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Preliminaries: Lattices

Lattice L ⊂ Rd : set of all integer linear combinations of a basis.
Basis B ∈ Rd×n: rank n, dimension d , L = B · Zn.

Minimum distance (in `p) λ
(p)
1 (L): smallest `p norm in L \ {0}.
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Preliminaries: Lattice Problems

Lattice Problems and post-quantum cryptography:

I Cryptography based on number theory would be broken by
attacks with quantum.

I People believe lattice problems have no quantum solution, and
thus lattice-based cryptosystems are quantum-secure.

Desired hardness of lattice problems:

I Good news: worst-case hardness of lattice problems leads to
average-case security of the cryptosystems.

I Need precise fine-grained hardness of lattice problems for
setting parameters of the cryptosystems confidently.

I Cryptosystems are based on problems unlikely to be NP-hard,
while state-of-the-art attacks reduce to problems where we
can show NP-hardness / fine-grained hardness.
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Preliminaries: Lattice Problems

γ-approximate Shortest Vector Problem in `p (SVPp,γ)

Instance: lattice L.
Goal: decide whether λ

(p)
1 (L) ≤ 1 or λ

(p)
1 (L) > γ.

Hardness results and algorithms for SVPp,γ (in previous works):

γ
1, exact
[AS18]

2n/Cp -hard

any const
[Kho05]

NP-hard

large const
[EV20]

20.802n alg

n1/2+c

[ALSD21]

(for p = 2)
2n/(2+f (c)) alg

exp(n)
[LLL82]

easy
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Preliminaries: Lattice Problems

Bounded Distance Decoding in `p
with relative distance α (BDDp,α)

Instance: lattice L ⊂ Rd and target t ∈ Rd

satisfying distp(t,L) ≤ α · λ(p)
1 (L).

Goal: find closest lattice vector to t in L.

(p = 2, α = 0.6)



Preliminaries: Lattice Problems

BDDp,α

Instance: L, t satisfying distp(t,L) ≤ α · λ(p)
1 (L).

Goal: find closest lattice vector to t in L.

Smaller α corresponds to stronger promise and easier problem.

Hardness results for BDDp,α (in previous works [LLM06, BP20]):

NP-hard

fine-grained 2Ω(n) -hard

fine-grained 2n/3 -hard
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Preliminaries: Exponential Time Hypothesis

Standard approach to fine-grained hardness: Exponential Time
Hypothesis (ETH).

ETH variants:

I ETH: 3-SAT cannot be solved in 2o(n) time.

I Strong ETH (SETH): k-SAT cannot be solved in 2(1−ε)n time.

I Gap-ETH & Gap-SETH: Gap-3-SAT1−δ,1 & Gap-k-SAT1−δ,1.

I Randomized/non-uniform variants: rand/non-unif time.

Assumption strength:

I plain ≤ gap;

I plain ≤ randomized ≤ non-uniform.



Preliminaries: Exponential Time Hypothesis

Standard approach to fine-grained hardness: Exponential Time
Hypothesis (ETH).

ETH variants:

I ETH: 3-SAT cannot be solved in 2o(n) time.

I Strong ETH (SETH): k-SAT cannot be solved in 2(1−ε)n time.

I Gap-ETH & Gap-SETH: Gap-3-SAT1−δ,1 & Gap-k-SAT1−δ,1.

I Randomized/non-uniform variants: rand/non-unif time.

Assumption strength:

I plain ≤ gap;

I plain ≤ randomized ≤ non-uniform.



Preliminaries: Exponential Time Hypothesis

Standard approach to fine-grained hardness: Exponential Time
Hypothesis (ETH).

ETH variants:

I ETH: 3-SAT cannot be solved in 2o(n) time.

I Strong ETH (SETH): k-SAT cannot be solved in 2(1−ε)n time.

I Gap-ETH & Gap-SETH: Gap-3-SAT1−δ,1 & Gap-k-SAT1−δ,1.

I Randomized/non-uniform variants: rand/non-unif time.

Assumption strength:

I plain ≤ gap;

I plain ≤ randomized ≤ non-uniform.



Preliminaries: Exponential Time Hypothesis

Standard approach to fine-grained hardness: Exponential Time
Hypothesis (ETH).

ETH variants:

I ETH: 3-SAT cannot be solved in 2o(n) time.

I Strong ETH (SETH): k-SAT cannot be solved in 2(1−ε)n time.

I Gap-ETH & Gap-SETH: Gap-3-SAT1−δ,1 & Gap-k-SAT1−δ,1.

I Randomized/non-uniform variants: rand/non-unif time.

Assumption strength:

I plain ≤ gap;

I plain ≤ randomized ≤ non-uniform.



