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Motivation: Post-Quantum Cryptography
Problem: Attacker with quantum computation can break number theoretical
cryptography that are widely used, such as RSA.
Solution: Use lattice-based cryptography!

Fact: State-of-the-art attacks are based on solving exact or
low-approximation-factor lattice problems (e.g. SVP).

Problem: Can attacker solve these problems in 2n vs. 2n/10 vs. 2
√
n time? It

has a huge impact on security.
Our work: Address this by showing fine-grained hardness results for lattice
problems, under variants of ETH.

Lattices
Lattice: regular grid of points in space.
Formally, lattice L of rank n: set of all integer linear combinations of a basis
B = (b1, . . . ,bn).
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Lattice Problems: Shortest Vector Problem (SVP)
Shortest ℓp norm of nonzero vector in lattice L: λ(p)1 (L).

γ-approximate SVP in ℓp (SVPp,γ)

Instance: Basis B of lattice L.
Goal: Decide whether λ

(p)
1 (L) ≤ 1 or λ

(p)
1 (L) > γ.

Lattice Problems: Bounded Distance Decoding (BDD)
BDD in ℓp with relative distance α (BDDp,α)

Instance: Lattice L and target t with distp(t,L) ≤ α · λ(p)1 (L).
Goal: Find closest lattice vector to t in L.
Smaller α corresponds to stronger promise and easier problem.

(p = 2, α = 0.6)

Exponential Time Hypothesis (ETH)
ETH variants:

▶ ETH: 3-SAT cannot be solved in 2o(n) time.

▶ Strong ETH (SETH): k-SAT cannot be solved in 2(1−ε)n time.

▶ Gap-(S)ETH: Gap-3-SAT1−δ,1 & Gap-k-SAT1−δ(k),1.

▶ Randomized/non-uniform variants: randomized/non-uniform time.

Assumption strength:

▶ ETH ≤ SETH;

▶ plain ≤ gap;

▶ plain ≤ randomized ≤ non-uniform.

Our work exploits the power of different ETH variants, showing stronger hardness
results for BDD/SVP under stronger variants.

More specifically, we reduce SAT on n variables to lattice problems in rank C · n
for constant C > 0 to show fine-grained hardness results.

Line of research in fine-grained hardness of lattice problems:
CVP [BGS17, ABGS21], SVP [AS18], BDD [BP20], SIVP [AC20].

Our Results: ETH-Type Hardness of BDD
1. BDDp,α cannot be solved in 2o(n) time for any p ∈ [1,∞) and

α > αkn ≈ 0.98491, under non-uniform Gap-ETH.

2. BDDp,α cannot be solved in 2o(n) time for any p ∈ [1,∞) and α > α
‡
p,

under randomized Gap-ETH.
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Our Results: SETH-Type Hardness of BDD
3. BDDp,α cannot be solved in 2n/C time for any p ∈ [1,∞), p /∈ 2Z, C > 1,

and α > α
†
p,C , under non-uniform Gap-SETH.
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Our Results: SETH-Type Hardness of SVP
4. For any p > p0 ≈ 2.1397, p /∈ 2Z and C > Cp,

SVPp,γ cannot be solved in 2n/C time for some constant γ > 1, under
randomized Gap-SETH. (Cp → 1 for p → ∞.)
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Core Proof Technique: Locally Dense Gadgets
Locally dense gadget (L†, t†) in rank n:

▶ “Short” count: Nshort lattice vectors of length less than 1.

▶ “Close” count: Nclose lattice vectors of distance αclose to t†.
▶ L† is locally dense at t† if Nclose ≥ νn · Nshort, i.e., exponentially more

“close” than “short” lattice vectors.

▶ Quality parameters: αclose and ν.

(n = 2, L† = Z2, t† = (12,
1
2), αclose =

√
2
2 , ν

n = 4)

Main Theorem for BDD
Main theorem for BDD, informal & simplified

If there exist locally dense gadgets with parameters αclose and ν, then BDDp,α:

▶ cannot be solved in 2o(n) time for any α > αclose, under Gap-ETH variants;

▶ cannot be solved in 2n/C time for any

α > αclose + εp(ν
C−1) ,

under Gap-SETH variants.

Instantiating the Main Theorem
[Vlă19]: There exist lattices L† with exponential kissing number: 2cknn−o(n)

vectors of length λ1(L†) = 1, where ckn ≥ 0.02194.

Result 1 and 3: Use gadgets from kissing number:

▶ Gadgets: exponential kissing number lattice L† with t† = 0.
▶ Parameters: αclose = 1, ν = 2ckn.

▶ Result 3: Immediately get α
†
p,C := 1 + εp(2

ckn(C−1)) by main theorem.

▶ Result 1: Get αkn := 2−ckn by perturbing t† away from 0.

Result 2 and 4: Use gadgets from integer lattices:

▶ Gadgets: L† = Zn, t† = t · 1n.
▶ Result 2: Minimize αclose subject to ν > 1, and get α

‡
p as the optimum.

▶ Result 4: Similar theorem for SVP based on gadgets, and same gadgets.

Open Questions
Derandomize the reductions?

▶ Randomness is used in gadgets and in main theorem.

Construct locally “denser” gadgets?

▶ E.g. better bound on kissing number immediately leads to better quantities

in Result 1 and 3 (αkn and α
†
p,C ).


