Cryptanalysis of Lattice-Based Sequentiality Assumptions and Proofs of Sequential Work

Chris Peikert, Yi Tang

Proof of sequential work (PoSW):

- A basic *timed cryptography* primitive [RivestShamirWagner96].
- Prover runs an *inherently sequential* process of depth (parallel time) T.
- Prover convinces a weak verifier with *low running time*, e.g., $O(\log T)$.
- ightharpoonup Convincing the verifier should require prover depth pprox T
- Application: energy conservation in blockchains.

Post-quantum PoSW

- ▶ Most prior constructions, from e.g. factoring, are broken by quantum computers.
- Lai and Malavolta (Crypto 2023) give a lattice-based PoSW candidate.

Proof of sequential work (PoSW):

- ► A basic *timed cryptography* primitive [RivestShamirWagner96].
- ightharpoonup Prover runs an *inherently sequential* process of depth (parallel time) T.
- Prover convinces a weak verifier with *low running time*, e.g., $O(\log T)$.
- ightharpoonup Convincing the verifier should require prover depth pprox T.
- Application: energy conservation in blockchains.

Post-quantum PoSW

- ▶ Most prior constructions, from e.g. factoring, are broken by quantum computers.
- Lai and Malavolta (Crypto 2023) give a lattice-based PoSW candidate.

Proof of sequential work (PoSW):

- ► A basic *timed cryptography* primitive [RivestShamirWagner96].
- Prover runs an *inherently sequential* process of depth (parallel time) T.
- Prover convinces a weak verifier with low running time, e.g., $O(\log T)$.
- ightharpoonup Convincing the verifier should require prover depth pprox T
- Application: energy conservation in blockchains.

Post-quantum PoSW

- ▶ Most prior constructions, from e.g. factoring, are broken by quantum computers.
- ▶ Lai and Malavolta (Crypto 2023) give a lattice-based PoSW candidate.

Proof of sequential work (PoSW):

- ► A basic *timed cryptography* primitive [RivestShamirWagner96].
- Prover runs an inherently sequential process of depth (parallel time) T.
- ▶ Prover convinces a weak verifier with *low running time*, e.g., $O(\log T)$.
- ▶ Convincing the verifier should require prover depth $\approx T$.
- Application: energy conservation in blockchains.

Post-quantum PoSW

- ▶ Most prior constructions, from e.g. factoring, are broken by quantum computers.
- ▶ Lai and Malavolta (Crypto 2023) give a lattice-based PoSW candidate.

Proof of sequential work (PoSW):

- ► A basic *timed cryptography* primitive [RivestShamirWagner96].
- Prover runs an inherently sequential process of depth (parallel time) T.
- Prover convinces a weak verifier with *low running time*, e.g., $O(\log T)$.
- ▶ Convincing the verifier should require prover depth $\approx T$.
- Application: energy conservation in blockchains.

Post-quantum PoSW:

- ▶ Most prior constructions, from e.g. factoring, are broken by quantum computers.
- ▶ Lai and Malavolta (Crypto 2023) give a lattice-based PoSW candidate.

Proof of sequential work (PoSW):

- ► A basic *timed cryptography* primitive [RivestShamirWagner96].
- Prover runs an inherently sequential process of depth (parallel time) T.
- Prover convinces a weak verifier with *low running time*, e.g., $O(\log T)$.
- ▶ Convincing the verifier should require prover depth $\approx T$.
- ▶ Application: energy conservation in blockchains.

Post-quantum PoSW:

- ▶ Most prior constructions, from e.g. factoring, are broken by quantum computers.
- ▶ Lai and Malavolta (Crypto 2023) give a lattice-based PoSW candidate.

Proof of sequential work (PoSW):

- ► A basic *timed cryptography* primitive [RivestShamirWagner96].
- ightharpoonup Prover runs an *inherently sequential* process of depth (parallel time) T.
- ightharpoonup Prover convinces a weak verifier with *low running time*, e.g., $O(\log T)$.
- ▶ Convincing the verifier should require prover depth $\approx T$.
- ▶ Application: energy conservation in blockchains.

Post-quantum PoSW:

- ▶ Most prior constructions, from e.g. factoring, are broken by quantum computers.
- Lai and Malavolta (Crypto 2023) give a lattice-based PoSW candidate.

Proof of sequential work (PoSW):

- ► A basic *timed cryptography* primitive [RivestShamirWagner96].
- Prover runs an inherently sequential process of depth (parallel time) T.
- Prover convinces a weak verifier with *low running time*, e.g., $O(\log T)$.
- ▶ Convincing the verifier should require prover depth $\approx T$.
- ▶ Application: energy conservation in blockchains.

Post-quantum PoSW:

- ▶ Most prior constructions, from e.g. factoring, are broken by quantum computers.
- Lai and Malavolta (Crypto 2023) give a lattice-based PoSW candidate.

LM23 PoSW

Assuming sequential SIS with norm bound $\approx n^{2 \log T}$ requires depth $\approx T$ to solve, there exists a PoSW that requires prover depth $\approx T$.

Breaking the LM23 sequentiality assumption

Sequential SIS with norm bound $\approx n^{2 \log T}$ can be solved in depth $\tilde{O}_{n,q}(\log T)$.

Breaking the LM23 PoSW*

^{*}An essentially identical variant, differing from the original PoSW in only an arbitrary choice that is immaterial to the design and security proof.

LM23 PoSW

Assuming sequential SIS with norm bound $\approx n^{2 \log T}$ requires depth $\approx T$ to solve, there exists a PoSW that requires prover depth $\approx T$.

Breaking the LM23 sequentiality assumption

Sequential SIS with norm bound $\approx n^{2 \log T}$ can be solved in depth $\tilde{O}_{n,q}(\log T)$.

Moreover, a depth-norm tradeoff breaks a wide range of parameters

Breaking the LM23 PoSW*

^{*}An essentially identical variant, differing from the original PoSW in only an arbitrary choice that is immaterial to the design and security proof.

LM23 PoSW

Assuming sequential SIS with norm bound $\approx n^{2 \log T}$ requires depth $\approx T$ to solve, there exists a PoSW that requires prover depth $\approx T$.

Breaking the LM23 sequentiality assumption

Sequential SIS with norm bound $\approx n^{2 \log T}$ can be solved in depth $\tilde{O}_{n,q}(\log T)$.

Moreover, a depth-norm tradeoff breaks a wide range of parameters.

 $\tilde{O}_{n,q}$ hides $\operatorname{polylog}(n,q)$.

Breaking the LM23 PoSW*

^{*}An essentially identical variant, differing from the original PoSW in only an arbitrary choice that is immaterial to the design and security proof.

LM23 PoSW

Assuming sequential SIS with norm bound $\approx n^{2 \log T}$ requires depth $\approx T$ to solve, there exists a PoSW that requires prover depth $\approx T$.

Breaking the LM23 sequentiality assumption

Sequential SIS with norm bound $\approx n^{2 \log T}$ can be solved in depth $\tilde{O}_{n,q}(\log T)$. Moreover, a depth-norm tradeoff breaks a wide range of parameters.

Breaking the LM23 PoSW*

^{*}An essentially identical variant, differing from the original PoSW in only an arbitrary choice that is immaterial to the design and security proof.

LM23 PoSW

Assuming sequential SIS with norm bound $\approx n^{2 \log T}$ requires depth $\approx T$ to solve, there exists a PoSW that requires prover depth $\approx T$.

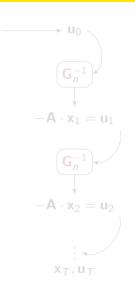
Breaking the LM23 sequentiality assumption

Sequential SIS with norm bound $\approx n^{2 \log T}$ can be solved in depth $\tilde{O}_{n,q}(\log T)$. Moreover, a depth-norm tradeoff breaks a wide range of parameters.

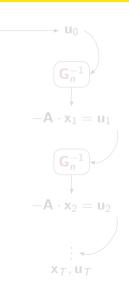
Breaking the LM23 PoSW*

^{*}An essentially identical variant, differing from the original PoSW in only an arbitrary choice that is immaterial to the design and security proof.

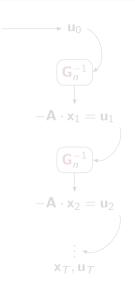
- ▶ To iterate, need to map $\mathbb{Z}_q^n \to \{0,1\}^m$.
- ▶ Bit expansion G_n^{-1} : replace each \mathbb{Z}_q entry by $\ell := \lceil \log_2 q \rceil$ bits. (So set $m = n \cdot \ell$.)
- ► "Gadget" vector $\mathbf{g} = (1, 2, ..., 2^{\ell-1})$, matrix $\mathbf{G}_n = \mathbf{I}_n \otimes \mathbf{g}$: satisfies $\mathbf{G}_n \cdot \mathbf{G}_n^{-1}(\mathbf{u}) = \mathbf{u}$ for any $\mathbf{u} \in \mathbb{Z}_n^n$.
- Start with given \mathbf{A} , \mathbf{u}_0 and output \mathbf{u}_T .



- ▶ To iterate, need to map $\mathbb{Z}_q^n \to \{0,1\}^m$.
- Bit expansion G_n^{-1} : replace each \mathbb{Z}_q entry by $\ell := \lceil \log_2 q \rceil$ bits. (So set $m = n \cdot \ell$.)
- ► "Gadget" vector $\mathbf{g} = (1, 2, ..., 2^{\ell-1})$, matrix $\mathbf{G}_n = \mathbf{I}_n \otimes \mathbf{g}$: satisfies $\mathbf{G}_n \cdot \mathbf{G}_n^{-1}(\mathbf{u}) = \mathbf{u}$ for any $\mathbf{u} \in \mathbb{Z}_q^n$.
- Start with given \mathbf{A} , \mathbf{u}_0 and output \mathbf{u}_T .



- ▶ To iterate, need to map $\mathbb{Z}_q^n \to \{0,1\}^m$.
- ▶ Bit expansion G_n^{-1} : replace each \mathbb{Z}_q entry by $\ell := \lceil \log_2 q \rceil$ bits. (So set $m = n \cdot \ell$.)
- ► "Gadget" vector $\mathbf{g} = (1, 2, \dots, 2^{\ell-1})$, matrix $\mathbf{G}_n = \mathbf{I}_n \otimes \mathbf{g}$: satisfies $\mathbf{G}_n \cdot \mathbf{G}_n^{-1}(\mathbf{u}) = \mathbf{u}$ for any $\mathbf{u} \in \mathbb{Z}_q^n$.
- Start with given \mathbf{A} , \mathbf{u}_0 and output \mathbf{u}_T .



