On the Optimal Petri Net Representation for Service Composition

Yin Wang
Hewlett-Packard Labs
Palo Alto, CA
yin.wang @hp.com

Abstract—Service composition has received significant at-
tention in the research community, but the focus has been
on service semantics and composition algorithms, and the
problem of representation of the composition outcome has
been largely ignored. Ad-hoc workflows are often employed,
which typically sacrifice alternative paths and parallelism for
the sake of simple representation. In this paper, we show how
theory of regions, which was originally developed to derive
Petri nets from finite state automata, can be applied to find the
optimal representation of composition. To apply the theory,
we first propose an automaton-based composition framework
that incorporates most existing composition techniques without
changing the service semantics or its description language.
Then based on the special requirements of the composition
representation, we develop our own Petri net synthesis algo-
rithm that combines the benefits of two well known algorithms
from the theory of regions. We demonstrate that workflow-
based representation can limit the concurrency even for simple
input/output based service composition, while our Petri net-
based representation is optimal in terms of flexibility and
parallelism. Our experimental evaluations include a case study
on composing Google Checkout Service, and the study on
Oracle BPEL samples, for which our algorithm obtains better
concurrent representations for almost all non-trivial cases.

I. Introduction

In the Service Oriented Architecture (SOA), workflows
are widely used to organize and orchestrate services to
achieve business objectives. A workflow language, e.g.,
BPEL [3], defines a set of activities, including service
invocation, user interaction, and value assignment. These
activities are arranged by constructs such as sequence, AND
fork/join, OR fork/join, and loops. Workflows are often con-
structed manually, which is a tedious, time-consuming, and
error-prone process. For example, Google estimates up to
four weeks to integrate its checkout service with a merchant
order processing system, despite its detailed documenta-
tion and wide adoption. Manually composed workflows are
poorly optimized, and so maintaining these workflows is
even more difficult.

As services become increasingly abundant, especially due
to the recent boom in cloud services, automated service
composition becomes the key to scale. To address this
challenge, numerous composition methods have been pro-
posed in the literature. Automated service composition relies
on service models that describe the semantics of services.

Ahmed Nazeem
Georgia Institute of Technology
Atlanta, GA
anazeem@gatech.edu

Ram Swaminathan
Hewlett-Packard Labs
Palo Alto, CA
ram.swaminathan @ hp.com

Existing service models can be largely divided into three
categories: input/output (I/O) models [18], [19], precondi-
tion/effect (P/E) models [15], [17], and stateful (e.g., au-
tomaton) models [7], [16]. Different service models result in
different composition algorithms that generate the composite
service to achieve a given goal. Most of the existing work
focus on service models and composition algorithms, and
the output composite service is often represented by some
ad-hoc workflows that organize services as a straight line or
with simple AND/OR structures. These workflows may not
present all possible paths to achieve composition goals, and
describe little or no concurrency.

Because of the poor quality of both manually and au-
tomatically composed workflows, in this paper, we aim to
find the optimal representation for service composition. First,
we propose an automaton-based composition framework
that incorporates I/O, P/E and stateful service models by
automatically converting them into component automata.
Composition goals specified in different service models
are translated into goal states in component automata, and
our composition algorithm selects relevant components for
composition. We use the parallel product operation for the
integration. Parallel product includes all feasible paths that
achieve the goal, but it can be very large and difficult to
understand, and it does not express concurrency explicitly.
Therefore, our last step converts the composite automaton
into an unlabeled Petri net using a synthesis tool we develop
based on the theory of regions [13], [11], [5]. The Petri
net synthesized is optimal in the sense that it preserves
all feasible paths in the parallel product, and it allows
independent transitions (services) of different component
automata to run in full concurrency.

Comparing with automata, Petri nets are much more com-
pact and capture concurrency. Comparing with workflows
that use limited constructs, Petri nets are more expressive.
In the application of service composition, we show that even
with simple I/O models, workflows using only AND/OR
structures do not allow full concurrency in general. We also
prove that when the conversion from an automaton into an
unlabeled Petri net exists, the synthesized net is maximally
flexible and maximally concurrent.

