX to f̃ := f ∥ (1− f).

Further compressing digest: By laconic OT [CDG+17], can improve |df | from
O · poly(n, d) (d is depth of f) to just poly(n).

Last Piece: Garbled Circuit

Syntax: (f : {0, 1}I → {0, 1}O .)
▶ Garble(1n, f): output garbled circuit Γ and labels (Li ,0, Li ,1)i∈[I].

▶ GEval(Γ, (Li)i∈[I]): output evaluation y .

Correctness: GEval(Γ, (Li ,xi)i∈[I]) = f (x).

Yao’s construction: gate by gate, so |Γ| = |f | · poly(n); also |Li ,b| = poly(n).

Last Piece: Garbled Circuit

Syntax: (f : {0, 1}I → {0, 1}O .)
▶ Garble(1n, f): output garbled circuit Γ and labels (Li ,0, Li ,1)i∈[I].

▶ GEval(Γ, (Li)i∈[I]): output evaluation y .

Correctness: GEval(Γ, (Li ,xi)i∈[I]) = f (x).

Yao’s construction: gate by gate, so |Γ| = |f | · poly(n); also |Li ,b| = poly(n).

Last Piece: Garbled Circuit

Syntax: (f : {0, 1}I → {0, 1}O .)
▶ Garble(1n, f): output garbled circuit Γ and labels (Li ,0, Li ,1)i∈[I].

▶ GEval(Γ, (Li)i∈[I]): output evaluation y .

Correctness: GEval(Γ, (Li ,xi)i∈[I]) = f (x).

Yao’s construction: gate by gate, so |Γ| = |f | · poly(n); also |Li ,b| = poly(n).

Last Piece: Garbled Circuit

Syntax: (f : {0, 1}I → {0, 1}O .)
▶ Garble(1n, f): output garbled circuit Γ and labels (Li ,0, Li ,1)i∈[I].

▶ GEval(Γ, (Li)i∈[I]): output evaluation y .

Correctness: GEval(Γ, (Li ,xi)i∈[I]) = f (x).

Yao’s construction: gate by gate, so |Γ| = |f | · poly(n); also |Li ,b| = poly(n).

Constructing LFE

Ingredients: two-outcome AB-LFE (toABLFE), FHE, garbled circuit (GC).

Construction:

▶ Setup(1n): same as toABLFE.Setup.

▶ Digest(pp, f): f † := FHE.HEval[f], output df = toABLFE.Digest(pp, f †).

▶ Enc(pp, df , x):
sample FHE secret k ← FHE.Gen(1n), compute cx = FHE.Enc(k , x),
compute (Γ, (Li ,0, Li ,1)i) = Garble(1n,FHE.Dec(k , ·)),
compute c = toABLFE.Enc(pp, df , cx , (Li ,0)i , (Li ,1)i),
output c ′ = (Γ, c).

▶ Dec(pp, f , (Γ, c)): (Li)i = toABLFE.Dec(pp, f †, c), output y = GEval(Γ, (Li)i).

Constructing LFE

Ingredients: two-outcome AB-LFE (toABLFE), FHE, garbled circuit (GC).

Construction:

▶ Setup(1n): same as toABLFE.Setup.

▶ Digest(pp, f): f † := FHE.HEval[f], output df = toABLFE.Digest(pp, f †).

▶ Enc(pp, df , x):
sample FHE secret k ← FHE.Gen(1n), compute cx = FHE.Enc(k , x),
compute (Γ, (Li ,0, Li ,1)i) = Garble(1n,FHE.Dec(k , ·)),
compute c = toABLFE.Enc(pp, df , cx , (Li ,0)i , (Li ,1)i),
output c ′ = (Γ, c).

▶ Dec(pp, f , (Γ, c)): (Li)i = toABLFE.Dec(pp, f †, c), output y = GEval(Γ, (Li)i).

Constructing LFE

Ingredients: two-outcome AB-LFE (toABLFE), FHE, garbled circuit (GC).

Construction:

▶ Setup(1n): same as toABLFE.Setup.