- ▶ To iterate, need to map $\mathbb{Z}_q^n \to \{0,1\}^m$.
- ▶ Bit expansion G_n^{-1} : replace each \mathbb{Z}_q entry by $\ell := \lceil \log_2 q \rceil$ bits. (So set $m = n \cdot \ell$.)
- ► "Gadget" vector $\mathbf{g} = (1, 2, \dots, 2^{\ell-1})$, matrix $\mathbf{G}_n = \mathbf{I}_n \otimes \mathbf{g}$: satisfies $\mathbf{G}_n \cdot \mathbf{G}_n^{-1}(\mathbf{u}) = \mathbf{u}$ for any $\mathbf{u} \in \mathbb{Z}_q^n$.
- Start with given \mathbf{A}, \mathbf{u}_0 and output \mathbf{u}_T .



$$|\mathbf{u}_0 \Rightarrow \cdots \Rightarrow \mathbf{x}_i = \mathbf{G}_n^{-1}(\mathbf{u}_{i-1}), \ \mathbf{u}_i = -\mathbf{A} \cdot \mathbf{x}_i \Rightarrow \cdots \Rightarrow \mathbf{x}_T, \mathbf{u}_T.$$

The sequential work can be expressed via a linear system

$$\begin{pmatrix}
\mathbf{G}_{n} \\
\mathbf{A} & \mathbf{G}_{n} \\
\mathbf{A} & \ddots \\
& \ddots & \mathbf{G}_{n} \\
& \mathbf{A} & \mathbf{G}_{n}
\end{pmatrix}
\cdot
\begin{pmatrix}
\mathbf{x}_{1} \\
\mathbf{x}_{2} \\
\vdots \\
\mathbf{x}_{T}
\end{pmatrix} =
\begin{pmatrix}
\mathbf{u}_{0} \\
\mathbf{0} \\
\mathbf{0} \\
\vdots \\
\mathbf{0} \\
-\mathbf{u}_{T}
\end{pmatrix}$$

Sequential Short Integer Solution (SIS) Problem

- ▶ an instance consists of $\mathbf{A} \leftarrow \mathbb{Z}_a^{n \times m}$ and $\mathbf{u}_0 \leftarrow \mathbb{Z}_a^n$, and
 - ▶ the goal is to find $\mathbf{x} \in \mathbb{Z}^{Tm}$ with $\|\mathbf{x}\|_{\infty} \leq B$ such that $\mathbf{A}_T \cdot \mathbf{x} = \begin{pmatrix} \mathbf{u}_0 \\ \mathbf{0} \end{pmatrix}$.

$$\begin{array}{lll} \textbf{u}_0 & \Rightarrow \cdots \Rightarrow & \textbf{x}_i = \textbf{G}_n^{-1}(\textbf{u}_{i-1}) \;,\; \textbf{u}_i = -\textbf{A} \cdot \textbf{x}_i & \Rightarrow \cdots \Rightarrow & \textbf{x}_{\mathcal{T}}, \textbf{u}_{\mathcal{T}} \;. \end{array}$$

The sequential work can be expressed via a linear system:

$$\begin{pmatrix}
\mathbf{G}_{n} \\
\mathbf{A} & \mathbf{G}_{n} \\
& \mathbf{A} & \ddots \\
& & \ddots & \mathbf{G}_{n} \\
& & \mathbf{A} & \mathbf{G}_{n}
\end{pmatrix}
\cdot
\begin{pmatrix}
\mathbf{x}_{1} \\
\mathbf{x}_{2} \\
\vdots \\
\mathbf{x}_{T}
\end{pmatrix} =
\begin{pmatrix}
\mathbf{u}_{0} \\
\mathbf{0} \\
\mathbf{0} \\
\vdots \\
\mathbf{0} \\
-\mathbf{u}_{T}
\end{pmatrix}$$

Sequential Short Integer Solution (SIS) Problem

- ▶ an instance consists of $\mathbf{A} \leftarrow \mathbb{Z}_a^{n \times m}$ and $\mathbf{u}_0 \leftarrow \mathbb{Z}_a^n$, and
- ▶ the goal is to find $\mathbf{x} \in \mathbb{Z}^{Tm}$ with $\|\mathbf{x}\|_{\infty} \leq B$ such that $\mathbf{A}_T \cdot \mathbf{x} = \begin{pmatrix} \mathbf{u}_0 \\ \mathbf{0} \end{pmatrix}$.

$$\label{eq:continuous_section} \boldsymbol{u}_0 \quad \Rightarrow \cdots \Rightarrow \quad \boldsymbol{x}_i = \boldsymbol{G}_n^{-1}(\boldsymbol{u}_{i-1}) \;,\; \boldsymbol{u}_i = -\boldsymbol{A} \cdot \boldsymbol{x}_i \quad \Rightarrow \cdots \Rightarrow \quad \boldsymbol{x}_{\mathcal{T}}, \boldsymbol{u}_{\mathcal{T}} \;.$$

The sequential work can be expressed via a linear system:

$$\begin{bmatrix}
\mathbf{G}_{n} \\
\mathbf{A} & \mathbf{G}_{n} \\
& \mathbf{A} & \ddots \\
& & \ddots & \mathbf{G}_{n} \\
& & \mathbf{A} & \mathbf{G}_{n} \\
& & & \mathbf{A}
\end{bmatrix} \cdot \begin{pmatrix}
\mathbf{x}_{1} \\
\mathbf{x}_{2} \\
\vdots \\
\mathbf{x}_{T}
\end{pmatrix} = \begin{pmatrix}
\mathbf{u}_{0} \\
\mathbf{0} \\
\mathbf{0} \\
\vdots \\
\mathbf{0} \\
-\mathbf{u}_{T}
\end{pmatrix}$$

Sequential Short Integer Solution (SIS) Problem

- ▶ an instance consists of $\mathbf{A} \leftarrow \mathbb{Z}_{q}^{n \times m}$ and $\mathbf{u}_0 \leftarrow \mathbb{Z}_{q}^n$ and
- ▶ the goal is to find $\mathbf{x} \in \mathbb{Z}^{Tm}$ with $\|\mathbf{x}\|_{\infty} \leq B$ such that $\mathbf{A}_T \cdot \mathbf{x} = \begin{pmatrix} \mathbf{u}_0 \\ \mathbf{0} \end{pmatrix}$.

$$\textbf{u}_0 \quad \Rightarrow \cdots \Rightarrow \quad \textbf{x}_i = \textbf{G}_n^{-1}(\textbf{u}_{i-1}) \;,\; \textbf{u}_i = -\textbf{A} \cdot \textbf{x}_i \quad \Rightarrow \cdots \Rightarrow \quad \textbf{x}_{\mathcal{T}}, \textbf{u}_{\mathcal{T}} \;.$$

The sequential work can be expressed via a linear system:

$$\begin{pmatrix}
\mathbf{G}_{n} & & & \\
\mathbf{A} & \mathbf{G}_{n} & & \\
& \mathbf{A} & \ddots & \\
& & \ddots & \mathbf{G}_{n} \\
& & \mathbf{A} & \mathbf{G}_{n}
\end{pmatrix}
\cdot
\begin{pmatrix}
\mathbf{x}_{1} \\
\mathbf{x}_{2} \\
\vdots \\
\mathbf{x}_{T}
\end{pmatrix} =
\begin{pmatrix}
\mathbf{u}_{0} \\
\mathbf{0} \\
0 \\
\vdots \\
\mathbf{0} \\
-\mathbf{u}_{T}
\end{pmatrix}$$

Sequential Short Integer Solution (SIS) Problem

- ▶ an instance consists of $\mathbf{A} \leftarrow \mathbb{Z}_a^{n \times m}$ and $\mathbf{u}_0 \leftarrow \mathbb{Z}_a^n$, and
- ▶ the goal is to find $\mathbf{x} \in \mathbb{Z}^{Tm}$ with $\|\mathbf{x}\|_{\infty} \leq B$ such that $\mathbf{A}_T \cdot \mathbf{x} = \begin{pmatrix} \mathbf{u}_0 \\ \mathbf{0} \end{pmatrix}$.

$$\textbf{u}_0 \quad \Rightarrow \cdots \Rightarrow \quad \textbf{x}_i = \textbf{G}_n^{-1}(\textbf{u}_{i-1}) \;,\; \textbf{u}_i = -\textbf{A} \cdot \textbf{x}_i \quad \Rightarrow \cdots \Rightarrow \quad \textbf{x}_{\mathcal{T}}, \textbf{u}_{\mathcal{T}} \;.$$

The sequential work can be expressed via a linear system:

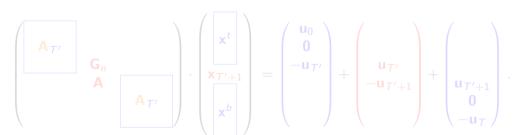
$$\underbrace{\begin{pmatrix} \mathbf{G}_{n} \\ \mathbf{A} & \mathbf{G}_{n} \\ & \mathbf{A} & \ddots \\ & & \ddots & \mathbf{G}_{n} \\ & & \mathbf{A} & \mathbf{G}_{n} \\ & & & \mathbf{A} \end{pmatrix}}_{\mathbf{A}_{T} \text{ or } \mathbf{A}_{T}} \cdot \underbrace{\begin{pmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \vdots \\ \mathbf{x}_{T} \end{pmatrix}}_{\mathbf{x} \in \mathbb{Z}^{Tm}} = \begin{pmatrix} \mathbf{u}_{0} \\ \mathbf{0} \\ \mathbf{0} \\ \vdots \\ \mathbf{0} \\ -\mathbf{u}_{T} \end{pmatrix} .$$

Sequential Short Integer Solution (SIS) Problem

- ▶ an instance consists of $\mathbf{A} \leftarrow \mathbb{Z}_a^{n \times m}$ and $\mathbf{u}_0 \leftarrow \mathbb{Z}_a^n$, and
- ▶ the goal is to find $\mathbf{x} \in \mathbb{Z}^{Tm}$ with $\|\mathbf{x}\|_{\infty} \leq B$ such that $\mathbf{A}_T \cdot \mathbf{x} = \begin{pmatrix} \mathbf{u}_0 \\ \mathbf{0} \end{pmatrix}$.

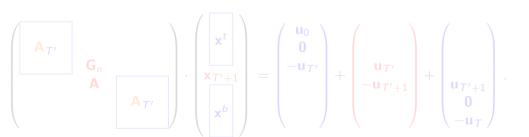
Goal: prove knowledge of a *short* solution to $\mathbf{A}_T \cdot \mathbf{x} = \begin{pmatrix} \mathbf{u}_0 \\ \mathbf{0} \\ -\mathbf{u}_T \end{pmatrix}$ to a *weak* verifier.

- Assume for simplicity that T = 2T' + 1 is odd.
- ightharpoonup x splits into $\mathbf{x}^t = (\mathbf{x}_1; \dots; \mathbf{x}_{T'}), \mathbf{x}_{T'+1}, \mathbf{x}^b = (\mathbf{x}_{T'+2}; \dots; \mathbf{x}_T),$ and correspondingly:



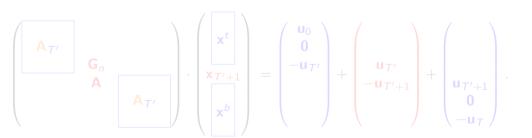
Goal: prove knowledge of a *short* solution to $\mathbf{A}_T \cdot \mathbf{x} = \begin{pmatrix} \mathbf{u}_0 \\ \mathbf{0} \\ -\mathbf{u}_T \end{pmatrix}$ to a *weak* verifier.

