
Improved Hardness of BDD and SVP
under Gap-(S)ETH

Yi Tang
Joint work with Huck Bennett and Chris Peikert

September 16, 2021
(last updated on January 31, 2022)

Preliminaries: Lattices

Lattice L ⊂ Rd : set of all integer linear combinations of a basis.
Basis B ∈ Rd×n: rank n, dimension d , L = B · Zn.

Minimum distance (in `p) λ
(p)
1 (L): smallest `p norm in L \ {0}.

Preliminaries: Lattices

Lattice L ⊂ Rd : set of all integer linear combinations of a basis.
Basis B ∈ Rd×n: rank n, dimension d , L = B · Zn.

Minimum distance (in `p) λ
(p)
1 (L): smallest `p norm in L \ {0}.

Preliminaries: Lattice Problems

Lattice Problems and post-quantum cryptography:

I Cryptography based on number theory would be broken by
attacks with quantum.

I People believe lattice problems have no quantum solution, and
thus lattice-based cryptosystems are quantum-secure.

Desired hardness of lattice problems:

I Good news: worst-case hardness of lattice problems leads to
average-case security of the cryptosystems.

I Need precise fine-grained hardness of lattice problems for
setting parameters of the cryptosystems confidently.

I Cryptosystems are based on problems unlikely to be NP-hard,
while state-of-the-art attacks reduce to problems where we
can show NP-hardness / fine-grained hardness.

Preliminaries: Lattice Problems

Lattice Problems and post-quantum cryptography:

I Cryptography based on number theory would be broken by
attacks with quantum.

I People believe lattice problems have no quantum solution, and
thus lattice-based cryptosystems are quantum-secure.

Desired hardness of lattice problems:

I Good news: worst-case hardness of lattice problems leads to
average-case security of the cryptosystems.

I Need precise fine-grained hardness of lattice problems for
setting parameters of the cryptosystems confidently.

I Cryptosystems are based on problems unlikely to be NP-hard,
while state-of-the-art attacks reduce to problems where we
can show NP-hardness / fine-grained hardness.

Preliminaries: Lattice Problems

Lattice Problems and post-quantum cryptography:

I Cryptography based on number theory would be broken by
attacks with quantum.

I People believe lattice problems have no quantum solution, and
thus lattice-based cryptosystems are quantum-secure.

Desired hardness of lattice problems:

I Good news: worst-case hardness of lattice problems leads to
average-case security of the cryptosystems.

I Need precise fine-grained hardness of lattice problems for
setting parameters of the cryptosystems confidently.

I Cryptosystems are based on problems unlikely to be NP-hard,
while state-of-the-art attacks reduce to problems where we
can show NP-hardness / fine-grained hardness.

Preliminaries: Lattice Problems

Lattice Problems and post-quantum cryptography:

I Cryptography based on number theory would be broken by
attacks with quantum.

I People believe lattice problems have no quantum solution, and
thus lattice-based cryptosystems are quantum-secure.

Desired hardness of lattice problems:

I Good news: worst-case hardness of lattice problems leads to
average-case security of the cryptosystems.

I Need precise fine-grained hardness of lattice problems for
setting parameters of the cryptosystems confidently.

I Cryptosystems are based on problems unlikely to be NP-hard,
while state-of-the-art attacks reduce to problems where we
can show NP-hardness / fine-grained hardness.

Preliminaries: Lattice Problems

γ-approximate Shortest Vector Problem in `p (SVPp,γ)

Instance: lattice L.
Goal: decide whether λ

(p)
1 (L) ≤ 1 or λ

(p)
1 (L) > γ.

Hardness results and algorithms for SVPp,γ (in previous works):

γ
1, exact
[AS18]

2n/Cp -hard

any const
[Kho05]

NP-hard

large const
[EV20]

20.802n alg

n1/2+c

[ALSD21]

(for p = 2)
2n/(2+f (c)) alg

exp(n)
[LLL82]

easy

Preliminaries: Lattice Problems

γ-approximate Shortest Vector Problem in `p (SVPp,γ)

Instance: lattice L.
Goal: decide whether λ

(p)
1 (L) ≤ 1 or λ

(p)
1 (L) > γ.

Hardness results and algorithms for SVPp,γ (in previous works):

γ
1, exact
[AS18]

2n/Cp -hard

any const
[Kho05]

NP-hard

large const
[EV20]

20.802n alg

n1/2+c

[ALSD21]

(for p = 2)
2n/(2+f (c)) alg

exp(n)
[LLL82]

easy

Preliminaries: Lattice Problems

Bounded Distance Decoding in `p
with relative distance α (BDDp,α)

Instance: lattice L ⊂ Rd and target t ∈ Rd

satisfying distp(t,L) ≤ α · λ(p)
1 (L).

Goal: find closest lattice vector to t in L.

(p = 2, α = 0.6)

Preliminaries: Lattice Problems

BDDp,α

Instance: L, t satisfying distp(t,L) ≤ α · λ(p)
1 (L).

Goal: find closest lattice vector to t in L.

Smaller α corresponds to stronger promise and easier problem.

Hardness results for BDDp,α (in previous works [LLM06, BP20]):

NP-hard

fine-grained 2Ω(n) -hard

fine-grained 2n/3 -hard

2 3 4 5 6
p

0.6

0.8

1.0

1.2

1.4

α

Preliminaries: Lattice Problems

BDDp,α

Instance: L, t satisfying distp(t,L) ≤ α · λ(p)
1 (L).