Our contribution is on the optimal Petri net representa-
tion for service composition. In particular, we propose an

automaton-based composition framework that incorporates
all popular service models to facilitate the application of
Petri net synthesis. Our framework converts different service
models into automata preserving the semantics. For the
Petri net synthesis, based on the special requirement of
the composition representation, we develop a customized
algorithm using the theory of regions. In addition to finding
the optimal representation, our algorithm also strives to
reduce the number of places and the number of arcs in
the synthesized Petri net, therefore reducing the size of
the composite. To execute the composed service, we have
implemented a lightweight Petri net execution engine in
our Web2Exchange framework [20]. We note that while the
theory of region has been applied to process mining [8], this
is the first paper to apply this theory to service composition.

Since manual composition is the norm today, to demon-
strate the value of our method, we designed two service
composition scenarios. The first one is for services with de-
tailed but unstructured descriptions, with Google Checkout
Service [1] as a case study. We show that these service
descriptions naturally map to I/O or P/E service models
that capture the semantics. The second scenario is based on
existing manually composed workflows, for which we study
Oracle online BPEL samples [2]. Inspired by the principle of
artifact-centric design [6], we automatically extract automata
that represent the life cycles of objects in workflows. After
recomposition and synthesis, the Petri nets constructed by
our algorithms often exhibit better concurrency yet preserve
the original semantics, mostly because it is difficult for
developers to reason about complex workflows and fully
exploit parallelism. As we obtain these life-cycle automata
automatically from existing workflows, as a byproduct, our
tool can be used to optimize manually composed workflows.
These two sets of experiments show that our composition
framework is flexible enough to incorporate real world
complicated services, and that our synthesis algorithm scales
to composition problems of practical size.

The rest of the paper is organized as follows. Section II
discusses the background related to automaton and Petri net
synthesis. Section III describes how to model and compose
services using automata. Based on the theory of regions,
Section IV presents our Petri net synthesis algorithm, and
Section V presents our experimental results for Google
checkout and BPEL workflow samples. Section VI con-
cludes the paper with a summary of the results.

II. Background

A. Automaton and Parallel Product

We assume readers are familiar with finite state automa-
ton. An automaton g is defined as (Sy,Xg,A,,504), Where
S is the (finite) set of states, X, is the set of event labels,
partial function A, : S, x X, — S, is the transition function,
and sog is the initial state. Assuming component services are

modeled by automata, service composition is based on the
parallel product operation.

Definition 1: The parallel product of automata g and % is
an automaton g||h = (Sg X Sp,Zg ULy, Agjins (Sog, Son))

(s'1)
(s,1)
(s', 1)
undefined

if Aq(s,) is defined
if Ap(r, @) is defined
if both are defined
otherwise

Ath : (S,t) X o —

where s = A, (s,a), ' = Ay(t,a) are successor states of s
and 7, respectively.

The above definition extends to the parallel product of
more than two automata in a natural way. We drop the
subscripts g and & hereafter when the discussion involves
only one automaton.

B. Petri net

Petri nets are bipartite directed graphs with two types
of nodes: circles represent places and solid bars represent
transitions. Tokens in places are shown as dots. Formally, a
Petri net is represented as (P,I1,A,W,My), where P is the set
of places, II is the set of transitions, A C (P x IT) U(IT x P)
is the set of arcs, W : A — N represents arc weight, and for
each p € P, My(p) is the initial number of tokens in p.

A self-loop in a Petri net is a pair p,o such that
(p,a),(a,p) € A. We consider only self-loop-free Petri nets
in this paper. A transition ¢ in a Petri net is enabled if every
input place p of @, i.e., (p,a) € A, has at least W(p,)
tokens. When an enabled transition o fires, it removes
W (p,) tokens from every input place p, and adds W(a,q)
to every output place g of «, i.e., (¢,q) € A.