- Assume for simplicity that T = 2T' + 1 is odd.
- ightharpoonup x splits into $\mathbf{x}^t = (\mathbf{x}_1; \dots; \mathbf{x}_{T'}), \mathbf{x}_{T'+1}, \mathbf{x}^b = (\mathbf{x}_{T'+2}; \dots; \mathbf{x}_T),$ and correspondingly:



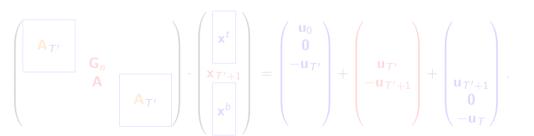
Goal: prove knowledge of a *short* solution to $\mathbf{A}_T \cdot \mathbf{x} = \begin{pmatrix} \mathbf{u}_0 \\ \mathbf{0} \\ -\mathbf{u}_T \end{pmatrix}$ to a *weak* verifier.

- Assume for simplicity that T = 2T' + 1 is odd.
- ightharpoonup x splits into $\mathbf{x}^t = (\mathbf{x}_1; \dots; \mathbf{x}_{T'}), \mathbf{x}_{T'+1}, \mathbf{x}^b = (\mathbf{x}_{T'+2}; \dots; \mathbf{x}_T),$ and correspondingly:



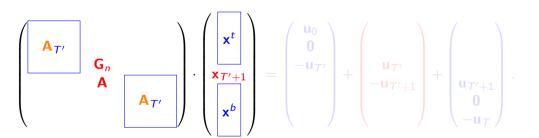
Goal: prove knowledge of a *short* solution to $\mathbf{A}_T \cdot \mathbf{x} = \begin{pmatrix} \mathbf{u}_0 \\ \mathbf{0} \\ -\mathbf{u}_T \end{pmatrix}$ to a *weak* verifier.

- Assume for simplicity that T = 2T' + 1 is odd.
- ightharpoonup x splits into $\mathbf{x}^t = (\mathbf{x}_1; \dots; \mathbf{x}_{T'}), \mathbf{x}_{T'+1}, \mathbf{x}^b = (\mathbf{x}_{T'+2}; \dots; \mathbf{x}_T),$ and correspondingly:



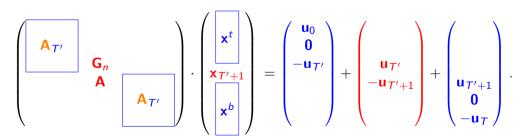
Goal: prove knowledge of a *short* solution to $\mathbf{A}_T \cdot \mathbf{x} = \begin{pmatrix} \mathbf{u}_0 \\ \mathbf{0} \\ -\mathbf{u}_T \end{pmatrix}$ to a *weak* verifier.

- Assume for simplicity that T = 2T' + 1 is odd.
- ightharpoonup x splits into $\mathbf{x}^t = (\mathbf{x}_1; \dots; \mathbf{x}_{T'}), \mathbf{x}_{T'+1}, \mathbf{x}^b = (\mathbf{x}_{T'+2}; \dots; \mathbf{x}_T),$ and correspondingly:



Goal: prove knowledge of a *short* solution to $\mathbf{A}_T \cdot \mathbf{x} = \begin{pmatrix} \mathbf{u}_0 \\ \mathbf{0} \\ -\mathbf{u}_T \end{pmatrix}$ to a *weak* verifier.

- Assume for simplicity that T = 2T' + 1 is odd.
- ightharpoonup x splits into $\mathbf{x}^t = (\mathbf{x}_1; \dots; \mathbf{x}_{T'}), \mathbf{x}_{T'+1}, \mathbf{x}^b = (\mathbf{x}_{T'+2}; \dots; \mathbf{x}_T),$ and correspondingly:



$$\boxed{ \mathbf{A}_{\mathcal{T}'} \cdot \mathbf{x}^t = \begin{pmatrix} \mathbf{u}_0 \\ \mathbf{0} \\ -\mathbf{u}_{\mathcal{T}'} \end{pmatrix}, \quad \begin{pmatrix} \mathbf{G}_n \\ \mathbf{A} \end{pmatrix} \cdot \mathbf{x}_{\mathcal{T}'+1} = \begin{pmatrix} \mathbf{u}_{\mathcal{T}'} \\ -\mathbf{u}_{\mathcal{T}'+1} \end{pmatrix}, \quad \mathbf{A}_{\mathcal{T}'} \cdot \mathbf{x}^b = \begin{pmatrix} \mathbf{u}_{\mathcal{T}'+1} \\ \mathbf{0} \\ -\mathbf{u}_{\mathcal{T}} \end{pmatrix}.}$$

- \triangleright Prover reveals $\mathbf{x}_{T'+1}$, and verifier checks that it is short.
- ▶ Verifier sends a random challenge c with $|c| \le \gamma = \Omega(n)$
- Prover and verifier fold by c as follows, and recurse to prove:

$$\mathbf{A}_{\mathcal{T}'} \cdot \underbrace{\left(c \cdot \mathbf{x}^t + \mathbf{x}^b\right)}_{c} = \begin{pmatrix} \mathbf{u}'_0 \\ \mathbf{0} \\ -\mathbf{u}'_{\mathcal{T}'} \end{pmatrix} = \begin{pmatrix} c \cdot \mathbf{u}_0 + \mathbf{u}_{\mathcal{T}'+1} \\ \mathbf{0} \\ -(c \cdot \mathbf{u}_{\mathcal{T}'} + \mathbf{u}_{\mathcal{T}}) \end{pmatrix}.$$

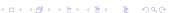
- ▶ In each round, $\|\mathbf{x}\|$ grows by $\leq 2|c| \leq 2\gamma$, so the final norm bound is $(2\gamma)^{\log T}$.
- ▶ Reduction loses a similar factor, so is from sequential SIS with norm bound $(2\gamma)^{2\log T}$.
- ightharpoonup Our attacks crucially exploit the gap between these bounds and honest $\|\mathbf{x}\| = 1$.

$$\boxed{ \mathbf{A}_{\mathcal{T}'} \cdot \mathbf{x}^t = \begin{pmatrix} \mathbf{u}_0 \\ \mathbf{0} \\ -\mathbf{u}_{\mathcal{T}'} \end{pmatrix}, \quad \begin{pmatrix} \mathbf{G}_n \\ \mathbf{A} \end{pmatrix} \cdot \mathbf{x}_{\mathcal{T}'+1} = \begin{pmatrix} \mathbf{u}_{\mathcal{T}'} \\ -\mathbf{u}_{\mathcal{T}'+1} \end{pmatrix}, \quad \mathbf{A}_{\mathcal{T}'} \cdot \mathbf{x}^b = \begin{pmatrix} \mathbf{u}_{\mathcal{T}'+1} \\ \mathbf{0} \\ -\mathbf{u}_{\mathcal{T}} \end{pmatrix}.} }$$

- ▶ Prover reveals $\mathbf{x}_{T'+1}$, and verifier checks that it is short.
- Verifier sends a random challenge c with $|c| \leq \gamma = \Omega(n)$.
- Prover and verifier fold by c as follows, and recurse to prove:

$$\mathbf{A}_{\mathcal{T}'} \cdot \underbrace{\left(c \cdot \mathbf{x}^t + \mathbf{x}^b\right)}_{\mathbf{x}'} = \begin{pmatrix} \mathbf{u}'_0 \\ \mathbf{0} \\ -\mathbf{u}'_{\mathcal{T}'} \end{pmatrix} = \begin{pmatrix} c \cdot \mathbf{u}_0 + \mathbf{u}_{\mathcal{T}'+1} \\ \mathbf{0} \\ -(c \cdot \mathbf{u}_{\mathcal{T}'} + \mathbf{u}_{\mathcal{T}}) \end{pmatrix}.$$

- ▶ In each round, $\|\mathbf{x}\|$ grows by $\leq 2|c| \leq 2\gamma$, so the final norm bound is $(2\gamma)^{\log T}$.
- ▶ Reduction loses a similar factor, so is from sequential SIS with norm bound $(2\gamma)^{2\log T}$.
- ightharpoonup Our attacks crucially exploit the gap between these bounds and honest $\|\mathbf{x}\| = 1$.



$$\boxed{ \mathbf{A}_{\mathcal{T}'} \cdot \mathbf{x}^t = \begin{pmatrix} \mathbf{u}_0 \\ \mathbf{0} \\ -\mathbf{u}_{\mathcal{T}'} \end{pmatrix}, \quad \begin{pmatrix} \mathbf{G}_n \\ \mathbf{A} \end{pmatrix} \cdot \mathbf{x}_{\mathcal{T}'+1} = \begin{pmatrix} \mathbf{u}_{\mathcal{T}'} \\ -\mathbf{u}_{\mathcal{T}'+1} \end{pmatrix}, \quad \mathbf{A}_{\mathcal{T}'} \cdot \mathbf{x}^b = \begin{pmatrix} \mathbf{u}_{\mathcal{T}'+1} \\ \mathbf{0} \\ -\mathbf{u}_{\mathcal{T}} \end{pmatrix}.}$$

- Prover reveals $\mathbf{x}_{T'+1}$, and verifier checks that it is short.
- ▶ Verifier sends a random challenge c with $|c| \le \gamma = \Omega(n)$.
- Prover and verifier fold by c as follows, and recurse to prove:

$$\mathbf{A}_{\mathcal{T}'} \cdot \underbrace{\left(c \cdot \mathbf{x}^t + \mathbf{x}^b\right)}_{\mathbf{x}'} = \begin{pmatrix} \mathbf{u}'_0 \\ \mathbf{0} \\ -\mathbf{u}'_{\mathcal{T}'} \end{pmatrix} = \begin{pmatrix} c \cdot \mathbf{u}_0 + \mathbf{u}_{\mathcal{T}'+1} \\ \mathbf{0} \\ -(c \cdot \mathbf{u}_{\mathcal{T}'} + \mathbf{u}_{\mathcal{T}}) \end{pmatrix}.$$

- ▶ In each round, $\|\mathbf{x}\|$ grows by $\leq 2|c| \leq 2\gamma$, so the final norm bound is $(2\gamma)^{\log T}$.
- ▶ Reduction loses a similar factor, so is from sequential SIS with norm bound $(2\gamma)^{2 \log T}$.
- ightharpoonup Our attacks crucially exploit the gap between these bounds and honest $\|\mathbf{x}\| = 1$.

$$\boxed{ \mathbf{A}_{\mathcal{T}'} \cdot \mathbf{x}^t = \begin{pmatrix} \mathbf{u}_0 \\ \mathbf{0} \\ -\mathbf{u}_{\mathcal{T}'} \end{pmatrix}, \quad \begin{pmatrix} \mathbf{G}_n \\ \mathbf{A} \end{pmatrix} \cdot \mathbf{x}_{\mathcal{T}'+1} = \begin{pmatrix} \mathbf{u}_{\mathcal{T}'} \\ -\mathbf{u}_{\mathcal{T}'+1} \end{pmatrix}, \quad \mathbf{A}_{\mathcal{T}'} \cdot \mathbf{x}^b = \begin{pmatrix} \mathbf{u}_{\mathcal{T}'+1} \\ \mathbf{0} \\ -\mathbf{u}_{\mathcal{T}} \end{pmatrix}.}$$