Goal: find closest lattice vector to t in L.

Smaller α corresponds to stronger promise and easier problem.

Hardness results for BDDp,α (in previous works [LLM06, BP20]):

NP-hard

fine-grained 2Ω(n) -hard

fine-grained 2n/3 -hard

2 3 4 5 6
p

0.6

0.8

1.0

1.2

1.4

α

Preliminaries: Exponential Time Hypothesis

Standard approach to fine-grained hardness: Exponential Time
Hypothesis (ETH).

ETH variants:

I ETH: 3-SAT cannot be solved in 2o(n) time.

I Strong ETH (SETH): k-SAT cannot be solved in 2(1−ε)n time.

I Gap-ETH & Gap-SETH: Gap-3-SAT1−δ,1 & Gap-k-SAT1−δ,1.

I Randomized/non-uniform variants: rand/non-unif time.

Assumption strength:

I plain ≤ gap;

I plain ≤ randomized ≤ non-uniform.

Preliminaries: Exponential Time Hypothesis

Standard approach to fine-grained hardness: Exponential Time
Hypothesis (ETH).

ETH variants:

I ETH: 3-SAT cannot be solved in 2o(n) time.

I Strong ETH (SETH): k-SAT cannot be solved in 2(1−ε)n time.

I Gap-ETH & Gap-SETH: Gap-3-SAT1−δ,1 & Gap-k-SAT1−δ,1.

I Randomized/non-uniform variants: rand/non-unif time.

Assumption strength:

I plain ≤ gap;

I plain ≤ randomized ≤ non-uniform.

Preliminaries: Exponential Time Hypothesis

Standard approach to fine-grained hardness: Exponential Time
Hypothesis (ETH).

ETH variants:

I ETH: 3-SAT cannot be solved in 2o(n) time.

I Strong ETH (SETH): k-SAT cannot be solved in 2(1−ε)n time.

I Gap-ETH & Gap-SETH: Gap-3-SAT1−δ,1 & Gap-k-SAT1−δ,1.

I Randomized/non-uniform variants: rand/non-unif time.

Assumption strength:

I plain ≤ gap;

I plain ≤ randomized ≤ non-uniform.

Preliminaries: Exponential Time Hypothesis

Standard approach to fine-grained hardness: Exponential Time
Hypothesis (ETH).

ETH variants:

I ETH: 3-SAT cannot be solved in 2o(n) time.

I Strong ETH (SETH): k-SAT cannot be solved in 2(1−ε)n time.

I Gap-ETH & Gap-SETH: Gap-3-SAT1−δ,1 & Gap-k-SAT1−δ,1.

I Randomized/non-uniform variants: rand/non-unif time.

Assumption strength:

I plain ≤ gap;

I plain ≤ randomized ≤ non-uniform.

Our Results: ETH-Type Hardness of BDD

1. BDDp,α cannot be solved in 2o(n) time for any p ∈ [1,∞) and
α > αkn ≈ 0.98491, under non-unif Gap-ETH.

2. BDDp,α cannot be solved in 2o(n) time for any p ∈ [1,∞) and

α > α‡p, under rand Gap-ETH.

I Previous bound [BP20]: α∗p (with norm embed), under rand ETH.

αp
* +NE

αp
‡

αkn

2.0 2.1 2.2 2.3 2.4 2.5
p

0.95

1.00

1.05

α

Our Results: ETH-Type Hardness of BDD

1. BDDp,α cannot be solved in 2o(n) time for any p ∈ [1,∞) and
α > αkn ≈ 0.98491, under non-unif Gap-ETH.

2. BDDp,α cannot be solved in 2o(n) time for any p ∈ [1,∞) and

α > α‡p, under rand Gap-ETH.

I Previous bound [BP20]: α∗p (with norm embed), under rand ETH.

αp
* +NE

αp
‡

αkn

2.0 2.1 2.2 2.3 2.4 2.5
p

0.95

1.00

1.05

α

Our Results: ETH-Type Hardness of BDD

1. BDDp,α cannot be solved in 2o(n) time for any p ∈ [1,∞) and
α > αkn ≈ 0.98491, under non-unif Gap-ETH.

2. BDDp,α cannot be solved in 2o(n) time for any p ∈ [1,∞) and

α > α‡p, under rand Gap-ETH.

I Previous bound [BP20]: α∗p (with norm embed), under rand ETH.

αp
* +NE

αp
‡

αkn

2.0 2.1 2.2 2.3 2.4 2.5
p

0.95

1.00

1.05

α

Our Results: SETH-Type Hardness of BDD

3. BDDp,α cannot be solved in 2n/C time for any p ∈ [1,∞),

p /∈ 2Z, C > 1, and α > α†p,C , under non-unif Gap-SETH.

I Previous bound [BP20]: α∗p,C , under rand SETH.

αp,50 ∼ 200
*

αp,50
†

αp,100
†

αp,200
†

1.5 2.0 2.5 3.0
p

1.0

1.2

1.4

1.6

1.8

2.0

2.2

α

Our Results: SETH-Type Hardness of BDD

3. BDDp,α cannot be solved in 2n/C time for any p ∈ [1,∞),

p /∈ 2Z, C > 1, and α > α†p,C , under non-unif Gap-SETH.

I Previous bound [BP20]: α∗p,C , under rand SETH.

