Motivation: Post-Quantum Cryptography

Problem: Attacker with quantum computation can break number theoretical
cryptography that are widely used, such as RSA.
Solution: Use /attice-based cryptography!

Fact: State-of-the-art attacks are based on solving exact or
low-approximation-factor lattice problems (e.g. SVP).

Problem: Can attacker solve these problems in 2" vs. 21/10 s 2V time? It
has a huge impact on security.

Our work: Address this by showing fine-grained hardness results for lattice
problems, under variants of ETH.

Lattices
Lattice: regular grid of points in space.

Formally, lattice £ of rank n: set of all integer linear combinations of a basis

B:(b]_,,bn)
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Lattice Problems: Shortest Vector Problem (SVP)

Shortest ¢, norm of nonzero vector in lattice L: )\gp)(ﬁ).

v-approximate SVP in ¢ (SVPp ~)

Instance: Basis B of lattice L.
Goal: Decide whether )\gp)(ﬁ) <1lor A(lp)(ﬁ) > 7.

Lattice Problems: Bounded Distance Decoding (BDD)
BDD in ¢, with relative distance a (BDDp, ()

Instance: Lattice £ and target t with disty(t, L) < o - )\gp)(ﬁ).
Goal: Find closest lattice vector to t in L.

Smaller o corresponds to stronger promise and easier problem.

Exponential Time Hypothesis (ETH)

ETH variants:
» ETH: 3-SAT cannot be solved in 2°(") time.
> Strong ETH (SETH): k-SAT cannot be solved in 2(17)" time.
> Gap-(S)ETH: Gap-3-5SAT; 51 & Gap-k-SAT_g(4) 1.

» Randomized/non-uniform variants: randomized/non-uniform time.

Assumption strength:
» ETH < SETH;
» plain < gap;
» plain < randomized < non-uniform.

Our work exploits the power of different ETH variants, showing stronger hardness

results for BDD /SVP under stronger variants.

More specifically, we reduce SAT on n variables to lattice problems in rank C - n

for constant C > 0 to show fine-grained hardness results.

Line of research in fine-grained hardness of lattice problems:

CVP [BGS17, ABGS21], SVP [AS18], BDD [BP20], SIVP [AC20].

Our Results: ETH-Type Hardness of BDD

1. BDDp o cannot be solved in 2°(n) time for any p € [1, 00) and

a > o, ~ 0.98491, under non-uniform Gap-ETH.

2. BDDp o cannot be solved in 20(1) time for any p € [1,00) and @ > oz;t,,

under randomized Gap-ETH.
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Our Results: SETH-Type Hardness of BDD

3. BDDyp o cannot be solved in 27/C time for any p € [1,00), p ¢ 2Z, C > 1,

and o > 042; ¢ under non-uniform Gap-SETH.
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Our Results: SETH-Type Hardness of SVP

4. For any p > pg ~ 2.1397, p ¢ 27 and C > C,,

SVPp ~ cannot be solved in 21/ C time for some constant ~v > 1, under
randomized Gap-SETH. (C, — 1 for p — 00.)
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Core Proof Technique: Locally Dense Gadgets

Locally dense gadget (UL,tT) in rank n:
» “Short” count: N, lattice vectors of length less than 1.
» “Close” count: N, lattice vectors of distance a,ee tO th.

> LT is locally dense at t! if N ose = V" - Neport, 1-€., exponentially more
“close” than “short” lattice vectors.

» Quality parameters: ajoee and v.
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Main Theorem for BDD

Main theorem for BDD, informal & simplified

If there exist locally dense gadgets with parameters /o and v, then BDDp,

> cannot be solved in 2°(") time for any o > Ql¢jpse, Under Gap-ETH variants;
> cannot be solved in 2"/ € time for any

C-1
O > Olclose T CCS,D(V )

under Gap-SETH variants.

Instantiating the Main Theorem

[VI319]: There exist lattices L7 with exponential kissing number 2knn—o(n)
vectors of length )\1(£T) = 1, where ¢, > 0.02194.

Result 1 and 3: Use gadgets from kissing number:
» Gadgets: exponential kissing number lattice LT with tT = 0.
» Parameters: o =1, v = 2%n,

» Result 3: Immediately get 042; c =1+ 6p(2ckn(c_1)) by main theorem.

» Result 1: Get qy, := 2~ %n by perturbing t! away from 0.

Result 2 and 4: Use gadgets from integer lattices:
» Gadgets: L1 =7Z" tT =¢-1,.
» Result 2: Minimize ajqee subject to v > 1, and get oz;[, as the optimum.
» Result 4: Similar theorem for SVP based on gadgets, and same gadgets.

Open Questions

Derandomize the reductions?
» Randomness is used in gadgets and in main theorem.

Construct locally “denser” gadgets?
» E.g. better bound on kissing number immediately leads to better quantities

in Result 1 and 3 (o, and oz;r)’C).