- Prover reveals $\mathbf{x}_{T'+1}$, and verifier checks that it is short.
- Verifier sends a random challenge c with $|c| \le \gamma = \Omega(n)$.
- Prover and verifier fold by c as follows, and recurse to prove:

$$\mathbf{A}_{\mathcal{T}'} \cdot \underbrace{\left(\mathbf{c} \cdot \mathbf{x}^t + \mathbf{x}^b\right)}_{\mathbf{x}'} = \begin{pmatrix} \mathbf{u}'_0 \\ \mathbf{0} \\ -\mathbf{u}'_{\mathcal{T}'} \end{pmatrix} = \begin{pmatrix} \mathbf{c} \cdot \mathbf{u}_0 + \mathbf{u}_{\mathcal{T}'+1} \\ \mathbf{0} \\ -(\mathbf{c} \cdot \mathbf{u}_{\mathcal{T}'} + \mathbf{u}_{\mathcal{T}}) \end{pmatrix}.$$

- ▶ In each round, $\|\mathbf{x}\|$ grows by $\leq 2|c| \leq 2\gamma$, so the final norm bound is $(2\gamma)^{\log T}$.
- ▶ Reduction loses a similar factor, so is from sequential SIS with norm bound $(2\gamma)^{2 \log T}$.
- ightharpoonup Our attacks crucially exploit the gap between these bounds and honest $\|\mathbf{x}\| = 1$.

$$\boxed{ \mathbf{A}_{\mathcal{T}'} \cdot \mathbf{x}^t = \begin{pmatrix} \mathbf{u}_0 \\ \mathbf{0} \\ -\mathbf{u}_{\mathcal{T}'} \end{pmatrix}, \quad \begin{pmatrix} \mathbf{G}_n \\ \mathbf{A} \end{pmatrix} \cdot \mathbf{x}_{\mathcal{T}'+1} = \begin{pmatrix} \mathbf{u}_{\mathcal{T}'} \\ -\mathbf{u}_{\mathcal{T}'+1} \end{pmatrix}, \quad \mathbf{A}_{\mathcal{T}'} \cdot \mathbf{x}^b = \begin{pmatrix} \mathbf{u}_{\mathcal{T}'+1} \\ \mathbf{0} \\ -\mathbf{u}_{\mathcal{T}} \end{pmatrix}.}$$

- Prover reveals $\mathbf{x}_{T'+1}$, and verifier checks that it is short.
- Verifier sends a random challenge c with $|c| \leq \gamma = \Omega(n)$.
- Prover and verifier fold by c as follows, and recurse to prove:

$$\mathbf{A}_{\mathcal{T}'} \cdot \underbrace{\left(c \cdot \mathbf{x}^t + \mathbf{x}^b \right)}_{\mathbf{x}'} = \begin{pmatrix} \mathbf{u}_0' \\ \mathbf{0} \\ -\mathbf{u}_{\mathcal{T}'}' \end{pmatrix} = \begin{pmatrix} c \cdot \mathbf{u}_0 + \mathbf{u}_{\mathcal{T}'+1} \\ \mathbf{0} \\ -(c \cdot \mathbf{u}_{\mathcal{T}'} + \mathbf{u}_{\mathcal{T}}) \end{pmatrix} \text{.} \qquad \begin{array}{c} \text{PoSW differs } \textit{only } \textit{by } \\ \text{multiplying } c \text{ to the second/bottom half.} \\ \text{second/bottom half.} \end{array}$$

* The original LM23

- ▶ In each round, $\|\mathbf{x}\|$ grows by $\leq 2|c| \leq 2\gamma$, so the final norm bound is $(2\gamma)^{\log 7}$.
- Reduction loses a similar factor, so is from sequential SIS with norm bound $(2\gamma)^{2\log T}$.
 - \triangleright Our attacks crucially exploit the gap between these bounds and honest $||\mathbf{x}|| = 1$.

$$\boxed{ \mathbf{A}_{\mathcal{T}'} \cdot \mathbf{x}^t = \begin{pmatrix} \mathbf{u}_0 \\ \mathbf{0} \\ -\mathbf{u}_{\mathcal{T}'} \end{pmatrix}, \quad \begin{pmatrix} \mathbf{G}_n \\ \mathbf{A} \end{pmatrix} \cdot \mathbf{x}_{\mathcal{T}'+1} = \begin{pmatrix} \mathbf{u}_{\mathcal{T}'} \\ -\mathbf{u}_{\mathcal{T}'+1} \end{pmatrix}, \quad \mathbf{A}_{\mathcal{T}'} \cdot \mathbf{x}^b = \begin{pmatrix} \mathbf{u}_{\mathcal{T}'+1} \\ \mathbf{0} \\ -\mathbf{u}_{\mathcal{T}} \end{pmatrix}.}$$

- Prover reveals $\mathbf{x}_{T'+1}$, and verifier checks that it is short.
- ▶ Verifier sends a random challenge c with $|c| \le \gamma = \Omega(n)$.
- Prover and verifier fold by c as follows, and recurse to prove:

$$\mathbf{A}_{\mathcal{T}'} \cdot \underbrace{\left(\mathbf{c} \cdot \mathbf{x}^t + \mathbf{x}^b\right)}_{\mathbf{x}'} = \begin{pmatrix} \mathbf{u}'_0 \\ \mathbf{0} \\ -\mathbf{u}'_{\mathcal{T}'} \end{pmatrix} = \begin{pmatrix} \mathbf{c} \cdot \mathbf{u}_0 + \mathbf{u}_{\mathcal{T}'+1} \\ \mathbf{0} \\ -(\mathbf{c} \cdot \mathbf{u}_{\mathcal{T}'} + \mathbf{u}_{\mathcal{T}}) \end{pmatrix}.$$

- ▶ In each round, $\|\mathbf{x}\|$ grows by $\leq 2|c| \leq 2\gamma$, so the final norm bound is $(2\gamma)^{\log T}$.
- Reduction loses a similar factor, so is from sequential SIS with norm bound $(2\gamma)^{2 \log T}$.
 - \triangleright Our attacks crucially exploit the gap between these bounds and honest $\|\mathbf{x}\| = 1$.

$$\boxed{ \mathbf{A}_{\mathcal{T}'} \cdot \mathbf{x}^t = \begin{pmatrix} \mathbf{u}_0 \\ \mathbf{0} \\ -\mathbf{u}_{\mathcal{T}'} \end{pmatrix}, \quad \begin{pmatrix} \mathbf{G}_n \\ \mathbf{A} \end{pmatrix} \cdot \mathbf{x}_{\mathcal{T}'+1} = \begin{pmatrix} \mathbf{u}_{\mathcal{T}'} \\ -\mathbf{u}_{\mathcal{T}'+1} \end{pmatrix}, \quad \mathbf{A}_{\mathcal{T}'} \cdot \mathbf{x}^b = \begin{pmatrix} \mathbf{u}_{\mathcal{T}'+1} \\ \mathbf{0} \\ -\mathbf{u}_{\mathcal{T}} \end{pmatrix}. }$$

- Prover reveals $\mathbf{x}_{T'+1}$, and verifier checks that it is short.
- Verifier sends a random challenge c with $|c| \le \gamma = \Omega(n)$.
- Prover and verifier fold by c as follows, and recurse to prove:

$$\mathbf{A}_{\mathcal{T}'} \cdot \underbrace{\left(\mathbf{c} \cdot \mathbf{x}^t + \mathbf{x}^b\right)}_{\mathbf{x}'} = \begin{pmatrix} \mathbf{u}'_0 \\ \mathbf{0} \\ -\mathbf{u}'_{\mathcal{T}'} \end{pmatrix} = \begin{pmatrix} \mathbf{c} \cdot \mathbf{u}_0 + \mathbf{u}_{\mathcal{T}'+1} \\ \mathbf{0} \\ -(\mathbf{c} \cdot \mathbf{u}_{\mathcal{T}'} + \mathbf{u}_{\mathcal{T}}) \end{pmatrix}.$$

- ▶ In each round, $\|\mathbf{x}\|$ grows by $\leq 2|c| \leq 2\gamma$, so the final norm bound is $(2\gamma)^{\log T}$.
- ▶ Reduction loses a similar factor, so is from sequential SIS with norm bound $(2\gamma)^{2\log T}$.
- \triangleright Our attacks crucially exploit the gap between these bounds and honest $||\mathbf{x}|| = 1$.

The LM23 PoSW*, Folding and Norm Bounds

$$\boxed{ \mathbf{A}_{\mathcal{T}'} \cdot \mathbf{x}^t = \begin{pmatrix} \mathbf{u}_0 \\ \mathbf{0} \\ -\mathbf{u}_{\mathcal{T}'} \end{pmatrix}, \quad \begin{pmatrix} \mathbf{G}_n \\ \mathbf{A} \end{pmatrix} \cdot \mathbf{x}_{\mathcal{T}'+1} = \begin{pmatrix} \mathbf{u}_{\mathcal{T}'} \\ -\mathbf{u}_{\mathcal{T}'+1} \end{pmatrix}, \quad \mathbf{A}_{\mathcal{T}'} \cdot \mathbf{x}^b = \begin{pmatrix} \mathbf{u}_{\mathcal{T}'+1} \\ \mathbf{0} \\ -\mathbf{u}_{\mathcal{T}} \end{pmatrix}. }$$

- Prover reveals $\mathbf{x}_{T'+1}$, and verifier checks that it is short.
- ▶ Verifier sends a random challenge c with $|c| \le \gamma = \Omega(n)$.
- Prover and verifier fold by c as follows, and recurse to prove:

$$\mathbf{A}_{\mathcal{T}'} \cdot \underbrace{\left(\mathbf{c} \cdot \mathbf{x}^t + \mathbf{x}^b\right)}_{\mathbf{x}'} = \begin{pmatrix} \mathbf{u}'_0 \\ \mathbf{0} \\ -\mathbf{u}'_{\mathcal{T}'} \end{pmatrix} = \begin{pmatrix} \mathbf{c} \cdot \mathbf{u}_0 + \mathbf{u}_{\mathcal{T}'+1} \\ \mathbf{0} \\ -(\mathbf{c} \cdot \mathbf{u}_{\mathcal{T}'} + \mathbf{u}_{\mathcal{T}}) \end{pmatrix}.$$

Norm bounds:

- ▶ In each round, $\|\mathbf{x}\|$ grows by $\leq 2|c| \leq 2\gamma$, so the final norm bound is $(2\gamma)^{\log T}$.
- ▶ Reduction loses a similar factor, so is from sequential SIS with norm bound $(2\gamma)^{2\log T}$.
- ▶ Our attacks crucially exploit the gap between these bounds and honest $\|\mathbf{x}\| = 1$.

We construct a "somewhat short" [MP12]-style trapdoor \mathbf{R} for \mathbf{A}_T such that

$$\mathbf{A}_{\mathcal{T}} \cdot \mathbf{R} = \begin{pmatrix} \mathbf{G}_n \\ \mathbf{0} \end{pmatrix} .$$

We construct **R** in a recursive "divide and conquer" manner so that it takes low depth! With such **R**, we then compute a similarly short $\mathbf{x} = \mathbf{R} \cdot \mathbf{G}_n^{-1}(\mathbf{u}_0)$, which satisfies

$$\mathbf{A}_{\mathcal{T}} \cdot \mathbf{x} = \mathbf{A}_{\mathcal{T}} \cdot \mathbf{R} \cdot \mathbf{G}_n^{-1}(\mathbf{u}_0) = \begin{pmatrix} \mathbf{G}_n \\ \mathbf{0} \end{pmatrix} \cdot \mathbf{G}_n^{-1}(\mathbf{u}_0) = \begin{pmatrix} \mathbf{u}_0 \\ \mathbf{0} \end{pmatrix} .$$

This directly solves sequential SIS for a wide range of parameters, including LM23.