αp,50 ∼ 200
*

αp,50
†

αp,100
†

αp,200
†

1.5 2.0 2.5 3.0
p

1.0

1.2

1.4

1.6

1.8

2.0

2.2

α

Our Results: SETH-Type Hardness of SVP

4. For any p > p0 ≈ 2.1397, p /∈ 2Z and C > Cp,
SVPp,γ cannot be solved in 2n/C time for some constant
γ > 1, under randomized Gap-SETH.

I Previous result [AS18]: γ = 1, under rand SETH.

Our Results: SETH-Type Hardness of SVP

4. For any p > p0 ≈ 2.1397, p /∈ 2Z and C > Cp,
SVPp,γ cannot be solved in 2n/C time for some constant
γ > 1, under randomized Gap-SETH.

I Previous result [AS18]: γ = 1, under rand SETH.

Proof Starting Point: Gap-(S)ETH-Hardness of CVP′

γ-approximate Closest Vector Problem in `p (CVPp,γ)

Instance: lattice L ⊂ Rd with basis B and target t ∈ Rd .
Goal: decide whether distp(t,L) ≤ 1 or distp(t,L) > γ.

Restriction CVP′p,γ : further require distp(t,B · {0, 1}n) ≤ 1 for the
case distp(t,L) ≤ 1.

Proof Starting Point: Gap-(S)ETH-Hardness of CVP′

γ-approximate Closest Vector Problem in `p (CVPp,γ)

Instance: lattice L ⊂ Rd with basis B and target t ∈ Rd .
Goal: decide whether distp(t,L) ≤ 1 or distp(t,L) > γ.

Restriction CVP′p,γ : further require distp(t,B · {0, 1}n) ≤ 1 for the
case distp(t,L) ≤ 1.

Proof Starting Point: Gap-(S)ETH-Hardness of CVP′

Hardness results for CVP′p,γ :

I [BGS17] Under rand Gap-ETH,
CVP′p,γ(p) cannot be solved in 2o(n) time.

I [ABGS21] Under rand Gap-SETH, (p /∈ 2Z,)
CVP′p,γ(p,ε) cannot be solved in 2(1−ε)n time.

Goal: reduce CVP′p,γ in rank n′ to BDD/SVP in rank n = Cn′.

I If C depends on γ then we get hardness for 2o(n) time.

I If C > 1 is free then we get hardness for 2n/C time.

Proof Starting Point: Gap-(S)ETH-Hardness of CVP′

Hardness results for CVP′p,γ :

I [BGS17] Under rand Gap-ETH,
CVP′p,γ(p) cannot be solved in 2o(n) time.

I [ABGS21] Under rand Gap-SETH, (p /∈ 2Z,)
CVP′p,γ(p,ε) cannot be solved in 2(1−ε)n time.

Goal: reduce CVP′p,γ in rank n′ to BDD/SVP in rank n = Cn′.

I If C depends on γ then we get hardness for 2o(n) time.

I If C > 1 is free then we get hardness for 2n/C time.

Reduction to BDD

CVP′ instance
(B ′, t ′) in rank n′

“Locally dense” gadget
(B†, t†) in rank n† = n − n′

Transformation

B =

B ′ 0
In′ 0
0 B†

 , t =

 t ′
1
2 1n′

t†



Sparsification

BDD instance in rank n

Previous works about BDD
also follow the same workflow,
while we give a unified framework.

Reduction to BDD

CVP′ instance
(B ′, t ′) in rank n′

“Locally dense” gadget
(B†, t†) in rank n† = n − n′

Transformation

B =

B ′ 0
In′ 0
0 B†

 , t =

 t ′
1
2 1n′

t†



Sparsification

BDD instance in rank n

Previous works about BDD
also follow the same workflow,
while we give a unified framework.

Rephrasing BDD with Point-Counting

Recall (search) BDDp,α: given L, t with distp(t,L) ≤ α · λ(p)
1 (L),

find closest lattice vector to t in L.

Decisional BDDp,α: given L, t and distance r , decide whether

I distp(t,L) ≤ r and λ
(p)
1 (L) ≥ r/α, or

I distp(t,L) > r .

In terms of point-counting: decide whether

I |Bp(r ; t) ∩ L| ≥ 1 and |B◦p(r/α) ∩ (L \ {0})| = 0, or

I |Bp(r ; t) ∩ L| = 0.

Relaxation (A,G)-BDDp,α: decide whether

I “(good) close” count ≥ G and “short” count ≤ A, or

I “annoying close” count ≤ A.

(Decisional BDD is just (0, 1)-BDD.)

Rephrasing BDD with Point-Counting

Recall (search) BDDp,α: given L, t with distp(t,L) ≤ α · λ(p)
1 (L),

find closest lattice vector to t in L.

Decisional BDDp,α: given L, t and distance r , decide whether

I distp(t,L) ≤ r and λ
(p)
1 (L) ≥ r/α, or

I distp(t,L) > r .

In terms of point-counting: decide whether

I |Bp(r ; t) ∩ L| ≥ 1 and |B◦p(r/α) ∩ (L \ {0})| = 0, or

I |Bp(r ; t) ∩ L| = 0.

Relaxation (A,G)-BDDp,α: decide whether

I “(good) close” count ≥ G and “short” count ≤ A, or

I “annoying close” count ≤ A.

(Decisional BDD is just (0, 1)-BDD.)

Rephrasing BDD with Point-Counting

Recall (search) BDDp,α: given L, t with distp(t,L) ≤ α · λ(p)
1 (L),

find closest lattice vector to t in L.

