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Motivation: Gaussian pancakes

Is this the standard Gaussian distribution? 

Gaussian pancakes Standard Gaussian



Motivation: Gaussian pancakes

But what if you hide this discrete direction in higher dimensions?

Gaussian pancake! Standard Gaussian



Gaussian pancakes

The Gaussian pancakes distribution is a noisy discrete Gaussian (blue) in one 
hidden direction. In other 𝑛-1 directions, the distribution is Gaussian (orange).

For reasons we will explain later, we call this distribution the homogeneous Continuous Learning 
with Errors (hCLWE) distribution.



SQ-hardness of distinguishing Gaussian pancakes [DiakonikolasKaneStewart17]

Thm [DKS17]: Distinguishing Gaussian pancakes from the standard Gaussian 
is hard for statistical query (SQ) algorithms.

Def: an SQ algorithm [Kearns98] accesses the input distribution only indirectly from noisy 
expectations. It can query the distribution with any bounded function 𝑓: ℝ𝑛→[-1,1], and receive a 
noisy version of 𝔼[𝑓(𝑥)], instead of getting individual samples.

- can be seen as an abstraction capturing a wide range of algorithms that operate only with 
distributional quantities rather than per-sample quantities, e.g., full-batch gradient descent.



SQ-hardness of distinguishing Gaussian baguettes [BubeckLeePriceRazenshteyn19]

Thm [BLPR19]: Similarly, still SQ-hard when you have multiple discrete 
directions (Gaussian “baguettes”).



Implications of hardness of distinguishing Gaussian pancakes

1. Improperly learning (= density estimation) mixtures of Gaussians is hard 
for SQ algorithms, even when the components are nearly 
non-overlapping and parameter recovery is info-theoretically possible 
with poly(𝑛) samples [DKS17].

2. Learning robust* classifiers can be hard, even when they exist and are 
learnable info-theoretically [BLPR19].

* Robust in the sense that the classifier is not vulnerable to small, imperceptible input perturbations.

Open question by [BLPR19]:

Is detecting the pancake structure computationally hard for any algorithm?

We resolve this here in the affirmative.



Adversarial examples: why learning robust classifiers is important

[BLPR19] suggests that even though robust classification might be possible 
information-theoretically, learning a robust classifier might be computationally 
intractable (in theory).
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Prove that distinguishing the following two distributions (in high dimension) is 
computationally hard.

Our goal: distinguishing hCLWE

vs

Gaussian pancakes Standard Gaussian



hCLWE (aka Gaussian pancakes)
𝛾 : pancake (inverse) spacing

𝛽 : pancake (relative) thickness

1/𝛾

𝛽/𝛾



Our result: hardness of Gaussian pancakes

Distinguishing Gaussian pancakes with spacing 
1/𝛾 less than 𝑛-1/2 from the standard Gaussian 
with accuracy slightly (inverse-polynomially) 
better than chance is computationally hard, 
unless there are polynomial-time quantum 
algorithms for certain fundamental worst-case 
lattice problems.

* 𝛽 can be any inverse polynomial less than 1.
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Implications of our hardness result

Assuming some worst-case lattice problems cannot be solved by 
polynomial-time quantum algorithms ...

- Distinguishing Gaussian pancakes/baguettes from the standard Gaussian is hard 
for any polynomial-time algorithm. In fact, hard for baguettes with O(𝑛) many 
discrete directions.

- Improperly learning mixtures of Gaussians is computationally hard even when the 
mixture components are nearly non-overlapping.

Hardness of improper learning is generally difficult to show because there is no 
restriction on what hypothesis the learning algorithm can output.

Worst-case to average-case reduction: these are average-case hardness results 
based on worst-case hardness assumptions. Only a few hardness of improper learning 
results are based on worst-case hardness. [KlivansSherstov06].



Hardness of (h)CLWE: proof overview



Hardness of (h)CLWE: proof overview

We prove a stronger hardness result, for a relaxed problem: (inhomogeneous) CLWE.



Def. (𝛽,𝛾)-CLWE: To decide whether the given samples of 
the form (𝐲,𝑧) with 𝐲 ~ 𝒩(0,𝐼𝑛) have either:

(1) periodic “colors” 𝑧 along some secret direction 𝐰 ∈ ℝ𝑛, 
i.e., 𝑧 = (𝛾⟨𝐲,𝐰⟩ + 𝑒) mod 1 where 𝑒 ~ 𝒩(0,𝛽), or

(2) uniformly random “colors” 𝑧 ∈ [0,1).

hCLWE samples are roughly CLWE samples with 𝑧 = 0.

We show the hardness results by reducing worst-case 
lattice problems to CLWE, and reducing CLWE to hCLWE 
via rejection sampling by 𝑧 ≈ 0.

Hardness of (h)CLWE: proof overview hCLWE

CLWE



Lattices and lattice problems

For a basis {𝐛1, …, 𝐛𝑛} of ℝ𝑛, the lattice 
𝐿 generated by the basis is the set of 
all integer linear combinations of the 
basis vectors.