We construct a "somewhat short" [MP12]-style $trapdoor \mathbf{R}$ for \mathbf{A}_T such that

$$\mathbf{A}_{\mathcal{T}} \cdot \mathbf{R} = \begin{pmatrix} \mathbf{G}_n \\ \mathbf{0} \end{pmatrix} .$$

We construct **R** in a recursive "divide and conquer" manner so that it takes low depth!

With such **R**, we then compute a similarly short $\mathbf{x} = \mathbf{R} \cdot \mathbf{G}_n^{-1}(\mathbf{u}_0)$, which satisfies

$$\mathbf{A}_T \cdot \mathbf{x} = \mathbf{A}_T \cdot \mathbf{R} \cdot \mathbf{G}_n^{-1}(\mathbf{u}_0) = \begin{pmatrix} \mathbf{G}_n \\ \mathbf{0} \end{pmatrix} \cdot \mathbf{G}_n^{-1}(\mathbf{u}_0) = \begin{pmatrix} \mathbf{u}_0 \\ \mathbf{0} \end{pmatrix}$$
.

This directly solves sequential SIS for a wide range of parameters, including LM23.

We construct a "somewhat short" [MP12]-style $trapdoor \mathbf{R}$ for \mathbf{A}_T such that

$$\mathbf{A}_T \cdot \mathbf{R} = \begin{pmatrix} \mathbf{G}_n \\ \mathbf{0} \end{pmatrix} .$$

We construct **R** in a recursive "divide and conquer" manner so that it takes low depth! With such **R**, we then compute a similarly short $\mathbf{x} = \mathbf{R} \cdot \mathbf{G}_n^{-1}(\mathbf{u}_0)$, which satisfies

$$\mathbf{A}_{T} \cdot \mathbf{x} = \mathbf{A}_{T} \cdot \mathbf{R} \cdot \mathbf{G}_{n}^{-1}(\mathbf{u}_{0}) = \begin{pmatrix} \mathbf{G}_{n} \\ \mathbf{0} \end{pmatrix} \cdot \mathbf{G}_{n}^{-1}(\mathbf{u}_{0}) = \begin{pmatrix} \mathbf{u}_{0} \\ \mathbf{0} \end{pmatrix} .$$

This directly solves sequential SIS for a wide range of parameters, including LM23.

We construct a "somewhat short" [MP12]-style $trapdoor \mathbf{R}$ for \mathbf{A}_T such that

$$\mathbf{A}_{\mathcal{T}} \cdot \mathbf{R} = \begin{pmatrix} \mathbf{G}_n \\ \mathbf{0} \end{pmatrix}$$
.

We construct **R** in a recursive "divide and conquer" manner so that it takes low depth! With such **R**, we then compute a similarly short $\mathbf{x} = \mathbf{R} \cdot \mathbf{G}_n^{-1}(\mathbf{u}_0)$, which satisfies

$$\mathbf{A}_T \cdot \mathbf{x} = \mathbf{A}_T \cdot \mathbf{R} \cdot \mathbf{G}_n^{-1}(\mathbf{u}_0) = \begin{pmatrix} \mathbf{G}_n \\ \mathbf{0} \end{pmatrix} \cdot \mathbf{G}_n^{-1}(\mathbf{u}_0) = \begin{pmatrix} \mathbf{u}_0 \\ \mathbf{0} \end{pmatrix}$$
.

This directly solves sequential SIS for a wide range of parameters, including LM23.

We construct a "somewhat short" [MP12]-style $trapdoor \mathbf{R}$ for \mathbf{A}_T such that

$$\mathbf{A}_T \cdot \mathbf{R} = \begin{pmatrix} \mathbf{G}_n \\ \mathbf{0} \end{pmatrix} .$$

We construct **R** in a recursive "divide and conquer" manner so that it takes low depth! With such **R**, we then compute a similarly short $\mathbf{x} = \mathbf{R} \cdot \mathbf{G}_n^{-1}(\mathbf{u}_0)$, which satisfies

$$\mathbf{A}_T \cdot \mathbf{x} = \mathbf{A}_T \cdot \mathbf{R} \cdot \mathbf{G}_n^{-1}(\mathbf{u}_0) = \begin{pmatrix} \mathbf{G}_n \\ \mathbf{0} \end{pmatrix} \cdot \mathbf{G}_n^{-1}(\mathbf{u}_0) = \begin{pmatrix} \mathbf{u}_0 \\ \mathbf{0} \end{pmatrix}$$
.

This directly solves sequential SIS for a wide range of parameters, including LM23.

We construct a "somewhat short" [MP12]-style trapdoor R for A_T such that

$$\mathbf{A}_{\mathcal{T}} \cdot \mathbf{R} = \begin{pmatrix} \mathbf{G}_n \\ \mathbf{0} \end{pmatrix} .$$

We construct \mathbf{R} in a recursive "divide and conquer" manner so that it takes low depth! With such \mathbf{R} , we then compute a similarly short $\mathbf{x} = \mathbf{R} \cdot \mathbf{G}_n^{-1}(\mathbf{u}_0)$, which satisfies

$$\mathbf{A}_{\mathcal{T}} \cdot \mathbf{x} = \mathbf{A}_{\mathcal{T}} \cdot \mathbf{R} \cdot \mathbf{G}_n^{-1}(\mathbf{u}_0) = \begin{pmatrix} \mathbf{G}_n \\ \mathbf{0} \end{pmatrix} \cdot \mathbf{G}_n^{-1}(\mathbf{u}_0) = \begin{pmatrix} \mathbf{u}_0 \\ \mathbf{0} \end{pmatrix}.$$

This directly solves sequential SIS for a wide range of parameters, including LM23.

Suppose we have a block lower-triangular matrix L (e.g., $L = A_T$), and by recursion in parallel have sub-trapdoors R_0 , R_1 , as follows:

$$\mathbf{L} = \begin{pmatrix} \mathbf{L_0} \\ \boxed{\mathbf{W}} \\ \mathbf{0} \end{pmatrix} \; \mathbf{L_1} \end{pmatrix} \; ; \quad \mathbf{L_0} \mathbf{R_0} = \begin{pmatrix} \mathbf{G}_n \\ \mathbf{0} \end{pmatrix} \; , \quad \mathbf{L_1} \mathbf{R_1} = \begin{pmatrix} \mathbf{G}_n \\ \mathbf{0} \end{pmatrix} \; .$$

Then we construct trapdoor R for L as

$$\begin{pmatrix} \textbf{L}_0 \\ \textbf{W} \\ \textbf{0} \end{pmatrix} \textbf{L}_1) \overbrace{\begin{pmatrix} \textbf{R}_0 \\ \textbf{R}_1 \cdot \textbf{G}_n^{-1}(-\textbf{W}\textbf{R}_0) \end{pmatrix}}^{\textbf{R, in depth } \tilde{O}_{n,q}(1)} = \begin{pmatrix} \textbf{G}_n \\ \textbf{0} \\ \textbf{0} \end{pmatrix} \cdot \textbf{R}_0 + \begin{bmatrix} \textbf{G}_n \\ \textbf{0} \\ \textbf{0} \end{pmatrix} \cdot \textbf{G}_n^{-1}(-\textbf{W}\textbf{R}_0) \end{pmatrix} = \begin{pmatrix} \textbf{G}_n \\ \textbf{0} \\ \textbf{0} \\ \textbf{0} \end{pmatrix} .$$

Suppose we have a block lower-triangular matrix \mathbf{L} (e.g., $\mathbf{L} = \mathbf{A}_T$), and by recursion in parallel have sub-trapdoors \mathbf{R}_0 , \mathbf{R}_1 , as follows:

$$\mathbf{L} = \begin{pmatrix} \mathbf{L}_0 \\ \boxed{\mathbf{W}} \\ \mathbf{0} \end{pmatrix} \; \mathbf{L}_1 \; \mathbf{L}_0 \mathbf{R}_0 = \begin{pmatrix} \mathbf{G}_n \\ \mathbf{0} \end{pmatrix} \; , \quad \mathbf{L}_1 \mathbf{R}_1 = \begin{pmatrix} \mathbf{G}_n \\ \mathbf{0} \end{pmatrix} \; .$$

Then we construct trapdoor R for L as:

$$\begin{pmatrix} \textbf{L}_0 \\ \textbf{W} \\ \textbf{0} \end{pmatrix} \textbf{L}_1) \overbrace{\begin{pmatrix} \textbf{R}_0 \\ \textbf{R}_1 \cdot \textbf{G}_n^{-1}(-\textbf{W}\textbf{R}_0) \end{pmatrix}}^{\textbf{R}, \text{ in depth } \tilde{O}_{n,q}(1)} = \begin{pmatrix} \textbf{G}_n \\ \textbf{0} \\ \textbf{0} \end{pmatrix} \cdot \textbf{R}_0 + \begin{bmatrix} \textbf{G}_n \\ \textbf{0} \\ \textbf{0} \end{bmatrix} \cdot \textbf{G}_n^{-1}(-\textbf{W}\textbf{R}_0) \end{pmatrix} = \begin{pmatrix} \textbf{G}_n \\ \textbf{0} \\ \textbf{0} \\ \textbf{0} \end{pmatrix} \ .$$

Suppose we have a block lower-triangular matrix ${\bf L}$ (e.g., ${\bf L}={\bf A}_T$), and by recursion in parallel have sub-trapdoors ${\bf R}_0, {\bf R}_1$, as follows:

$$\mathbf{L} = \begin{pmatrix} \mathbf{L}_0 \\ \begin{bmatrix} \mathbf{W} \\ \mathbf{0} \end{bmatrix} & \mathbf{L}_1 \end{pmatrix} \; ; \quad \mathbf{L}_0 \mathbf{R}_0 = \begin{pmatrix} \mathbf{G}_n \\ \mathbf{0} \end{pmatrix} \; , \quad \mathbf{L}_1 \mathbf{R}_1 = \begin{pmatrix} \mathbf{G}_n \\ \mathbf{0} \end{pmatrix} \; .$$

Then we construct trapdoor R for L as:

$$\begin{pmatrix} \textbf{L}_0 \\ \textbf{W} \\ \textbf{0} \end{pmatrix} \textbf{L}_1 \end{pmatrix} \overbrace{\begin{pmatrix} \textbf{R}_0 \\ \textbf{R}_1 \cdot \textbf{G}_n^{-1}(-\textbf{W}\textbf{R}_0) \end{pmatrix}}^{\textbf{R}, \text{ in depth } \tilde{O}_{n,q}(1)} = \begin{pmatrix} \textbf{G}_n \\ \textbf{0} \\ \textbf{0} \end{pmatrix} \cdot \textbf{R}_0 + \begin{matrix} \textbf{G}_n \\ \textbf{0} \\ \textbf{0} \end{matrix} \cdot \textbf{G}_n^{-1}(-\textbf{W}\textbf{R}_0) \end{pmatrix} = \begin{pmatrix} \textbf{G}_n \\ \textbf{0} \\ \textbf{0} \end{pmatrix} .$$