Decisional BDDp,α: given L, t and distance r , decide whether

I distp(t,L) ≤ r and λ
(p)
1 (L) ≥ r/α, or

I distp(t,L) > r .

In terms of point-counting: decide whether

I |Bp(r ; t) ∩ L| ≥ 1 and |B◦p(r/α) ∩ (L \ {0})| = 0, or

I |Bp(r ; t) ∩ L| = 0.

Relaxation (A,G)-BDDp,α: decide whether

I “(good) close” count ≥ G and “short” count ≤ A, or

I “annoying close” count ≤ A.

(Decisional BDD is just (0, 1)-BDD.)

Rephrasing BDD with Point-Counting

Recall (search) BDDp,α: given L, t with distp(t,L) ≤ α · λ(p)
1 (L),

find closest lattice vector to t in L.

Decisional BDDp,α: given L, t and distance r , decide whether

I distp(t,L) ≤ r and λ
(p)
1 (L) ≥ r/α, or

I distp(t,L) > r .

In terms of point-counting: decide whether

I |Bp(r ; t) ∩ L| ≥ 1 and |B◦p(r/α) ∩ (L \ {0})| = 0, or

I |Bp(r ; t) ∩ L| = 0.

Relaxation (A,G)-BDDp,α: decide whether

I “(good) close” count ≥ G and “short” count ≤ A, or

I “annoying close” count ≤ A.

(Decisional BDD is just (0, 1)-BDD.)

Lattice Sparsification

Sparsification algorithm: given lattice L and prime index q,
sample sublattice L′ ⊂ L such that for any1 finite set S ⊂ L,
|S ∩ L′| concentrates around |S |/q.

(q = 3)

1S needs to satisfy certain technical conditions.

Lattice Sparsification

Sparsification algorithm: sample sublattice L′ ⊂ L such that
|S ∩ L′| concentrates around |S |/q.

If G � A, say G ≥ 400A, then (A,G)-BDDp,α reduces to
decisional BDDp,α by sparsification with index q ≈ 20A.

New goal: reduce CVP′ to (A,G)-BDD with G � A.

Lattice Sparsification

Sparsification algorithm: sample sublattice L′ ⊂ L such that
|S ∩ L′| concentrates around |S |/q.

If G � A, say G ≥ 400A, then (A,G)-BDDp,α reduces to
decisional BDDp,α by sparsification with index q ≈ 20A.

New goal: reduce CVP′ to (A,G)-BDD with G � A.

Transforming CVP′ Instances

The transformation takes as input CVP′p,γ instance (B ′, t ′) and

parameters B†, t†, r , s, and outputs (A,G)-BDDp,α instance:

B =

sB ′ 0
In′ 0
0 B†

 , t =

 st ′
1
2 1n′

t†

 , r .

For CVP′ YES instance:

I Promise: distp(t ′,B ′x) ≤ 1 for some x ∈ {0, 1}n′ .
I “Short” count: |B◦p(r/α) ∩ L| ≤ |B◦p(r/α) ∩ (Zn′ ⊕ L†)|.
I “Close” count: |Bp(r ; t) ∩ L| ≥ |Bp(r − s − n′/2; t†) ∩ L†|.2

2The arithmetic of the distances here is showcased for `1, and should be
(rp − sp − n′/2p)1/p for general `p. We will continue to simplify this way in the
remaining slides.

Transforming CVP′ Instances

The transformation takes as input CVP′p,γ instance (B ′, t ′) and

parameters B†, t†, r , s, and outputs (A,G)-BDDp,α instance:

B =

sB ′ 0
In′ 0
0 B†

 , t =

 st ′
1
2 1n′

t†

 , r .

For CVP′ YES instance:

I Promise: distp(t ′,B ′x) ≤ 1 for some x ∈ {0, 1}n′ .
I “Short” count: |B◦p(r/α) ∩ L| ≤ |B◦p(r/α) ∩ (Zn′ ⊕ L†)|.
I “Close” count: |Bp(r ; t) ∩ L| ≥ |Bp(r − s − n′/2; t†) ∩ L†|.2

2The arithmetic of the distances here is showcased for `1, and should be
(rp − sp − n′/2p)1/p for general `p. We will continue to simplify this way in the
remaining slides.

Transforming CVP′ Instances

The transformation takes as input CVP′p,γ instance (B ′, t ′) and

parameters B†, t†, r , s, and outputs (A,G)-BDDp,α instance:

B =

sB ′ 0
In′ 0
0 B†

 , t =

 st ′
1
2 1n′

t†

 , r .

For CVP′ YES instance:

I Promise: distp(t ′,B ′x) ≤ 1 for some x ∈ {0, 1}n′ .
I “Short” count: |B◦p(r/α) ∩ L| ≤ |B◦p(r/α) ∩ (Zn′ ⊕ L†)|.
I “Close” count: |Bp(r ; t) ∩ L| ≥ |Bp(r − s − n′/2; t†) ∩ L†|.2

2The arithmetic of the distances here is showcased for `1, and should be
(rp − sp − n′/2p)1/p for general `p. We will continue to simplify this way in the
remaining slides.

Transforming CVP′ Instances

The transformation takes as input CVP′p,γ instance (B ′, t ′) and

parameters B†, t†, r , s, and outputs (A,G)-BDDp,α instance:

B =

sB ′ 0
In′ 0
0 B†

 , t =

 st ′
1
2 1n′

t†

 , r .

