
Continuous
Learning with Errors

Min Jae Song (NYU) and Yi Tang (UMich)
Joint work with Joan Bruna and Oded Regev (NYU)

June 8th 2021, STOC

Motivation: Gaussian pancakes

Is this the standard Gaussian distribution?

Gaussian pancakes Standard Gaussian

Motivation: Gaussian pancakes

But what if you hide this discrete direction in higher dimensions?

Gaussian pancake! Standard Gaussian

Gaussian pancakes

The Gaussian pancakes distribution is a noisy discrete Gaussian (blue) in one
hidden direction. In other 𝑛-1 directions, the distribution is Gaussian (orange).

For reasons we will explain later, we call this distribution the homogeneous Continuous Learning
with Errors (hCLWE) distribution.

SQ-hardness of distinguishing Gaussian pancakes [DiakonikolasKaneStewart17]

Thm [DKS17]: Distinguishing Gaussian pancakes from the standard Gaussian
is hard for statistical query (SQ) algorithms.

Def: an SQ algorithm [Kearns98] accesses the input distribution only indirectly from noisy
expectations. It can query the distribution with any bounded function 𝑓: ℝ𝑛→[-1,1], and receive a
noisy version of 𝔼[𝑓(𝑥)], instead of getting individual samples.

- can be seen as an abstraction capturing a wide range of algorithms that operate only with
distributional quantities rather than per-sample quantities, e.g., full-batch gradient descent.

SQ-hardness of distinguishing Gaussian baguettes [BubeckLeePriceRazenshteyn19]

Thm [BLPR19]: Similarly, still SQ-hard when you have multiple discrete
directions (Gaussian “baguettes”).

Implications of hardness of distinguishing Gaussian pancakes

1. Improperly learning (= density estimation) mixtures of Gaussians is hard
for SQ algorithms, even when the components are nearly
non-overlapping and parameter recovery is info-theoretically possible
with poly(𝑛) samples [DKS17].

2. Learning robust* classifiers can be hard, even when they exist and are
learnable info-theoretically [BLPR19].

* Robust in the sense that the classifier is not vulnerable to small, imperceptible input perturbations.

Open question by [BLPR19]:

Is detecting the pancake structure computationally hard for any algorithm?

We resolve this here in the affirmative.

Adversarial examples: why learning robust classifiers is important

[BLPR19] suggests that even though robust classification might be possible
information-theoretically, learning a robust classifier might be computationally
intractable (in theory).

traffic light (97%)

𝓁2-norm=10

traffic light (96%)

𝓁∞-norm=0.05

traffic light (80%)

𝓁0-norm=5000

Egyptian cat (28%)

Original

Figure from [ShafahiHuangStuderFeiziGoldstein20]

Prove that distinguishing the following two distributions (in high dimension) is
computationally hard.

Our goal: distinguishing hCLWE

vs

Gaussian pancakes Standard Gaussian

hCLWE (aka Gaussian pancakes)
𝛾 : pancake (inverse) spacing

𝛽 : pancake (relative) thickness

1/𝛾

𝛽/𝛾

Our result: hardness of Gaussian pancakes

Distinguishing Gaussian pancakes with spacing
1/𝛾 less than 𝑛-1/2 from the standard Gaussian
with accuracy slightly (inverse-polynomially)
better than chance is computationally hard,
unless there are polynomial-time quantum
algorithms for certain fundamental worst-case
lattice problems.

* 𝛽 can be any inverse polynomial less than 1.

1/𝛾

𝛽/𝛾

Implications of our hardness result

Assuming some worst-case lattice problems cannot be solved by
polynomial-time quantum algorithms ...

- Distinguishing Gaussian pancakes/baguettes from the standard Gaussian is hard
for any polynomial-time algorithm. In fact, hard for baguettes with O(𝑛) many
discrete directions.

- Improperly learning mixtures of Gaussians is computationally hard even when the
mixture components are nearly non-overlapping.

Hardness of improper learning is generally difficult to show because there is no
restriction on what hypothesis the learning algorithm can output.

Worst-case to average-case reduction: these are average-case hardness results
based on worst-case hardness assumptions. Only a few hardness of improper learning
results are based on worst-case hardness. [KlivansSherstov06].

Hardness of (h)CLWE: proof overview

Hardness of (h)CLWE: proof overview

We prove a stronger hardness result, for a relaxed problem: (inhomogeneous) CLWE.

Def. (𝛽,𝛾)-CLWE: To decide whether the given samples of
the form (𝐲,𝑧) with 𝐲 ~ 𝒩(0,𝐼𝑛) have either:

(1) periodic “colors” 𝑧 along some secret direction 𝐰 ∈ ℝ𝑛,
i.e., 𝑧 = (𝛾⟨𝐲,𝐰⟩ + 𝑒) mod 1 where 𝑒 ~ 𝒩(0,𝛽), or

(2) uniformly random “colors” 𝑧 ∈ [0,1).

hCLWE samples are roughly CLWE samples with 𝑧 = 0.

We show the hardness results by reducing worst-case
lattice problems to CLWE, and reducing CLWE to hCLWE
via rejection sampling by 𝑧 ≈ 0.