Let P={pi, -+ ,pn}- The marking (i.e., state) of a Petri
net, which records the number of tokens in each place,
is represented as an n-dimensional column vector M with
non-negative integer entries: M = [M(pl)mM(p,,)]T. As
defined above, M) is the initial marking. The reachable state
space of a Petri net is the set of all markings reachable by
transition firing sequences starting from M. This state space
may be infinite if one or more places contain an unbounded
number of tokens. Otherwise it is called bounded Petri net.
We consider only bounded Petri nets in this paper. If the arc
weight is always one and every reachable marking has no
more than one token in each place, it is called elementary
Petri net. Given a Petri net (P,I1,A,W,M;), we can construct
a reachability graph that is an automaton (S,X,A,sg), where
S represents all reachable markings of N from My, ¥ =TI,
and A captures the dynamics of N, such that A(M,a) =M,
iff a €Il is enabled at marking M, and the firing of a at
M, leads to the marking M.

The Petri net (P,I1,A,W,My) is unlabeled. We can add set
¥ of labels and labeling function L : IT — W. The dynamics
of a labeled Petri net is the same as an unlabeled one, but
the reachability graph is slightly modified as ¥ =W and

A(My,a) = M, iff B €11 changes the marking M) to M,
and L(B) = a.

C. Theory of Regions

The problem of Petri net synthesis is to construct a
Petri net whose reachability graph is isomorphic to a given
automaton (S,X,A,so). In this regard, the theory of regions
is the most extensively studied approach. The theory started
with the synthesis of elementary Petri net (P,I1,A,W,My),
where Il = X. The core idea is the concept called region,
which is a set of states in S that maps to a place in P.
We call the state set a set region. A set region satisfies the
property that identically labeled transitions in the automaton
must connect to states in the region in one of the following
ways: 1) all “enter” the region, ii) all “leave” the region, and
iii) none “enters” or “leaves” the region. In the synthesized
Petri net, event labels that enter the region become the input
transitions of the corresponding place, and event labels that
leave the region become the output transitions. A place p has
one token in some marking M if and only if the automaton
state corresponding to M in the reachability graph is in the
region corresponding to p. Various algorithms have been
proposed to find these regions [13], [11]. Some go one step
further to characterize the conditions needed to synthesize a
Petri net with the minimum number of places [10]. However,
not every automaton can be converted into an elementary
Petri net. A generalized notion of region was developed to
synthesize bounded Petri net [5]. While a set region maps
every event label to one of the three cases, “enter,” “leave,”
and “irrelevant,” the generalized region maps a label to an
arbitrary integer, i.e., it is represented as an integer vector
over all event labels. We call this vector region. During
synthesis, the vector region still maps to a place p in the
Petri net, and its vector represents arc weights between p and
all transitions. As bounded Petri nets are more general than
elementary Petri nets, vector region converts a broader class
of automata than set region does, but it is difficult to reduce
the number of places in the synthesized Petri net. In both
cases, the synthesized Petri nets are unlabeled. Not every
automaton can be converted into an unlabeled Petri net. In
this case, we can either relabel conflicting transitions and
synthesize a labeled Petri net [10] or prune the automaton
until it is isomorphic to the reachability graph of some
unlabeled Petri net. Relabeling reduces concurrency, and
pruning loses both alternative paths and concurrency.

D. Related Work

Existing service composition methods are based on I/O
models, P/E models, and stateful models. The detailed
comparison of these models and the relevant literature can be
found in our study [23]. In the workflow domain, Petri nets
are widely used to model and analyze workflows [21]. Net
synthesis techniques have been applied to process mining to
construct workflows from event logs [8], but not for service

(x|deo,) lalder,uo,]

d not available d available

Figure 1: The automaton for data d in I/O models

composition. Other than Petri nets, Process Algebra has been
widely used to model and analyze concurrent systems [14].
Other concurrent models include trace structures, Hoare
structures, event structures, prime algebraic domains, and
asynchronous transition systems [12].

III. Automaton-based Composition

The service composition problem takes as input a set of
component services with a composition goal, and generates
a composite service, usually represented by a workflow,
that achieves the goal. A component service typically con-
sists of a set of atomic operations. Automated composition
approaches are based on service models that characterize
component services and their operations, which can be
divided into the following three categories: (i) Input/Output
(I/O): an operation of a service is modeled as a pair of
input and output sets, which are identified by the data
schema; (ii) Precondition/Effect (P/E): an operation of a
service is modeled as a pair of precondition and effect sets,
which are logic literals representing typically the state of the
component service; and (iii) Stateful: a component service
is modeled by stateful models, e.g., finite state automata, to
describe its state, where its operations are transitions in the
automata that change its states. Our previous study shows
that these models are increasingly more difficult to construct
and the composition algorithm has higher computation com-
plexity, in exchange for better expressiveness [23]. Based on
this study, we propose to translate different service models
into automata and use parallel product for the composition,
the result of which is consistent with the semantics the
underlying service model encapsulates. Therefore, instead of
designing different Petri net synthesis algorithms for various
service models separately, we can focus on the synthesis
problem of automaton models.