For CVP′ YES instance:

I Promise: distp(t ′,B ′x) ≤ 1 for some x ∈ {0, 1}n′ .
I “Short” count: |B◦p(r/α) ∩ L| ≤ |B◦p(r/α) ∩ (Zn′ ⊕ L†)|.
I “Close” count: |Bp(r ; t) ∩ L| ≥ |Bp(r − s − n′/2; t†) ∩ L†|.2

2The arithmetic of the distances here is showcased for `1, and should be
(rp − sp − n′/2p)1/p for general `p. We will continue to simplify this way in the
remaining slides.

Transforming CVP′ Instances

The transformation outputs:

B =

sB ′ 0
In′ 0
0 B†

 , t =

 st ′
1
2 1n′

t†

 , r .

For CVP′ NO instance:

I Promise: distp(t ′,L′) > γ.

I “Annoying close” count:

|Bp(r ; t) ∩ L| ≤ |B◦p(r − γs;
(1

2 1n′

t†

)
) ∩ (Zn′ ⊕ L†)|.

Putting together, for G � A, we want:

|Bp(r − s − n′/2; t†) ∩ L†| � max
{
|B◦p(r/α) ∩ (Zn′ ⊕ L†)|,

|B◦p(r − γs;
(1

2 1n′

t†

)
) ∩ (Zn′ ⊕ L†)|

}
.

Transforming CVP′ Instances

The transformation outputs:

B =

sB ′ 0
In′ 0
0 B†

 , t =

 st ′
1
2 1n′

t†

 , r .

For CVP′ NO instance:

I Promise: distp(t ′,L′) > γ.

I “Annoying close” count:

|Bp(r ; t) ∩ L| ≤ |B◦p(r − γs;
(1

2 1n′

t†

)
) ∩ (Zn′ ⊕ L†)|.

Putting together, for G � A, we want:

|Bp(r − s − n′/2; t†) ∩ L†| � max
{
|B◦p(r/α) ∩ (Zn′ ⊕ L†)|,

|B◦p(r − γs;
(1

2 1n′

t†

)
) ∩ (Zn′ ⊕ L†)|

}
.

Transforming CVP′ Instances

The transformation outputs:

B =

sB ′ 0
In′ 0
0 B†

 , t =

 st ′
1
2 1n′

t†

 , r .

For CVP′ NO instance:

I Promise: distp(t ′,L′) > γ.

I “Annoying close” count:

|Bp(r ; t) ∩ L| ≤ |B◦p(r − γs;
(1

2 1n′

t†

)
) ∩ (Zn′ ⊕ L†)|.

Putting together, for G � A, we want:

|Bp(r − s − n′/2; t†) ∩ L†| � max
{
|B◦p(r/α) ∩ (Zn′ ⊕ L†)|,

|B◦p(r − γs;
(1

2 1n′

t†

)
) ∩ (Zn′ ⊕ L†)|

}
.

Locally Dense Gadgets

Desired property (first consider the “short” term):

|Bp(r − s − n′/2; t†) ∩ L†| � |B◦p(r/α) ∩ (Zn′ ⊕ L†)| .

Observations:

I |B◦p(r/α) ∩ (Zn′ ⊕ L†)| ≤ |B◦p(r/α) ∩ Zn′ | · |B◦p(r/α) ∩ L†|.
I |B◦p(ρ) ∩ Zn′ | is exponential in n′ (for sufficiently large ρ).

Hence we want the gadget to be locally dense, i.e., to have
exponentially more “close” than “short” lattice vectors:

|Bp(r − s − n′/2; t†) ∩ L†| ≥ νn† |B◦p(r/α) ∩ L†| .

(Similarly, we also want the locally dense gadget to have
exponentially more “close” than “annoying close” lattice vectors.)

Locally Dense Gadgets

Desired property (first consider the “short” term):

|Bp(r − s − n′/2; t†) ∩ L†| � |B◦p(r/α) ∩ (Zn′ ⊕ L†)| .

Observations:

I |B◦p(r/α) ∩ (Zn′ ⊕ L†)| ≤ |B◦p(r/α) ∩ Zn′ | · |B◦p(r/α) ∩ L†|.
I |B◦p(ρ) ∩ Zn′ | is exponential in n′ (for sufficiently large ρ).

Hence we want the gadget to be locally dense, i.e., to have
exponentially more “close” than “short” lattice vectors:

|Bp(r − s − n′/2; t†) ∩ L†| ≥ νn† |B◦p(r/α) ∩ L†| .

(Similarly, we also want the locally dense gadget to have
exponentially more “close” than “annoying close” lattice vectors.)

Locally Dense Gadgets

Desired property (first consider the “short” term):

|Bp(r − s − n′/2; t†) ∩ L†| � |B◦p(r/α) ∩ (Zn′ ⊕ L†)| .

Observations:

I |B◦p(r/α) ∩ (Zn′ ⊕ L†)| ≤ |B◦p(r/α) ∩ Zn′ | · |B◦p(r/α) ∩ L†|.
I |B◦p(ρ) ∩ Zn′ | is exponential in n′ (for sufficiently large ρ).

Hence we want the gadget to be locally dense, i.e., to have
exponentially more “close” than “short” lattice vectors:

|Bp(r − s − n′/2; t†) ∩ L†| ≥ νn† |B◦p(r/α) ∩ L†| .

(Similarly, we also want the locally dense gadget to have
exponentially more “close” than “annoying close” lattice vectors.)