Hardness of (h)CLWE: proof overview hCLWE

CLWE

Lattices and lattice problems

For a basis {𝐛1, …, 𝐛𝑛} of ℝ𝑛, the lattice
𝐿 generated by the basis is the set of
all integer linear combinations of the
basis vectors.

The minimum distance 𝜆1(𝐿) is the
shortest length of nonzero lattice
vectors in lattice 𝐿.

The Shortest Vector Problem (SVP): To
find a lattice vector with the shortest
length 𝜆1(𝐿) for a given lattice 𝐿.

Hardness based on SVP

Def. Promise version of SVP (𝜑-GapSVP): Given a lattice 𝐿, the goal is to decide
whether 𝜆1(𝐿) ≤ 1 or 𝜆1(𝐿) > 𝜑.

𝜑-GapSVP is believed to be hard (even quantumly) for any polynomial 𝜑=𝜑(𝑛).
‣ Fastest known algorithms (for some small poly 𝜑) run in time 2O(𝑛).
‣ NP-hard for any constant 𝜑. [Micciancio01,Khot05]

[Regev05,PeikertRegevStephens-Davidowitz17] show a (quantum) reduction
from O(𝑛/𝛼)-GapSVP to (𝛼,𝑞)-LWE (for large enough 𝛼⋅𝑞).
We follow the same framework and reduce O(𝑛/𝛽)-GapSVP to (𝛽,𝛾)-CLWE,
for poly 𝛾 ≥ 2𝑛1/2 and inverse-poly 𝛽.

Learning with Errors (LWE)

Def. (𝛼,𝑞)-LWE: To decide whether the given samples of the form (𝐚,𝑏) with
𝐚 ~ (ℤ/𝑞ℤ)𝑛 have either:

(1) periodic 𝑏 along some secret direction 𝐬 ∈ (ℤ/𝑞ℤ)𝑛, i.e., 𝑏 = (⟨𝐚,𝐬⟩/𝑞 + 𝑒) mod 1
where 𝑒 ~ 𝒩(0,𝛼), or

(2) uniformly random 𝑏 ∈ [0,1).

Remark: By discretizing with 𝑏’ = ⌊𝑞⋅𝑏⌋ ∈ ℤ/𝑞ℤ, the search version (to find
secret 𝐬 given periodic 𝑏) can be viewed as solving system of linear equations
with errors over ℤ/𝑞ℤ, of the form ⟨𝐚,𝐬⟩ ≈ 𝑏’.

Analogies between CLWE and LWE
(𝛽,𝛾)-CLWE (𝛼,𝑞)-LWE

secret 𝐰 ∈ ℝ𝑛, ǁ𝐰ǁ = 1 secret 𝐬 ∈ (ℤ/𝑞ℤ)𝑛

samples (𝐲,𝑧) samples (𝐚,𝑏)

𝐲 ~ 𝒩(0,𝐼𝑛) 𝐚 ~ (ℤ/𝑞ℤ)𝑛

𝑧 = (𝛾⟨𝐲,𝐰⟩ + 𝑒) mod 1
where 𝑒 ~ 𝒩(0,𝛽)

𝑏 = (⟨𝐚,𝐬⟩/𝑞 + 𝑒) mod 1
where 𝑒 ~ 𝒩(0,𝛼)

reduce from O(𝑛/𝛽)-GapSVP
for 𝛾 ≥ O(𝑛1/2)

reduce from O(𝑛/𝛼)-GapSVP
for 𝛼⋅𝑞 ≥ O(𝑛1/2)

noise rate 𝛽 noise rate 𝛼

inverse period 𝛾 𝛼⋅𝑞

Other results related to CLWE

Noise is necessary for hardness.
- The Lenstra-Lenstra-Lovász (LLL) algorithm can efficiently solve noiseless
 CLWE (or even CLWE with exponentially small noise [SongZadikBruna21]).
- Analogous to efficiently solving noiseless LWE with Gaussian elimination.
- Bypasses SQ-hardness since LLL inspects samples individually.

Subexponential algorithms for hCLWE with spacing 𝛾 = o(𝑛1/2).
- Simply compute covariance using exp(𝛾2) many samples.
- Analogous to the Arora-Ge algorithm for LWE [AroraGe11].

Follow-up work

Hardness of learning “cosine neurons” [SZB21]

Observes that CLWE hardness also implies hardness of learning high-dimensional cosines (“cosine
neurons”) of the form f(𝐱)=cos(2𝜋𝛾⟨𝐰,𝐱⟩) over the Gaussian input distribution if small
(inverse-polynomial) label noise is added.

Previous work: Hardness of learning cosine neurons by SQ/gradient-based algorithms.
[SongVempalaWilmesXie17,Shamir18]

Cosine neurons can be approximated (in the 𝓁2-norm) by poly-width one-hidden-layer ReLU
networks if the input distribution is Gaussian. Hence, seemingly simple (NN-realizable) supervised
learning tasks can be hard against a restricted class of algorithms. [SZB21] shows that the hardness
applies to any polynomial-time algorithm.

Together with our result on hardness of learning Gaussian mixtures, this shows the versatility of
CLWE/hCLWE as a primitive for showing hardness of improper learning.

Thank you!