Our Results: ETH-Type Hardness of BDD

1. BDDp,α cannot be solved in 2o(n) time for any p ∈ [1,∞) and
α > αkn ≈ 0.98491, under non-unif Gap-ETH.

2. BDDp,α cannot be solved in 2o(n) time for any p ∈ [1,∞) and

α > α‡p, under rand Gap-ETH.

I Previous bound [BP20]: α∗p (with norm embed), under rand ETH.
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Our Results: SETH-Type Hardness of BDD

3. BDDp,α cannot be solved in 2n/C time for any p ∈ [1,∞),

p /∈ 2Z, C > 1, and α > α†p,C , under non-unif Gap-SETH.

I Previous bound [BP20]: α∗p,C , under rand SETH.

αp,50 ∼ 200
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Our Results: SETH-Type Hardness of SVP

4. For any p > p0 ≈ 2.1397, p /∈ 2Z and C > Cp,
SVPp,γ cannot be solved in 2n/C time for some constant
γ > 1, under randomized Gap-SETH.

I Previous result [AS18]: γ = 1, under rand SETH.
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Proof Starting Point: Gap-(S)ETH-Hardness of CVP′

γ-approximate Closest Vector Problem in `p (CVPp,γ)

Instance: lattice L ⊂ Rd with basis B and target t ∈ Rd .
Goal: decide whether distp(t,L) ≤ 1 or distp(t,L) > γ.

Restriction CVP′p,γ : further require distp(t,B · {0, 1}n) ≤ 1 for the
case distp(t,L) ≤ 1.
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Proof Starting Point: Gap-(S)ETH-Hardness of CVP′

Hardness results for CVP′p,γ :

I [BGS17] Under rand Gap-ETH,
CVP′p,γ(p) cannot be solved in 2o(n) time.

I [ABGS21] Under rand Gap-SETH, (p /∈ 2Z,)
CVP′p,γ(p,ε) cannot be solved in 2(1−ε)n time.

Goal: reduce CVP′p,γ in rank n′ to BDD/SVP in rank n = Cn′.

I If C depends on γ then we get hardness for 2o(n) time.

I If C > 1 is free then we get hardness for 2n/C time.
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Reduction to BDD

CVP′ instance
(B ′, t ′) in rank n′

“Locally dense” gadget
(B†, t†) in rank n† = n − n′

Transformation

B =

B ′ 0
In′ 0
0 B†

 , t =

 t ′
1
2 1n′

t†



Sparsification

BDD instance in rank n

Previous works about BDD
also follow the same workflow,
while we give a unified framework.
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Rephrasing BDD with Point-Counting

Recall (search) BDDp,α: given L, t with distp(t,L) ≤ α · λ(p)
1 (L),

find closest lattice vector to t in L.

Decisional BDDp,α: given L, t and distance r , decide whether

I distp(t,L) ≤ r and λ
(p)
1 (L) ≥ r/α, or

I distp(t,L) > r .

In terms of point-counting: decide whether

I |Bp(r ; t) ∩ L| ≥ 1 and |B◦p(r/α) ∩ (L \ {0})| = 0, or

I |Bp(r ; t) ∩ L| = 0.

Relaxation (A,G )-BDDp,α: decide whether

I “(good) close” count ≥ G and “short” count ≤ A, or

I “annoying close” count ≤ A.

(Decisional BDD is just (0, 1)-BDD.)
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Lattice Sparsification

Sparsification algorithm: given lattice L and prime index q,
sample sublattice L′ ⊂ L such that for any1 finite set S ⊂ L,
|S ∩ L′| concentrates around |S |/q.

(q = 3)

1S needs to satisfy certain technical conditions.



Lattice Sparsification

Sparsification algorithm: sample sublattice L′ ⊂ L such that
|S ∩ L′| concentrates around |S |/q.

If G � A, say G ≥ 400A, then (A,G )-BDDp,α reduces to
decisional BDDp,α by sparsification with index q ≈ 20A.

New goal: reduce CVP′ to (A,G )-BDD with G � A.
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Transforming CVP′ Instances

The transformation takes as input CVP′p,γ instance (B ′, t ′) and

parameters B†, t†, r , s, and outputs (A,G )-BDDp,α instance:

B =

sB ′ 0
In′ 0
0 B†

 , t =

 st ′
1
2 1n′

t†

 , r .

For CVP′ YES instance:

I Promise: distp(t ′,B ′x) ≤ 1 for some x ∈ {0, 1}n′ .
I “Short” count: |B◦p(r/α) ∩ L| ≤ |B◦p(r/α) ∩ (Zn′ ⊕ L†)|.
I “Close” count: |Bp(r ; t) ∩ L| ≥ |Bp(r − s − n′/2; t†) ∩ L†|.2

2The arithmetic of the distances here is showcased for `1, and should be
(rp − sp − n′/2p)1/p for general `p. We will continue to simplify this way in the
remaining slides.
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I “Annoying close” count:

|Bp(r ; t) ∩ L| ≤ |B◦p(r − γs;
( 1

2 1n′

t†

)
) ∩ (Zn′ ⊕ L†)|.