▶ Digest(pp, f): f † := FHE.HEval[f], output df = toABLFE.Digest(pp, f †).

▶ Enc(pp, df , x):
sample FHE secret k ← FHE.Gen(1n), compute cx = FHE.Enc(k , x),
compute (Γ, (Li ,0, Li ,1)i) = Garble(1n,FHE.Dec(k , ·)),
compute c = toABLFE.Enc(pp, df , cx , (Li ,0)i , (Li ,1)i),
output c ′ = (Γ, c).

▶ Dec(pp, f , (Γ, c)): (Li)i = toABLFE.Dec(pp, f †, c), output y = GEval(Γ, (Li)i).

Constructing LFE

Ingredients: two-outcome AB-LFE (toABLFE), FHE, garbled circuit (GC).

Construction:

▶ Setup(1n): same as toABLFE.Setup.

▶ Digest(pp, f): f † := FHE.HEval[f], output df = toABLFE.Digest(pp, f †).

▶ Enc(pp, df , x):
sample FHE secret k ← FHE.Gen(1n), compute cx = FHE.Enc(k , x),
compute (Γ, (Li ,0, Li ,1)i) = Garble(1n,FHE.Dec(k , ·)),
compute c = toABLFE.Enc(pp, df , cx , (Li ,0)i , (Li ,1)i),
output c ′ = (Γ, c).

▶ Dec(pp, f , (Γ, c)): (Li)i = toABLFE.Dec(pp, f †, c), output y = GEval(Γ, (Li)i).

Constructing LFE

Ingredients: two-outcome AB-LFE (toABLFE), FHE, garbled circuit (GC).

Construction:

▶ Setup(1n): same as toABLFE.Setup.

▶ Digest(pp, f): f † := FHE.HEval[f], output df = toABLFE.Digest(pp, f †).

▶ Enc(pp, df , x):
sample FHE secret k ← FHE.Gen(1n), compute cx = FHE.Enc(k , x),
compute (Γ, (Li ,0, Li ,1)i) = Garble(1n,FHE.Dec(k , ·)),
compute c = toABLFE.Enc(pp, df , cx , (Li ,0)i , (Li ,1)i),
output c ′ = (Γ, c).

▶ Dec(pp, f , (Γ, c)): (Li)i = toABLFE.Dec(pp, f †, c), output y = GEval(Γ, (Li)i).

Constructing LFE

Ingredients: two-outcome AB-LFE (toABLFE), FHE, garbled circuit (GC).

Construction:

▶ Setup(1n): same as toABLFE.Setup.

▶ Digest(pp, f): f † := FHE.HEval[f], output df = toABLFE.Digest(pp, f †).

▶ Enc(pp, df , x):
sample FHE secret k ← FHE.Gen(1n), compute cx = FHE.Enc(k , x),
compute (Γ, (Li ,0, Li ,1)i) = Garble(1n,FHE.Dec(k , ·)),
compute c = toABLFE.Enc(pp, df , cx , (Li ,0)i , (Li ,1)i),
output c ′ = (Γ, c).

▶ Dec(pp, f , (Γ, c)): (Li)i = toABLFE.Dec(pp, f †, c), output y = GEval(Γ, (Li)i).

Verifying the Correctness

f † := FHE.HEval[f] , df = toABLFE.Digest(pp, f †) ,

cx = FHE.Enc(k , x) , (Γ, (Li ,0, Li ,1)i) = Garble(1n,FHE.Dec(k , ·)) ,
c = toABLFE.Enc(pp, df , cx , (Li ,0)i , (Li ,1)i) ,

(Li)i = toABLFE.Dec(pp, f †, c) , y = GEval(Γ, (Li)i) .

Want: y = f (x).

▶ By toABLFE, Li = Li ,f †(cx)[i].

▶ By FHE, f †(cx) = FHE.HEval[f](cx) = cf (x).

▶ By GC, GEval(Γ, (Li ,cf (x)[i])i) = FHE.Dec(k, cf (x)) = f (x).