Suppose we have a block lower-triangular matrix ${\bf L}$ (e.g., ${\bf L}={\bf A}_T$), and by recursion in parallel have sub-trapdoors ${\bf R}_0, {\bf R}_1$, as follows:

$$\mathbf{L} = \begin{pmatrix} \mathbf{L}_0 \\ \mathbf{W} \\ \mathbf{0} \end{pmatrix} \; \mathbf{L}_1 \end{pmatrix} \; ; \quad \mathbf{L}_0 \mathbf{R}_0 = \begin{pmatrix} \mathbf{G}_n \\ \mathbf{0} \end{pmatrix} \; , \quad \mathbf{L}_1 \mathbf{R}_1 = \begin{pmatrix} \mathbf{G}_n \\ \mathbf{0} \end{pmatrix} \; .$$

Then we construct trapdoor R for L as:

$$\begin{pmatrix} \textbf{L}_0 \\ \textbf{W} \\ \textbf{0} \end{pmatrix} \ \, \textbf{L}_1 \end{pmatrix} \underbrace{\begin{pmatrix} \textbf{R}_0 \\ \textbf{R}_1 \cdot \textbf{G}_n^{-1}(-\textbf{W}\textbf{R}_0) \end{pmatrix}}_{\textbf{R}_1 \cdot \textbf{G}_n^{-1}(-\textbf{W}\textbf{R}_0)} = \begin{pmatrix} \textbf{G}_n \\ \textbf{0} \\ \textbf{0} \end{pmatrix} \cdot \textbf{R}_0 + \begin{bmatrix} \textbf{G}_n \\ \textbf{0} \\ \textbf{0} \end{bmatrix} \cdot \textbf{G}_n^{-1}(-\textbf{W}\textbf{R}_0) \end{pmatrix} = \begin{pmatrix} \textbf{G}_n \\ \textbf{0} \\ \textbf{0} \\ \textbf{0} \end{pmatrix} \; .$$

Suppose we have a block lower-triangular matrix ${\bf L}$ (e.g., ${\bf L}={\bf A}_T$), and by recursion in parallel have sub-trapdoors ${\bf R}_0, {\bf R}_1$, as follows:

$$\mathbf{L} = \begin{pmatrix} \mathbf{L}_0 \\ \mathbf{W} \\ \mathbf{0} \end{pmatrix}$$
; $\mathbf{L}_0 \mathbf{R}_0 = \begin{pmatrix} \mathbf{G}_n \\ \mathbf{0} \end{pmatrix}$, $\mathbf{L}_1 \mathbf{R}_1 = \begin{pmatrix} \mathbf{G}_n \\ \mathbf{0} \end{pmatrix}$.

Then we construct trapdoor R for L as:

$$\begin{pmatrix} \textbf{L}_0 \\ \textbf{W} \\ \textbf{0} \end{pmatrix} \ \, \textbf{L}_1 \end{pmatrix} \underbrace{\begin{pmatrix} \textbf{R}_0 \\ \textbf{R}_1 \cdot \textbf{G}_n^{-1}(-\textbf{W}\textbf{R}_0) \end{pmatrix}}_{\textbf{R}_1 \cdot \textbf{G}_n^{-1}(-\textbf{W}\textbf{R}_0)} = \begin{pmatrix} \textbf{G}_n \\ \textbf{0} \\ \textbf{0} \end{pmatrix} \cdot \textbf{R}_0 + \begin{bmatrix} \textbf{G}_n \\ \textbf{0} \\ \textbf{0} \end{bmatrix} \cdot \textbf{G}_n^{-1}(-\textbf{W}\textbf{R}_0) \end{pmatrix} = \begin{pmatrix} \textbf{G}_n \\ \textbf{0} \\ \textbf{0} \\ \textbf{0} \end{pmatrix} \; .$$

(The base case is $\mathbf{L} = \mathbf{G}_n = \mathbf{A}_1$, which has trivial trapdoor $\mathbf{R} = \mathbf{I}$.)

Recall: Breaking the LM23 Sequentiality Assumption

Sequential SIS with norm bound $(2\gamma)^{2\log T}$ can be solved in depth $\tilde{O}_{n,q}(\log T)$.

By our recursive construction $\mathbf{R} = \binom{\mathsf{R}_0}{\mathsf{R}_1 \cdot \mathsf{G}_n^{-1}(\star)}$, at each level of the recursion, $\|\mathbf{R}\|$ grows by a factor of $\|\mathbf{G}_n^{-1}(\star)\| \leq O(m)$, and the depth is $\tilde{O}_{n,q}(1)$.

So our attack finds a solution:

- with norm $O(m)^{\log T} \leq (2\gamma)^{2\log T}$ (for $m = o(n^2) = o(\gamma^2)$, a common setting),
- ▶ in depth $\tilde{O}_{n,q}(1) \cdot \log T = \tilde{O}_{n,q}(\log T)$.

More generally, norm $O(m)^{\log_k T}$ in depth $\tilde{O}_{n,q}(k \log_k T)$ for any $2 \leq k \leq T$.

Recall: Breaking the LM23 Sequentiality Assumption

Sequential SIS with norm bound $(2\gamma)^{2\log T}$ can be solved in depth $\tilde{O}_{n,q}(\log T)$.

By our recursive construction $\mathbf{R} = \binom{\mathbf{R}_0}{\mathbf{R}_1 \cdot \mathbf{G}_n^{-1}(\star)}$, at each level of the recursion, $\|\mathbf{R}\|$ grows by a factor of $\|\mathbf{G}_n^{-1}(\star)\| \leq O(m)$, and the depth is $\tilde{O}_{n,q}(1)$.

So our attack finds a solution

- lacksquare with norm $O(m)^{\log T} \leq (2\gamma)^{2\log T}$ (for $m = o(n^2) = o(\gamma^2)$, a common setting),
- ▶ in depth $\tilde{O}_{n,q}(1) \cdot \log T = \tilde{O}_{n,q}(\log T)$.

More generally, norm $O(m)^{\log_k T}$ in depth $\tilde{O}_{n,q}(k \log_k T)$ for any $2 \leq k \leq T$.

Recall: Breaking the LM23 Sequentiality Assumption

Sequential SIS with norm bound $(2\gamma)^{2\log T}$ can be solved in depth $\tilde{O}_{n,q}(\log T)$.

By our recursive construction $\mathbf{R}=ig(rac{R_0}{R_1\cdot \mathbf{G}_n^{-1}(\star)}ig)$, at each level of the recursion,

 $\|\mathbf{R}\|$ grows by a factor of $\|\mathbf{G}_n^{-1}(\star)\| \leq O(m)$, and the depth is $\tilde{O}_{n,q}(1)$.

So our attack finds a solution:

- with norm $O(m)^{\log T} \le (2\gamma)^{2\log T}$ (for $m = o(n^2) = o(\gamma^2)$, a common setting),
- lacksquare in depth $ilde{O}_{n,q}(1)\cdot \log T= ilde{O}_{n,q}(\log T)$.

More generally, norm $O(m)^{\log_k T}$ in depth $\tilde{O}_{n,q}(k \log_k T)$ for any $2 \le k \le T$.

Recall: Breaking the LM23 Sequentiality Assumption

Sequential SIS with norm bound $(2\gamma)^{2\log T}$ can be solved in depth $\tilde{O}_{n,q}(\log T)$.

By our recursive construction $\mathbf{R}=ig(egin{array}{c} \mathbf{R}_0 \\ \mathbf{R}_1\cdot\mathbf{G}_n^{-1}(\star) \end{array}ig)$, at each level of the recursion,

 $\|\mathbf{R}\|$ grows by a factor of $\|\mathbf{G}_n^{-1}(\star)\| \leq O(m)$, and the depth is $\tilde{O}_{n,q}(1)$.

So our attack finds a solution:

- with norm $O(m)^{\log T} \le (2\gamma)^{2\log T}$ (for $m = o(n^2) = o(\gamma^2)$, a common setting),
- lacksquare in depth $ilde{O}_{n,q}(1)\cdot \log T= ilde{O}_{n,q}(\log T)$.

More generally, norm $O(m)^{\log_k T}$ in depth $\tilde{O}_{n,q}(k \log_k T)$ for any $2 \le k \le T$.

Recall: in the LM23 PoSW, the first check is $\|\mathbf{x}_{T/2}\| \le 1$, for the middle point; the second check is $\|c \cdot \mathbf{x}_{T/4} + \mathbf{x}_{3T/4}\| \le 2\gamma$, for the folding of the quarter points; etc.

Issue: our recursive construction $\mathbf{R} = \begin{pmatrix} \mathbf{R}_0 \\ \mathbf{R}_1 \cdot \mathbf{G}_n^{-1}(\star) \end{pmatrix}$ does not have a norm "profile" that works for the folding.

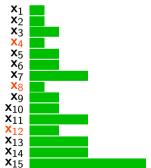
Recall: in the LM23 PoSW, the first check is $\|\mathbf{x}_{T/2}\| \le 1$, for the middle point; the second check is $\|c \cdot \mathbf{x}_{T/4} + \mathbf{x}_{3T/4}\| \le 2\gamma$, for the folding of the quarter points; etc.

Issue: our recursive construction $\mathbf{R} = \begin{pmatrix} \mathbf{R}_0 \\ \mathbf{R}_1 \cdot \mathbf{G}_n^{-1}(\star) \end{pmatrix}$ does not have a norm "profile" that works for the folding.

Recall: in the LM23 PoSW, the first check is $\|\mathbf{x}_{T/2}\| \le 1$, for the middle point; the second check is $\|c \cdot \mathbf{x}_{T/4} + \mathbf{x}_{3T/4}\| \le 2\gamma$, for the folding of the quarter points; etc.

Issue: our recursive construction $\mathbf{R} = {R_0 \choose R_1 \cdot G_n^{-1}(\star)}$ does not have a norm "profile" that works for the folding.

Profile needed in folding:

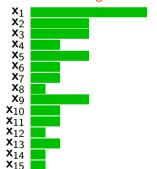


Profile from our recursion:

Recall: in the LM23 PoSW, the first check is $\|\mathbf{x}_{T/2}\| \le 1$, for the middle point; the second check is $\|c \cdot \mathbf{x}_{T/4} + \mathbf{x}_{3T/4}\| \le 2\gamma$, for the folding of the quarter points; etc.

Issue: our recursive construction $\mathbf{R} = {R_0 \choose R_1 \cdot G_n^{-1}(\star)}$ does not have a norm "profile" that works for the folding.

Profile needed in original folding:

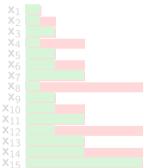


Profile from our recursion:

First of All, A More Accurate Picture

Note the different scales: base γ for folding and base $m \leq \gamma^2$ for our recursion.

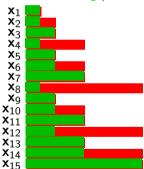
Profiles needed in folding / from our recursion, calibrated



First of All, A More Accurate Picture

Note the different scales: base γ for folding and base $m \leq \gamma^2$ for our recursion.