Locally Dense Gadgets

Desired property (first consider the “short” term):

|Bp(r − s − n′/2; t†) ∩ L†| � |B◦p(r/α) ∩ (Zn′ ⊕ L†)| .

Observations:

I |B◦p(r/α) ∩ (Zn′ ⊕ L†)| ≤ |B◦p(r/α) ∩ Zn′ | · |B◦p(r/α) ∩ L†|.
I |B◦p(ρ) ∩ Zn′ | is exponential in n′ (for sufficiently large ρ).

Hence we want the gadget to be locally dense, i.e., to have
exponentially more “close” than “short” lattice vectors:

|Bp(r − s − n′/2; t†) ∩ L†| ≥ νn† |B◦p(r/α) ∩ L†| .

(Similarly, we also want the locally dense gadget to have
exponentially more “close” than “annoying close” lattice vectors.)

Main Theorem for BDD

Main theorem for BDD, informal & simplified

If there exist locally dense gadgets (B†, t†) satisfying3

|Bp(αG ; t†) ∩ L†| ≥ νn† |B◦p(1) ∩ L†| ,

then for BDDp,α:
under Gap-ETH,4 it cannot be solved in 2o(n) time for all α > αG ;
under Gap-SETH, it cannot be solved in 2n/C time for all

α > αG +
1

fp(νC−1)
.

(Here fp(·) is increasing and has lim
x→1

fp(x) = 0, lim
x→∞

fp(x) =∞.)

3The locally dense gadget needs to satisfy another similar property involving
“annoying close” count, which contains similar parameters αA, ν

′ and they also
(substantially) affect the bounds on α.

4Whether we need rand/non-unif Gap-(S)ETH depends on whether the
gadgets can be efficiently constructed.

Main Theorem for BDD

Main theorem for BDD, informal & simplified

If there exist locally dense gadgets (B†, t†) satisfying3

|Bp(αG ; t†) ∩ L†| ≥ νn† |B◦p(1) ∩ L†| ,

then for BDDp,α:
under Gap-ETH,4 it cannot be solved in 2o(n) time for all α > αG ;
under Gap-SETH, it cannot be solved in 2n/C time for all

α > αG +
1

fp(νC−1)
.

(Here fp(·) is increasing and has lim
x→1

fp(x) = 0, lim
x→∞

fp(x) =∞.)

3The locally dense gadget needs to satisfy another similar property involving
“annoying close” count, which contains similar parameters αA, ν

′ and they also
(substantially) affect the bounds on α.

4Whether we need rand/non-unif Gap-(S)ETH depends on whether the
gadgets can be efficiently constructed.

Main Theorem for BDD

Main theorem for BDD, informal & simplified

If there exist locally dense gadgets (B†, t†) satisfying3

|Bp(αG ; t†) ∩ L†| ≥ νn† |B◦p(1) ∩ L†| ,

then for BDDp,α:
under Gap-ETH,4 it cannot be solved in 2o(n) time for all α > αG ;
under Gap-SETH, it cannot be solved in 2n/C time for all

α > αG +
1

fp(νC−1)
.

(Here fp(·) is increasing and has lim
x→1

fp(x) = 0, lim
x→∞

fp(x) =∞.)

3The locally dense gadget needs to satisfy another similar property involving
“annoying close” count, which contains similar parameters αA, ν

′ and they also
(substantially) affect the bounds on α.

4Whether we need rand/non-unif Gap-(S)ETH depends on whether the
gadgets can be efficiently constructed.

Instantiating the Main Theorem: Result 3

Lattice kissing number τL
n : maxL|Bp(1) ∩ (L \ {0})| for rank-n

lattice L with λ
(p)
1 (L) = 1.

[Vlă19]: for p = 2, τL
n ≥ 2cknn−o(n), where ckn ≥ 0.02194.

Gadgets (in `2): exponential kissing number lattice L†, t† = 0.
Parameters: αG = 1, ν = 2ckn .

Using norm embeddings, we also get gadgets in all `p in cost of
slightly larger αG = 1 + o(1). Then we have our Result 3: BDDp,α

cannot be solved in 2n/C time for all

α > α†p,C := 1 +
1

fp(2ckn(C−1))
.

Instantiating the Main Theorem: Result 3

Lattice kissing number τL
n : maxL|Bp(1) ∩ (L \ {0})| for rank-n

lattice L with λ
(p)
1 (L) = 1.

[Vlă19]: for p = 2, τL
n ≥ 2cknn−o(n), where ckn ≥ 0.02194.

Gadgets (in `2): exponential kissing number lattice L†, t† = 0.
Parameters: αG = 1, ν = 2ckn .

Using norm embeddings, we also get gadgets in all `p in cost of
slightly larger αG = 1 + o(1). Then we have our Result 3: BDDp,α

cannot be solved in 2n/C time for all

α > α†p,C := 1 +
1

fp(2ckn(C−1))
.

Instantiating the Main Theorem: Result 3

Lattice kissing number τL
n : maxL|Bp(1) ∩ (L \ {0})| for rank-n

lattice L with λ
(p)
1 (L) = 1.

[Vlă19]: for p = 2, τL
n ≥ 2cknn−o(n), where ckn ≥ 0.02194.

Gadgets (in `2): exponential kissing number lattice L†, t† = 0.
Parameters: αG = 1, ν = 2ckn .