Verifying the Correctness

f † := FHE.HEval[f] , df = toABLFE.Digest(pp, f †) ,

cx = FHE.Enc(k , x) , (Γ, (Li ,0, Li ,1)i) = Garble(1n,FHE.Dec(k , ·)) ,
c = toABLFE.Enc(pp, df , cx , (Li ,0)i , (Li ,1)i) ,

(Li)i = toABLFE.Dec(pp, f †, c) , y = GEval(Γ, (Li)i) .

Want: y = f (x).

▶ By toABLFE, Li = Li ,f †(cx)[i].

▶ By FHE, f †(cx) = FHE.HEval[f](cx) = cf (x).

▶ By GC, GEval(Γ, (Li ,cf (x)[i])i) = FHE.Dec(k, cf (x)) = f (x).

Verifying the Correctness

f † := FHE.HEval[f] , df = toABLFE.Digest(pp, f †) ,

cx = FHE.Enc(k , x) , (Γ, (Li ,0, Li ,1)i) = Garble(1n,FHE.Dec(k , ·)) ,
c = toABLFE.Enc(pp, df , cx , (Li ,0)i , (Li ,1)i) ,

(Li)i = toABLFE.Dec(pp, f †, c) , y = GEval(Γ, (Li)i) .

Want: y = f (x).

▶ By toABLFE, Li = Li ,f †(cx)[i].

▶ By FHE, f †(cx) = FHE.HEval[f](cx) = cf (x).

▶ By GC, GEval(Γ, (Li ,cf (x)[i])i) = FHE.Dec(k, cf (x)) = f (x).

Verifying the Correctness

f † := FHE.HEval[f] , df = toABLFE.Digest(pp, f †) ,

cx = FHE.Enc(k , x) , (Γ, (Li ,0, Li ,1)i) = Garble(1n,FHE.Dec(k , ·)) ,
c = toABLFE.Enc(pp, df , cx , (Li ,0)i , (Li ,1)i) ,

(Li)i = toABLFE.Dec(pp, f †, c) , y = GEval(Γ, (Li)i) .

Want: y = f (x).

▶ By toABLFE, Li = Li ,f †(cx)[i].

▶ By FHE, f †(cx) = FHE.HEval[f](cx) = cf (x).

▶ By GC, GEval(Γ, (Li ,cf (x)[i])i) = FHE.Dec(k, cf (x)) = f (x).

Verifying the Efficiency

Unpack the construction:

▶ f † := FHE.HEval[f], toABLFE uses f̃ † := FHE.HEval[f] ∥ (1− FHE.HEval[f]).
(Need to binary-compile FHE.HEval.)

▶ For f : {0, 1}I → {0, 1}O , get f̃ † : {0, 1}I ·poly(n,d) → {0, 1}2O·poly(n,d).

Hence |pp| = I · poly(n, d), and |df | = O · poly(n, d) (or |df | = poly(n) with LOT).

Verifying the Efficiency

Unpack the construction:

▶ f † := FHE.HEval[f], toABLFE uses f̃ † := FHE.HEval[f] ∥ (1− FHE.HEval[f]).
(Need to binary-compile FHE.HEval.)

▶ For f : {0, 1}I → {0, 1}O , get f̃ † : {0, 1}I ·poly(n,d) → {0, 1}2O·poly(n,d).

Hence |pp| = I · poly(n, d), and |df | = O · poly(n, d) (or |df | = poly(n) with LOT).

Verifying the Efficiency

Unpack the construction:

▶ f † := FHE.HEval[f], toABLFE uses f̃ † := FHE.HEval[f] ∥ (1− FHE.HEval[f]).
(Need to binary-compile FHE.HEval.)

▶ For f : {0, 1}I → {0, 1}O , get f̃ † : {0, 1}I ·poly(n,d) → {0, 1}2O·poly(n,d).

Hence |pp| = I · poly(n, d), and |df | = O · poly(n, d) (or |df | = poly(n) with LOT).

Verifying the Efficiency

Unpack the construction:

▶ f † := FHE.HEval[f], toABLFE uses f̃ † := FHE.HEval[f] ∥ (1− FHE.HEval[f]).
(Need to binary-compile FHE.HEval.)