Profiles needed in folding / from our recursion, calibrated:



First of All, A More Accurate Picture

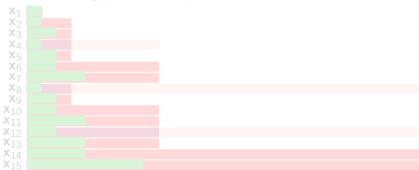
Note the different scales: base γ for folding and base $m \leq \gamma^2$ for our recursion.

Profiles needed in folding / from our recursion, calibrated:

Approach: carefully divide \mathbf{L} unevenly into $\mathbf{L}_0, \mathbf{L}_1, \dots, \mathbf{L}_{k-1}$.

Attempt 1: k = 3, divide by T = T' + 1 + T'.

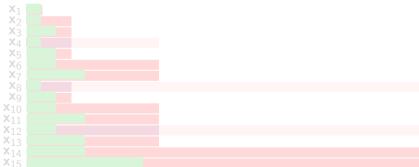
Profiles needed in folding / from attempt 1:



Approach: carefully divide \mathbf{L} unevenly into $\mathbf{L}_0, \mathbf{L}_1, \dots, \mathbf{L}_{k-1}$.

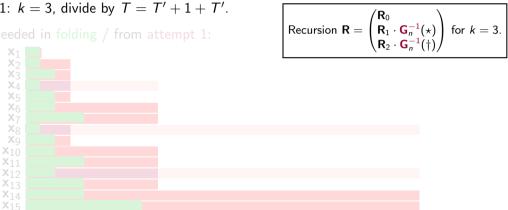
Attempt 1: k = 3, divide by T = T' + 1 + T'.

Profiles needed in folding / from attempt 1:



Approach: carefully divide L unevenly into $L_0, L_1, \ldots, L_{k-1}$.

Attempt 1: k = 3, divide by T = T' + 1 + T'.



Approach: carefully divide L unevenly into $L_0, L_1, \ldots, L_{k-1}$.

Attempt 1: k = 3, divide by T = T' + 1 + T'.

Profiles needed in folding / from attempt 1:

Issue: The first check is $\|\mathbf{x}_{T/2}\| \le 1$. We take $\mathbf{x} = \mathbf{R} \cdot \mathbf{G}_n^{-1}(\mathbf{u}_0)$ so $\|\mathbf{x}_{T/2}\| \le \|\mathbf{R}_{T/2}\|$.

But we cannot get $\|\mathbf{R}_{T/2}\| \leq 1$ even with "honest" middle point (divide by " +1+").

Our solution: to be "fully honest"—apply direct solution: $\mathbf{x} = \begin{pmatrix} \mathbf{x}^t \\ \mathbf{R}_1 \cdot \mathbf{G}_n^{-1}(-\mathbf{W}\mathbf{x}^t) \end{pmatrix}$.

- Recursively solve \mathbf{x}^t , with base case $\mathbf{x}_0 = \mathbf{G}_n^{-1}(\mathbf{u}_0)$.
- \triangleright For computing R_1 (in parallel), use the same trapdoor recursion as before.
- ▶ Roughly the same depth as trapdoor recursion.
- \triangleright Similar generalization to larger k as trapdoor recursion.

E.g., recursion
$$\mathbf{x} = \begin{pmatrix} \mathbf{x}^t \\ \mathbf{R}_1 \cdot \mathbf{G}_n^{-1}(\star) \\ \mathbf{R}_2 \cdot \mathbf{G}_n^{-1}(\dagger) \end{pmatrix}$$
 for $k = 3$.

Issue: The first check is $\|\mathbf{x}_{T/2}\| \le 1$. We take $\mathbf{x} = \mathbf{R} \cdot \mathbf{G}_n^{-1}(\mathbf{u}_0)$ so $\|\mathbf{x}_{T/2}\| \le \|\mathbf{R}_{T/2}\|$. But we cannot get $\|\mathbf{R}_{T/2}\| \le 1$ even with "honest" middle point (divide by " + 1 + ").

Our solution: to be "fully honest"—apply direct solution:
$$\mathbf{x} = \begin{pmatrix} \mathbf{x}^t \\ \mathbf{R}_1 \cdot \mathbf{G}_n^{-1}(-\mathbf{W}\mathbf{x}^t) \end{pmatrix}$$
.

- Recursively solve \mathbf{x}^t , with base case $\mathbf{x}_0 = \mathbf{G}_n^{-1}(\mathbf{u}_0)$.
- ightharpoonup For computing $m R_1$ (in parallel), use the same trapdoor recursion as before.
- ▶ Roughly the same depth as trapdoor recursion.
- \triangleright Similar generalization to larger k as trapdoor recursion.

E.g., recursion
$$\mathbf{x} = \begin{pmatrix} \mathbf{x}^t \\ \mathbf{R}_1 \cdot \mathbf{G}_n^{-1}(\star) \\ \mathbf{R}_2 \cdot \mathbf{G}_n^{-1}(\dagger) \end{pmatrix}$$
 for $k = 3$.

Issue: The first check is $\|\mathbf{x}_{T/2}\| \le 1$. We take $\mathbf{x} = \mathbf{R} \cdot \mathbf{G}_n^{-1}(\mathbf{u}_0)$ so $\|\mathbf{x}_{T/2}\| \le \|\mathbf{R}_{T/2}\|$. But we cannot get $\|\mathbf{R}_{T/2}\| \le 1$ even with "honest" middle point (divide by " + 1 + ").

Our solution: to be "fully honest"—apply direct solution:
$$\mathbf{x} = \begin{pmatrix} \mathbf{x}^t \\ \mathbf{R}_1 \cdot \mathbf{G}_n^{-1}(-\mathbf{W}\mathbf{x}^t) \end{pmatrix}$$
.

- Recursively solve \mathbf{x}^t , with base case $\mathbf{x}_0 = \mathbf{G}_n^{-1}(\mathbf{u}_0)$.
- \triangleright For computing R_1 (in parallel), use the same trapdoor recursion as before.
- ► Roughly the same depth as trapdoor recursion.
- \triangleright Similar generalization to larger k as trapdoor recursion.

E.g., recursion
$$\mathbf{x} = \begin{pmatrix} \mathbf{x}^t \\ \mathbf{R}_1 \cdot \mathbf{G}_n^{-1}(\star) \\ \mathbf{R}_2 \cdot \mathbf{G}_n^{-1}(\dagger) \end{pmatrix}$$
 for $k = 3$.

Issue: The first check is $\|\mathbf{x}_{T/2}\| \le 1$. We take $\mathbf{x} = \mathbf{R} \cdot \mathbf{G}_n^{-1}(\mathbf{u}_0)$ so $\|\mathbf{x}_{T/2}\| \le \|\mathbf{R}_{T/2}\|$. But we cannot get $\|\mathbf{R}_{T/2}\| \le 1$ even with "honest" middle point (divide by " + 1 + ").

Our solution: to be "fully honest"—apply direct solution:
$$\mathbf{x} = \begin{pmatrix} \mathbf{x}^t \\ \mathbf{R}_1 \cdot \mathbf{G}_n^{-1}(-\mathbf{W}\mathbf{x}^t) \end{pmatrix}$$
.

- ▶ Recursively solve \mathbf{x}^t , with base case $\mathbf{x}_0 = \mathbf{G}_n^{-1}(\mathbf{u}_0)$.
- ightharpoonup For computing R_1 (in parallel), use the same trapdoor recursion as before.
- ▶ Roughly the same depth as trapdoor recursion.
- \triangleright Similar generalization to larger k as trapdoor recursion.

E.g., recursion
$$\mathbf{x} = \begin{pmatrix} \mathbf{x}^t \\ \mathbf{R}_1 \cdot \mathbf{G}_n^{-1}(\star) \\ \mathbf{R}_2 \cdot \mathbf{G}_n^{-1}(\dagger) \end{pmatrix}$$
 for $k = 3$.

Issue: The first check is $\|\mathbf{x}_{T/2}\| \le 1$. We take $\mathbf{x} = \mathbf{R} \cdot \mathbf{G}_n^{-1}(\mathbf{u}_0)$ so $\|\mathbf{x}_{T/2}\| \le \|\mathbf{R}_{T/2}\|$. But we cannot get $\|\mathbf{R}_{T/2}\| \le 1$ even with "honest" middle point (divide by " + 1 + ").

Our solution: to be "fully honest"—apply direct solution: $\mathbf{x} = \begin{pmatrix} \mathbf{x}^t \\ \mathbf{R}_1 \cdot \mathbf{G}_n^{-1}(-\mathbf{W}\mathbf{x}^t) \end{pmatrix}$.

- ▶ Recursively solve \mathbf{x}^t , with base case $\mathbf{x}_0 = \mathbf{G}_n^{-1}(\mathbf{u}_0)$.
- For computing R₁ (in parallel), use the same trapdoor recursion as before.
- ▶ Roughly the same depth as trapdoor recursion.
- ightharpoonup Similar generalization to larger k as trapdoor recursion.

E.g., recursion
$$\mathbf{x} = \begin{pmatrix} \mathbf{x}^t \\ \mathbf{R}_1 \cdot \mathbf{G}_n^{-1}(\star) \\ \mathbf{R}_2 \cdot \mathbf{G}_n^{-1}(\dagger) \end{pmatrix}$$
 for $k = 3$.

Issue: The first check is $\|\mathbf{x}_{T/2}\| \le 1$. We take $\mathbf{x} = \mathbf{R} \cdot \mathbf{G}_n^{-1}(\mathbf{u}_0)$ so $\|\mathbf{x}_{T/2}\| \le \|\mathbf{R}_{T/2}\|$. But we cannot get $\|\mathbf{R}_{T/2}\| \le 1$ even with "honest" middle point (divide by " + 1 + ").

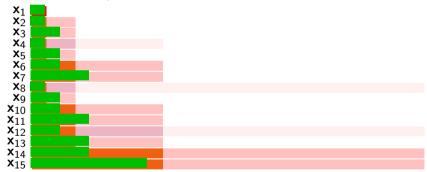
Our solution: to be "fully honest"—apply direct solution: $\mathbf{x} = \begin{pmatrix} \mathbf{x}^t \\ \mathbf{R}_1 \cdot \mathbf{G}_n^{-1}(-\mathbf{W}\mathbf{x}^t) \end{pmatrix}$.

- ▶ Recursively solve \mathbf{x}^t , with base case $\mathbf{x}_0 = \mathbf{G}_n^{-1}(\mathbf{u}_0)$.
- For computing R₁ (in parallel), use the same trapdoor recursion as before.
- ▶ Roughly the same depth as trapdoor recursion.
- Similar generalization to larger k as trapdoor recursion.

E.g., recursion
$$\mathbf{x} = \begin{pmatrix} \mathbf{x}^t \\ \mathbf{R}_1 \cdot \mathbf{G}_n^{-1}(\star) \\ \mathbf{R}_2 \cdot \mathbf{G}_n^{-1}(\dagger) \end{pmatrix}$$
 for $k = 3$.

Matching the Profiles, Attempt 1 + Direct Solution

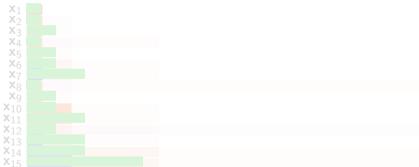
Profiles needed in folding / from attempt 1 with direct solution:



Matching the Profiles, Attempt 2

Attempt 2: further divide at 3T/4, so divide by T = T' + 1 + T'' + 1 + T''.