Using norm embeddings, we also get gadgets in all `p in cost of
slightly larger αG = 1 + o(1). Then we have our Result 3: BDDp,α

cannot be solved in 2n/C time for all

α > α†p,C := 1 +
1

fp(2ckn(C−1))
.

Instantiating the Main Theorem: Result 3

Lattice kissing number τL
n : maxL|Bp(1) ∩ (L \ {0})| for rank-n

lattice L with λ
(p)
1 (L) = 1.

[Vlă19]: for p = 2, τL
n ≥ 2cknn−o(n), where ckn ≥ 0.02194.

Gadgets (in `2): exponential kissing number lattice L†, t† = 0.
Parameters: αG = 1, ν = 2ckn .

Using norm embeddings, we also get gadgets in all `p in cost of
slightly larger αG = 1 + o(1). Then we have our Result 3: BDDp,α

cannot be solved in 2n/C time for all

α > α†p,C := 1 +
1

fp(2ckn(C−1))
.

Instantiating the Main Theorem: Result 1

To decrease αG for the exponential kissing number gadgets:

I Move t† away from 0 by δ in random direction.

I Set αG = 1− ε for ε < δ.

I Nevertheless this decreases the “close” count as well, by an
expected factor of area(Sn−1 ∩ Bp(1− ε; t†))/ area(Sn−1),
where Sn−1 is the unit sphere.

I ([AS18] also uses this idea while we have tighter loss factor.)

1

δ 1− ε

Taking care of the tradeoff between the “close” count and δ, ε, we
manage to get αG approaching 2−ckn , which gives our Result 1:
BDDp,α cannot be solved in 2o(n) time for all α > αkn := 2−ckn .

Instantiating the Main Theorem: Result 1

To decrease αG for the exponential kissing number gadgets:

I Move t† away from 0 by δ in random direction.

I Set αG = 1− ε for ε < δ.

I Nevertheless this decreases the “close” count as well, by an
expected factor of area(Sn−1 ∩ Bp(1− ε; t†))/ area(Sn−1),
where Sn−1 is the unit sphere.

I ([AS18] also uses this idea while we have tighter loss factor.)

1

δ 1− ε

Taking care of the tradeoff between the “close” count and δ, ε, we
manage to get αG approaching 2−ckn , which gives our Result 1:
BDDp,α cannot be solved in 2o(n) time for all α > αkn := 2−ckn .

Instantiating the Main Theorem: Result 1

To decrease αG for the exponential kissing number gadgets:

I Move t† away from 0 by δ in random direction.

I Set αG = 1− ε for ε < δ.

I Nevertheless this decreases the “close” count as well, by an
expected factor of area(Sn−1 ∩ Bp(1− ε; t†))/ area(Sn−1),
where Sn−1 is the unit sphere.

I ([AS18] also uses this idea while we have tighter loss factor.)

1

δ 1− ε

Taking care of the tradeoff between the “close” count and δ, ε, we
manage to get αG approaching 2−ckn , which gives our Result 1:
BDDp,α cannot be solved in 2o(n) time for all α > αkn := 2−ckn .

Instantiating the Main Theorem: Result 2

Gadgets from integer lattices: L† = Zn/ρ, t† = (t/ρ) · 1n.
Minimize αG over ρ, t subject to

|Bp(αGρ; t · 1n) ∩ Zn| > |B◦p(ρ) ∩ Zn| .

Suppose α‡p is the optimum. Then we have our Result 2: BDDp,α

cannot be solved in 2o(n) time for all α > α‡p.

I |Bp(a · n; t · 1n) ∩ Zn| can be approximated by a numerical
function βp,t(a)n to within a 2o(n) factor.

I We find that empirically the optimizer for t is always 1/2.

I [BP20] does no optimization and fix t = 1/2, ρ = n/(2αG).
As a result, our Result 2 is always no weaker than [BP20].

Instantiating the Main Theorem: Result 2

Gadgets from integer lattices: L† = Zn/ρ, t† = (t/ρ) · 1n.
Minimize αG over ρ, t subject to

|Bp(αGρ; t · 1n) ∩ Zn| > |B◦p(ρ) ∩ Zn| .

Suppose α‡p is the optimum. Then we have our Result 2: BDDp,α

cannot be solved in 2o(n) time for all α > α‡p.

I |Bp(a · n; t · 1n) ∩ Zn| can be approximated by a numerical
function βp,t(a)n to within a 2o(n) factor.

I We find that empirically the optimizer for t is always 1/2.

I [BP20] does no optimization and fix t = 1/2, ρ = n/(2αG).
As a result, our Result 2 is always no weaker than [BP20].

Instantiating the Main Theorem: Result 2

Gadgets from integer lattices: L† = Zn/ρ, t† = (t/ρ) · 1n.
Minimize αG over ρ, t subject to

|Bp(αGρ; t · 1n) ∩ Zn| > |B◦p(ρ) ∩ Zn| .

Suppose α‡p is the optimum. Then we have our Result 2: BDDp,α

cannot be solved in 2o(n) time for all α > α‡p.

I |Bp(a · n; t · 1n) ∩ Zn| can be approximated by a numerical
function βp,t(a)n to within a 2o(n) factor.

I We find that empirically the optimizer for t is always 1/2.

I [BP20] does no optimization and fix t = 1/2, ρ = n/(2αG).
As a result, our Result 2 is always no weaker than [BP20].