▶ For f : {0, 1}I → {0, 1}O , get f̃ † : {0, 1}I ·poly(n,d) → {0, 1}2O·poly(n,d).

Hence |pp| = I · poly(n, d), and |df | = O · poly(n, d) (or |df | = poly(n) with LOT).

Enhancing LFE

Adaptive security: by assuming certain adaptive version of LWE.

(Statistical) function hiding:

▶ Add H ∈ Zn×Nnℓ
q to pp, use d ′

f = df + (
∑

i∈[N] ri ,jHi)j∈[O] for ri ,j ← {0, 1}.
▶ Also encrypt c⊤H = s⊤H+ e⊤H = s⊤(H− 0⊗ G) + e⊤H .

▶ Interpretation: hide f by f ′(x , x ′) := f (x) + x ′ · R (over Zq integers), R = (ri ,j)i ,j .

More direct construction:

▶ “Dual use” technique [BTVW17]: take GSW FHE, reuse key s in ABLFE.Enc.

▶ No garbling, directly encrypt s⊤(M− cx ⊗ G) + e⊤x .

▶ “Automatic decryption”: by GSW, can extract f (x) from s⊤(cf (x) ⊗ G) + e⊤.

Enhancing LFE

Adaptive security: by assuming certain adaptive version of LWE.

(Statistical) function hiding:

▶ Add H ∈ Zn×Nnℓ
q to pp, use d ′

f = df + (
∑

i∈[N] ri ,jHi)j∈[O] for ri ,j ← {0, 1}.
▶ Also encrypt c⊤H = s⊤H+ e⊤H = s⊤(H− 0⊗ G) + e⊤H .

▶ Interpretation: hide f by f ′(x , x ′) := f (x) + x ′ · R (over Zq integers), R = (ri ,j)i ,j .

More direct construction:

▶ “Dual use” technique [BTVW17]: take GSW FHE, reuse key s in ABLFE.Enc.

▶ No garbling, directly encrypt s⊤(M− cx ⊗ G) + e⊤x .

▶ “Automatic decryption”: by GSW, can extract f (x) from s⊤(cf (x) ⊗ G) + e⊤.

Enhancing LFE

Adaptive security: by assuming certain adaptive version of LWE.

(Statistical) function hiding:

▶ Add H ∈ Zn×Nnℓ
q to pp, use d ′

f = df + (
∑

i∈[N] ri ,jHi)j∈[O] for ri ,j ← {0, 1}.
▶ Also encrypt c⊤H = s⊤H+ e⊤H = s⊤(H− 0⊗ G) + e⊤H .

▶ Interpretation: hide f by f ′(x , x ′) := f (x) + x ′ · R (over Zq integers), R = (ri ,j)i ,j .

More direct construction:

▶ “Dual use” technique [BTVW17]: take GSW FHE, reuse key s in ABLFE.Enc.

▶ No garbling, directly encrypt s⊤(M− cx ⊗ G) + e⊤x .

▶ “Automatic decryption”: by GSW, can extract f (x) from s⊤(cf (x) ⊗ G) + e⊤.

Enhancing LFE

Adaptive security: by assuming certain adaptive version of LWE.

(Statistical) function hiding:

▶ Add H ∈ Zn×Nnℓ
q to pp, use d ′

f = df + (
∑

i∈[N] ri ,jHi)j∈[O] for ri ,j ← {0, 1}.
▶ Also encrypt c⊤H = s⊤H+ e⊤H = s⊤(H− 0⊗ G) + e⊤H .

▶ Interpretation: hide f by f ′(x , x ′) := f (x) + x ′ · R (over Zq integers), R = (ri ,j)i ,j .

More direct construction:

▶ “Dual use” technique [BTVW17]: take GSW FHE, reuse key s in ABLFE.Enc.

▶ No garbling, directly encrypt s⊤(M− cx ⊗ G) + e⊤x .

▶ “Automatic decryption”: by GSW, can extract f (x) from s⊤(cf (x) ⊗ G) + e⊤.