The minimum distance 𝜆1(𝐿) is the 
shortest length of nonzero lattice 
vectors in lattice 𝐿.

The Shortest Vector Problem (SVP): To 
find a lattice vector with the shortest 
length 𝜆1(𝐿) for a given lattice 𝐿.



Hardness based on SVP

Def. Promise version of SVP (𝜑-GapSVP): Given a lattice 𝐿, the goal is to decide 
whether 𝜆1(𝐿) ≤ 1 or 𝜆1(𝐿) > 𝜑.

𝜑-GapSVP is believed to be hard (even quantumly) for any polynomial 𝜑=𝜑(𝑛).
‣ Fastest known algorithms (for some small poly 𝜑) run in time 2O(𝑛).
‣ NP-hard for any constant 𝜑. [Micciancio01,Khot05]

[Regev05,PeikertRegevStephens-Davidowitz17] show a (quantum) reduction 
from O(𝑛/𝛼)-GapSVP to (𝛼,𝑞)-LWE (for large enough 𝛼⋅𝑞).
We follow the same framework and reduce O(𝑛/𝛽)-GapSVP to (𝛽,𝛾)-CLWE,
for poly 𝛾 ≥ 2𝑛1/2 and inverse-poly 𝛽.



Learning with Errors (LWE)

Def. (𝛼,𝑞)-LWE: To decide whether the given samples of the form (𝐚,𝑏) with
𝐚 ~ (ℤ/𝑞ℤ)𝑛 have either:

(1) periodic 𝑏 along some secret direction 𝐬 ∈ (ℤ/𝑞ℤ)𝑛, i.e., 𝑏 = (⟨𝐚,𝐬⟩/𝑞 + 𝑒) mod 1 
where 𝑒 ~ 𝒩(0,𝛼), or

(2) uniformly random 𝑏 ∈ [0,1).

Remark: By discretizing with 𝑏’ = ⌊𝑞⋅𝑏⌋ ∈ ℤ/𝑞ℤ, the search version (to find 
secret 𝐬 given periodic 𝑏) can be viewed as solving system of linear equations 
with errors over ℤ/𝑞ℤ, of the form ⟨𝐚,𝐬⟩ ≈ 𝑏’.



Analogies between CLWE and LWE
(𝛽,𝛾)-CLWE (𝛼,𝑞)-LWE

secret 𝐰 ∈ ℝ𝑛, ǁ𝐰ǁ = 1 secret 𝐬 ∈ (ℤ/𝑞ℤ)𝑛

samples (𝐲,𝑧) samples (𝐚,𝑏)

𝐲 ~ 𝒩(0,𝐼𝑛) 𝐚 ~ (ℤ/𝑞ℤ)𝑛

𝑧 = (𝛾⟨𝐲,𝐰⟩ + 𝑒) mod 1
where 𝑒 ~ 𝒩(0,𝛽)

𝑏 = (⟨𝐚,𝐬⟩/𝑞 + 𝑒) mod 1
where 𝑒 ~ 𝒩(0,𝛼)

reduce from O(𝑛/𝛽)-GapSVP
for 𝛾 ≥ O(𝑛1/2)

reduce from O(𝑛/𝛼)-GapSVP
for 𝛼⋅𝑞 ≥ O(𝑛1/2)

noise rate 𝛽 noise rate 𝛼

inverse period 𝛾 𝛼⋅𝑞



Other results related to CLWE

Noise is necessary for hardness.
- The Lenstra-Lenstra-Lovász (LLL) algorithm can efficiently solve noiseless
  CLWE (or even CLWE with exponentially small noise [SongZadikBruna21]).
- Analogous to efficiently solving noiseless LWE with Gaussian elimination.
- Bypasses SQ-hardness since LLL inspects samples individually.

Subexponential algorithms for hCLWE with spacing 𝛾 = o(𝑛1/2). 
- Simply compute covariance using exp(𝛾2) many samples.
- Analogous to the Arora-Ge algorithm for LWE [AroraGe11].



Follow-up work

Hardness of learning “cosine neurons” [SZB21]

Observes that CLWE hardness also implies hardness of learning high-dimensional cosines (“cosine 
neurons”) of the form f(𝐱)=cos(2𝜋𝛾⟨𝐰,𝐱⟩) over the Gaussian input distribution if small 
(inverse-polynomial) label noise is added.

Previous work: Hardness of learning cosine neurons by SQ/gradient-based algorithms. 
[SongVempalaWilmesXie17,Shamir18]

Cosine neurons can be approximated (in the 𝓁2-norm) by poly-width one-hidden-layer ReLU 
networks if the input distribution is Gaussian. Hence, seemingly simple (NN-realizable) supervised 
learning tasks can be hard against a restricted class of algorithms. [SZB21] shows that the hardness 
applies to any polynomial-time algorithm.

Together with our result on hardness of learning Gaussian mixtures, this shows the versatility of 
CLWE/hCLWE as a primitive for showing hardness of improper learning.



Thank you!