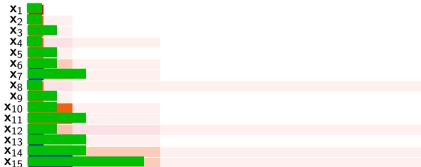
Profiles needed in folding / from attempt 2 (with direct solution):



Matching the Profiles, Attempt 2

Attempt 2: further divide at 3T/4, so divide by T = T' + 1 + T'' + 1 + T''.

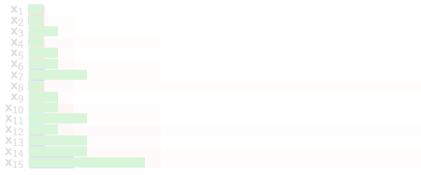
Profiles needed in folding / from attempt 2 (with direct solution):



Matching the Profiles, Attempt 3

Attempt 3: further divide at 5T/8, so divide by T = T' + 1 + T''' + 1 + T''' + 1 + T''.

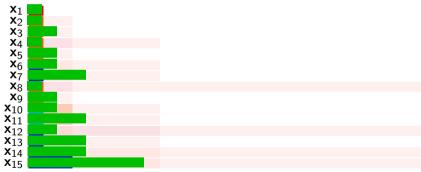
Profiles needed in folding / from attempt 3 (with direct solution)



Matching the Profiles, Attempt 3

Attempt 3: further divide at 5T/8, so divide by T = T' + 1 + T''' + 1 + T''' + 1 + T''.

Profiles needed in folding / from attempt 3 (with direct solution):

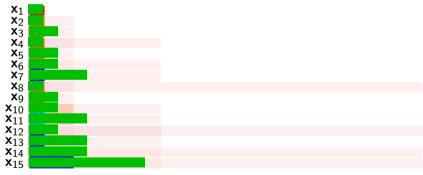


Done!?

Matching the Profiles, Attempt 3

Attempt 3: further divide at 5T/8, so divide by T = T' + 1 + T''' + 1 + T''' + 1 + T''.

Profiles needed in folding / from attempt 3 (with direct solution):



Done!?

Matching the Profiles, Final Attempt

For larger $\mathcal T$, we need to continue and further divide at all " $(2^i+1)/2^{i+1}$ -points". (We have seen the 3/4- and 5/8-points.)

We finally take "attempt $\log T$ ":

- ▶ Uses $k \le 2 \log T + 1 = O(\log T)$ at each level of the recursion.
- ightharpoonup (Still) has $O(\log T)$ levels.
- ▶ Breaks the LM23 PoSW* in depth $\tilde{O}_{n,q}(\log^2 T)$.

Matching the Profiles, Final Attempt

For larger \mathcal{T} , we need to continue and further divide at all " $(2^i+1)/2^{i+1}$ -points". (We have seen the 3/4- and 5/8-points.)

We finally take "attempt $\log T$ ":

- ▶ Uses $k \le 2 \log T + 1 = O(\log T)$ at each level of the recursion.
- ightharpoonup (Still) has $O(\log T)$ levels.
- ▶ Breaks the LM23 PoSW* in depth $\tilde{O}_{n,q}(\log^2 T)$.

Matching the Profiles, Final Attempt

For larger $\mathcal T$, we need to continue and further divide at all " $(2^i+1)/2^{i+1}$ -points". (We have seen the 3/4- and 5/8-points.)

We finally take "attempt $\log T$ ":

- ▶ Uses $k \le 2 \log T + 1 = O(\log T)$ at each level of the recursion.
- ightharpoonup (Still) has $O(\log T)$ levels.
- ▶ Breaks the LM23 PoSW* in depth $\tilde{O}_{n,q}(\log^2 T)$.

We assumed $m \leq \gamma^2$ for both attacks, and this can be relaxed.

(This was by $m = o(n^2)$ and $\gamma = \Omega(n)$, a common setting.)

Recall: for our SIS attack, we achieve norm $O(m)^{\log_k T}$ in depth $\tilde{O}_{n,q}(k \log_k T)$.

- ▶ With large enough constant k, we achieve depth $\tilde{O}_{n,q}(\log T)$ for any $m = \text{poly}(\gamma)$.
- ▶ Also recall: norm $O(m)^{1/\varepsilon}$ in depth $\tilde{O}_{n,q}(T^{\varepsilon})$, extending to $m \leq (2\gamma)^{2\varepsilon \log T}$.

- ▶ We achieve polylogarithmic depth $\tilde{O}_{n,q}(\log^{2+a}T)$ for $m \leq \gamma^{2+a}$, for any $a \in \mathbb{N}$.
- ▶ By "further dividing" at more points, still the same profile-matching approach.

We assumed $m \le \gamma^2$ for both attacks, and this can be relaxed. (This was by $m = o(n^2)$ and $\gamma = \Omega(n)$, a common setting.)

Recall: for our SIS attack, we achieve norm $O(m)^{\log_k T}$ in depth $\tilde{O}_{n,q}(k \log_k T)$.

- ▶ With large enough constant k, we achieve depth $\tilde{O}_{n,q}(\log T)$ for any $m = \text{poly}(\gamma)$.
- ▶ Also recall: norm $O(m)^{1/\varepsilon}$ in depth $\tilde{O}_{n,q}(T^{\varepsilon})$, extending to $m \leq (2\gamma)^{2\varepsilon \log T}$.

- ▶ We achieve polylogarithmic depth $\tilde{O}_{n,q}(\log^{2+a}T)$ for $m \leq \gamma^{2+a}$, for any $a \in \mathbb{N}$.
- ▶ By "further dividing" at more points, still the same profile-matching approach.

We assumed $m \le \gamma^2$ for both attacks, and this can be relaxed. (This was by $m = o(n^2)$ and $\gamma = \Omega(n)$, a common setting.)

Recall: for our SIS attack, we achieve norm $O(m)^{\log_k T}$ in depth $\tilde{O}_{n,q}(k \log_k T)$.

- ▶ With large enough constant k, we achieve depth $\tilde{O}_{n,q}(\log T)$ for any $m = \text{poly}(\gamma)$.
- Also recall: norm $O(m)^{1/\varepsilon}$ in depth $\tilde{O}_{n,q}(T^{\varepsilon})$, extending to $m \leq (2\gamma)^{2\varepsilon \log T}$.

- $lackbox{We achieve polylogarithmic depth $\tilde{O}_{n,q}(\log^{2+a}T)$ for $m\leq \gamma^{2+a}$, for any $a\in\mathbb{N}$.}$
- ▶ By "further dividing" at more points, still the same profile-matching approach.

We assumed $m \le \gamma^2$ for both attacks, and this can be relaxed.

(This was by $m = o(n^2)$ and $\gamma = \Omega(n)$, a common setting.)

Recall: for our SIS attack, we achieve norm $O(m)^{\log_k T}$ in depth $\tilde{O}_{n,q}(k \log_k T)$.

- lackbox With large enough constant k, we achieve depth $\tilde{O}_{n,q}(\log T)$ for any $m=\operatorname{poly}(\gamma)$.
- ▶ Also recall: norm $O(m)^{1/\varepsilon}$ in depth $\tilde{O}_{n,q}(T^{\varepsilon})$, extending to $m \leq (2\gamma)^{2\varepsilon \log T}$.

- ▶ We achieve polylogarithmic depth $\tilde{O}_{n,q}(\log^{2+a}T)$ for $m \leq \gamma^{2+a}$, for any $a \in \mathbb{N}$.
- ▶ By "further dividing" at more points, still the same profile-matching approach.

We assumed $m \le \gamma^2$ for both attacks, and this can be relaxed.

(This was by $m = o(n^2)$ and $\gamma = \Omega(n)$, a common setting.)

Recall: for our SIS attack, we achieve norm $O(m)^{\log_k T}$ in depth $\tilde{O}_{n,q}(k \log_k T)$.

- ▶ With large enough constant k, we achieve depth $\tilde{O}_{n,q}(\log T)$ for any $m = \text{poly}(\gamma)$.
- ▶ Also recall: norm $O(m)^{1/\varepsilon}$ in depth $\tilde{O}_{n,q}(T^{\varepsilon})$, extending to $m \leq (2\gamma)^{2\varepsilon \log T}$.

- ▶ We achieve polylogarithmic depth $\tilde{O}_{n,q}(\log^{2+a}T)$ for $m \leq \gamma^{2+a}$, for any $a \in \mathbb{N}$.
- ▶ By "further dividing" at more points, still the same profile-matching approach.

We assumed $m \leq \gamma^2$ for both attacks, and this can be relaxed.

(This was by $m = o(n^2)$ and $\gamma = \Omega(n)$, a common setting.)

Recall: for our SIS attack, we achieve norm $O(m)^{\log_k T}$ in depth $\tilde{O}_{n,q}(k \log_k T)$.

- ▶ With large enough constant k, we achieve depth $\tilde{O}_{n,q}(\log T)$ for any $m = \text{poly}(\gamma)$.
- ▶ Also recall: norm $O(m)^{1/\varepsilon}$ in depth $\tilde{O}_{n,q}(T^{\varepsilon})$, extending to $m \leq (2\gamma)^{2\varepsilon \log T}$.

- ▶ We achieve polylogarithmic depth $\tilde{O}_{n,q}(\log^{2+a}T)$ for $m \leq \gamma^{2+a}$, for any $a \in \mathbb{N}$.
- ▶ By "further dividing" at more points, still the same profile-matching approach.

Open Questions

Is there attack against the original LM23 PoSW? (I.e., challenge *c* on second half.)

Or can we prove its soundness from other plausible (lattice) assumptions (A proof would need to rely on the position of c.)

Can we construct lattice-based timed cryptography differently? (Recently, TLP by Agrawalr, Malavolta, and Zhang (Crypto 2024).)

Open Questions

```
Is there attack against the original LM23 PoSW? (I.e., challenge c on second half.) Or can we prove its soundness from other plausible (lattice) assumptions? (A proof would need to rely on the position of c.)
```

Can we construct lattice-based timed cryptography differently? (Recently, TLP by Agrawalr, Malavolta, and Zhang (Crypto 2024).)

Open Questions

```
Is there attack against the original LM23 PoSW? (I.e., challenge c on second half.)

Or can we prove its soundness from other plausible (lattice) assumptions? (A proof would need to rely on the position of c.)

Can we construct lattice-based timed cryptography differently?
```

(Recently, TLP by Agrawalr, Malavolta, and Zhang (Crypto 2024).)

References

- S. Agrawalr, G. Malavolta, and T. Zhang. Time-lock puzzles from lattices. In *CRYPTO*, pages 425–456. 2024.
- R. W. F. Lai and G. Malavolta. Lattice-based timed cryptography. In *CRYPTO*, pages 782–804. 2023.
- D. Micciancio and C. Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In EUROCRYPT, pages 700–718. 2012.
- R. L. Rivest, A. Shamir, and D. A. Wagner.
 Time-lock puzzles and timed-release crypto.
 Technical report, Massachusetts Institute of Technology, Cambridge, MA, USA, 1996.