Putting together, for G � A, we want:

|Bp(r − s − n′/2; t†) ∩ L†| � max
{
|B◦p(r/α) ∩ (Zn′ ⊕ L†)|,

|B◦p(r − γs;
( 1

2 1n′
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Locally Dense Gadgets

Desired property (first consider the “short” term):

|Bp(r − s − n′/2; t†) ∩ L†| � |B◦p(r/α) ∩ (Zn′ ⊕ L†)| .

Observations:

I |B◦p(r/α) ∩ (Zn′ ⊕ L†)| ≤ |B◦p(r/α) ∩ Zn′ | · |B◦p(r/α) ∩ L†|.
I |B◦p(ρ) ∩ Zn′ | is exponential in n′ (for sufficiently large ρ).

Hence we want the gadget to be locally dense, i.e., to have
exponentially more “close” than “short” lattice vectors:

|Bp(r − s − n′/2; t†) ∩ L†| ≥ νn† |B◦p(r/α) ∩ L†| .

(Similarly, we also want the locally dense gadget to have
exponentially more “close” than “annoying close” lattice vectors.)
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Main Theorem for BDD

Main theorem for BDD, informal & simplified

If there exist locally dense gadgets (B†, t†) satisfying3

|Bp(αG ; t†) ∩ L†| ≥ νn† |B◦p(1) ∩ L†| ,

then for BDDp,α:
under Gap-ETH,4 it cannot be solved in 2o(n) time for all α > αG ;
under Gap-SETH, it cannot be solved in 2n/C time for all

α > αG +
1

fp(νC−1)
.

(Here fp(·) is increasing and has lim
x→1

fp(x) = 0, lim
x→∞

fp(x) =∞.)

3The locally dense gadget needs to satisfy another similar property involving
“annoying close” count, which contains similar parameters αA, ν

′ and they also
(substantially) affect the bounds on α.

4Whether we need rand/non-unif Gap-(S)ETH depends on whether the
gadgets can be efficiently constructed.
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Instantiating the Main Theorem: Result 3

Lattice kissing number τL
n : maxL|Bp(1) ∩ (L \ {0})| for rank-n

lattice L with λ
(p)
1 (L) = 1.

[Vlă19]: for p = 2, τL
n ≥ 2cknn−o(n), where ckn ≥ 0.02194.

Gadgets (in `2): exponential kissing number lattice L†, t† = 0.
Parameters: αG = 1, ν = 2ckn .

Using norm embeddings, we also get gadgets in all `p in cost of
slightly larger αG = 1 + o(1). Then we have our Result 3: BDDp,α

cannot be solved in 2n/C time for all

α > α†p,C := 1 +
1

fp(2ckn(C−1))
.
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Instantiating the Main Theorem: Result 1

To decrease αG for the exponential kissing number gadgets:

I Move t† away from 0 by δ in random direction.

I Set αG = 1− ε for ε < δ.

I Nevertheless this decreases the “close” count as well, by an
expected factor of area(Sn−1 ∩ Bp(1− ε; t†))/ area(Sn−1),
where Sn−1 is the unit sphere.

I ([AS18] also uses this idea while we have tighter loss factor.)

1

δ 1− ε

Taking care of the tradeoff between the “close” count and δ, ε, we
manage to get αG approaching 2−ckn , which gives our Result 1:
BDDp,α cannot be solved in 2o(n) time for all α > αkn := 2−ckn .
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Instantiating the Main Theorem: Result 2

Gadgets from integer lattices: L† = Zn/ρ, t† = (t/ρ) · 1n.
Minimize αG over ρ, t subject to

|Bp(αGρ; t · 1n) ∩ Zn| > |B◦p(ρ) ∩ Zn| .

Suppose α‡p is the optimum. Then we have our Result 2: BDDp,α

cannot be solved in 2o(n) time for all α > α‡p.

I |Bp(a · n; t · 1n) ∩ Zn| can be approximated by a numerical
function βp,t(a)n to within a 2o(n) factor.

I We find that empirically the optimizer for t is always 1/2.

I [BP20] does no optimization and fix t = 1/2, ρ = n/(2αG ).
As a result, our Result 2 is always no weaker than [BP20].
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Reduction to SVP

Overview:

I Similar to the case of BDD, the reduction consists of the
(same!) transformation and the sparsification, as well as a
standard technique, Kannan’s embedding, at the end.

I The transformation maps CVP′p,γ instances to instances of a
similar intermediate problem (A,G )-CVPp,γ′ .

I [AS18] has the same workflow, while we have a more general
transformation with a larger parameter space, and we can set
parameters working for CVP′p,γ other than CVP′p,1.

I The same gadgets from integer lattices as Result 2 are used.
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