Enhancing LFE

Adaptive security: by assuming certain adaptive version of LWE.

(Statistical) function hiding:

▶ Add H ∈ Zn×Nnℓ
q to pp, use d ′

f = df + (
∑

i∈[N] ri ,jHi)j∈[O] for ri ,j ← {0, 1}.
▶ Also encrypt c⊤H = s⊤H+ e⊤H = s⊤(H− 0⊗ G) + e⊤H .

▶ Interpretation: hide f by f ′(x , x ′) := f (x) + x ′ · R (over Zq integers), R = (ri ,j)i ,j .

More direct construction:

▶ “Dual use” technique [BTVW17]: take GSW FHE, reuse key s in ABLFE.Enc.

▶ No garbling, directly encrypt s⊤(M− cx ⊗ G) + e⊤x .

▶ “Automatic decryption”: by GSW, can extract f (x) from s⊤(cf (x) ⊗ G) + e⊤.

Enhancing LFE

Adaptive security: by assuming certain adaptive version of LWE.

(Statistical) function hiding:

▶ Add H ∈ Zn×Nnℓ
q to pp, use d ′

f = df + (
∑

i∈[N] ri ,jHi)j∈[O] for ri ,j ← {0, 1}.
▶ Also encrypt c⊤H = s⊤H+ e⊤H = s⊤(H− 0⊗ G) + e⊤H .

▶ Interpretation: hide f by f ′(x , x ′) := f (x) + x ′ · R (over Zq integers), R = (ri ,j)i ,j .

More direct construction:

▶ “Dual use” technique [BTVW17]: take GSW FHE, reuse key s in ABLFE.Enc.

▶ No garbling, directly encrypt s⊤(M− cx ⊗ G) + e⊤x .

▶ “Automatic decryption”: by GSW, can extract f (x) from s⊤(cf (x) ⊗ G) + e⊤.

Enhancing LFE

Adaptive security: by assuming certain adaptive version of LWE.

(Statistical) function hiding:

▶ Add H ∈ Zn×Nnℓ
q to pp, use d ′

f = df + (
∑

i∈[N] ri ,jHi)j∈[O] for ri ,j ← {0, 1}.
▶ Also encrypt c⊤H = s⊤H+ e⊤H = s⊤(H− 0⊗ G) + e⊤H .

▶ Interpretation: hide f by f ′(x , x ′) := f (x) + x ′ · R (over Zq integers), R = (ri ,j)i ,j .

More direct construction:

▶ “Dual use” technique [BTVW17]: take GSW FHE, reuse key s in ABLFE.Enc.

▶ No garbling, directly encrypt s⊤(M− cx ⊗ G) + e⊤x .

▶ “Automatic decryption”: by GSW, can extract f (x) from s⊤(cf (x) ⊗ G) + e⊤.

References

Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko, Gil Segev, Vinod
Vaikuntanathan, and Dhinakaran Vinayagamurthy.
Fully key-homomorphic encryption, arithmetic circuit ABE, and compact garbled circuits.
In EUROCRYPT, 2014.

Zvika Brakerski, Rotem Tsabary, Vinod Vaikuntanathan, and Hoeteck Wee.
Private constrained PRFs (and more) from LWE.
In TCC, 2017.

Chongwon Cho, Nico Döttling, Sanjam Garg, Divya Gupta, Peihan Miao, and Antigoni Polychroniadou.
Laconic oblivious transfer and its applications.
In CRYPTO, 2017.

Shafi Goldwasser, Yael Kalai, Raluca Ada Popa, Vinod Vaikuntanathan, and Nickolai Zeldovich.
Reusable garbled circuits and succinct functional encryption.
In STOC, 2013.

Craig Gentry, Amit Sahai, and Brent Waters.
Homomorphic encryption from learning with errors: Conceptually-simpler, asymptotically-faster,
attribute-based.
In CRYPTO, 2013.

Willy Quach, Hoeteck Wee, and Daniel Wichs.
Laconic function evaluation and applications.
In FOCS, 2018.