Instantiating the Main Theorem: Result 2

Gadgets from integer lattices: L† = Zn/ρ, t† = (t/ρ) · 1n.
Minimize αG over ρ, t subject to

|Bp(αGρ; t · 1n) ∩ Zn| > |B◦p(ρ) ∩ Zn| .

Suppose α‡p is the optimum. Then we have our Result 2: BDDp,α

cannot be solved in 2o(n) time for all α > α‡p.

I |Bp(a · n; t · 1n) ∩ Zn| can be approximated by a numerical
function βp,t(a)n to within a 2o(n) factor.

I We find that empirically the optimizer for t is always 1/2.

I [BP20] does no optimization and fix t = 1/2, ρ = n/(2αG).
As a result, our Result 2 is always no weaker than [BP20].

Instantiating the Main Theorem: Result 2

Gadgets from integer lattices: L† = Zn/ρ, t† = (t/ρ) · 1n.
Minimize αG over ρ, t subject to

|Bp(αGρ; t · 1n) ∩ Zn| > |B◦p(ρ) ∩ Zn| .

Suppose α‡p is the optimum. Then we have our Result 2: BDDp,α

cannot be solved in 2o(n) time for all α > α‡p.

I |Bp(a · n; t · 1n) ∩ Zn| can be approximated by a numerical
function βp,t(a)n to within a 2o(n) factor.

I We find that empirically the optimizer for t is always 1/2.

I [BP20] does no optimization and fix t = 1/2, ρ = n/(2αG).
As a result, our Result 2 is always no weaker than [BP20].

Reduction to SVP

Overview:

I Similar to the case of BDD, the reduction consists of the
(same!) transformation and the sparsification, as well as a
standard technique, Kannan’s embedding, at the end.

I The transformation maps CVP′p,γ instances to instances of a
similar intermediate problem (A,G)-CVPp,γ′ .

I [AS18] has the same workflow, while we have a more general
transformation with a larger parameter space, and we can set
parameters working for CVP′p,γ other than CVP′p,1.

I The same gadgets from integer lattices as Result 2 are used.

Reduction to SVP

Overview:

I Similar to the case of BDD, the reduction consists of the
(same!) transformation and the sparsification, as well as a
standard technique, Kannan’s embedding, at the end.

I The transformation maps CVP′p,γ instances to instances of a
similar intermediate problem (A,G)-CVPp,γ′ .

I [AS18] has the same workflow, while we have a more general
transformation with a larger parameter space, and we can set
parameters working for CVP′p,γ other than CVP′p,1.

I The same gadgets from integer lattices as Result 2 are used.

Reduction to SVP

Overview:

I Similar to the case of BDD, the reduction consists of the
(same!) transformation and the sparsification, as well as a
standard technique, Kannan’s embedding, at the end.

I The transformation maps CVP′p,γ instances to instances of a
similar intermediate problem (A,G)-CVPp,γ′ .

I [AS18] has the same workflow, while we have a more general
transformation with a larger parameter space, and we can set
parameters working for CVP′p,γ other than CVP′p,1.

I The same gadgets from integer lattices as Result 2 are used.

Reduction to SVP

Overview:

I Similar to the case of BDD, the reduction consists of the
(same!) transformation and the sparsification, as well as a
standard technique, Kannan’s embedding, at the end.

I The transformation maps CVP′p,γ instances to instances of a
similar intermediate problem (A,G)-CVPp,γ′ .

I [AS18] has the same workflow, while we have a more general
transformation with a larger parameter space, and we can set
parameters working for CVP′p,γ other than CVP′p,1.

I The same gadgets from integer lattices as Result 2 are used.

References

Divesh Aggarwal, Huck Bennett, Alexander

Golovnev, and Noah Stephens-Davidowitz.
Fine-grained hardness of CVP(P)—everything
that we can prove (and nothing else).
In SODA, pages 1816–1835, 2021.

Divesh Aggarwal, Zeyong Li, and Noah

Stephens-Davidowitz.

A 2n/2-time algorithm for
√
n-SVP and√

n-Hermite SVP, and an improved
time-approximation tradeoff for (H)SVP.
In EUROCRYPT, pages 467–497. 2021.

Divesh Aggarwal and Noah

Stephens-Davidowitz.
(Gap/S)ETH hardness of SVP.
In STOC, pages 228–238, 2018.

Huck Bennett, Alexander Golovnev, and Noah

Stephens-Davidowitz.
On the quantitative hardness of CVP.
In FOCS, pages 13–24. 2017.

Huck Bennett and Chris Peikert.

Hardness of bounded distance decoding on
lattices in `p norms.
In CCC, pages Art. 36, 21. 2020.

Friedrich Eisenbrand and Moritz Venzin.

Approximate CVPp in time 20.802n .
In ESA, pages Art. No. 43, 15. 2020.

Subhash Khot.

Hardness of approximating the shortest vector
problem in lattices.
J. ACM, 52(5):789–808, 2005.

A. K. Lenstra, H. W. Lenstra, Jr., and

L. Lovász.
Factoring polynomials with rational coefficients.
Math. Ann., 261(4):515–534, 1982.

Yi-Kai Liu, Vadim Lyubashevsky, and Daniele

Micciancio.
On bounded distance decoding for general
lattices.
In Approximation, randomization and
combinatorial optimization, volume 4110 of
Lecture Notes in Comput. Sci., pages 450–461.
Springer, Berlin, 2006.

Serge Vlăduţ.

Lattices with exponentially large kissing
numbers.
Mosc. J. Comb. Number Theory, 8(2):163–177,
2019.