A. Service Modeling

In the input/output service model, an operation o of a
service is define by an I/O pair (Iy,04), where I, and
Oq, are the input and the output data set, respectively. The
execution semantics of the I/O model is such that in order
to execute o, I, must be generated by services executed
preceding . After its execution, Oy is added to the set of
available data. To compose I/O services using automata, we
construct an automaton for each data type as Fig. 1 shows.

An automaton for a data type, say d, has two states
representing the availability of d. The initial state represents
the unavailability of d, where operations that generate d as
an output can take place and move the automaton to the final
state representing the availability of d. Operations that re-

QU OS> Q
o i
=4

. «, B «,B,y,6
e 0B

(b) Automaton

(c) Parallel product of the five automata

Figure 2: Example | and its automaton models

quire d as input can take place only at this state. In addition,
operations that output d can still occur in the final state since
otherwise they would be prohibited after the parallel product
operation. The way we model I/O services guarantees that
an operation generating some data will always precede any
operation that requires the data. Moreover, parallel product
preserves this ordering precedence. We use the following
example to illustrate the idea.

Example 1: There are four operations a, f3,7, 6, with /O
pairs described in Fig. 2a. The automata for the five data
types a,b,c,d,e are shown in Fig. 2b (automata for b,c are
similar to those for a, d and therefore omitted). The parallel
product of the five automata is displayed in Fig. 2c, where
self-loops are omitted. The parallel product preserves not
only the ordering precedence as defined by the I/O model,
but also all the feasible paths and parallelism, as we will see
later in Section IV.

The precondition/effect(P/E) model describes the seman-
tics of services using propositional literals. Formally, the
P/E model of an operation « is a triple (Py,E{,E,), where
P, is the set of literals representing preconditions, E} and
E,, represent positive and negative effects, respectively. We
separate positive and negative effects to facilitate the use of
set operations. The execution semantics of the P/E model
is defined as follows. We assume that the current state 7 is
defined as a set of literals that are true in the state. Literals
not in 7 are assumed to be false (closed-world assumption).
Operation ¢ can take place in T if P, C T, and once «
takes place, the next state is defined as TUE, —E,. In
other words, to execute an operation «, all literals in Py
must be true in the current state. After its execution, E is
added to the state, while E,, is removed. The automaton for
P/E service model is similar to the automaton representing
I/0 models. There are still two states, representing false and
true values of literal [, respectively. Operations that have [in
their positive or negative effect set will move the automaton

to the corresponding states. Operations that require / as a
precondition can only take place when [is true.

In practice, enumeration types, instead of boolean values,
are often used for preconditions and effects. For example,
Google Checkout Service allows an order to have status
such as “chargeable,” “charged,” and “shipped”. Instead of
encoding enumeration types into boolean variables, it is
more efficient to use states in the automaton to represent
all possible values. More specifically, each state represents
a possible value of the enumeration type, and transitions may
change its value; see Section V for a real example.

Many stateful services are modeled by automata already,
while others can be translated into automata in a straight-
forward way. For example, reachability graph can capture
the semantics of services modeled by Petri nets. Next we
consider workflows as stateful services and discuss how to
extract component automata from them that preserve the
semantics. The technique will be used in our experiments
in Section V-B.

Workflows organize various operations into structures
such as AND, OR, and sequence. Each workflow defines
a set of objects, manipulated by its operations that include
service invocation, user interaction, value assignment, and
utility functions. Inspired by the artifact-centric design prin-
ciple [6], we consider these objects as artifacts, and build
their life-cycle automata based on the semantics of the work-
flow. Relevant operations in the workflow become transitions
in the automaton. After we obtain the repository of these
life-cycle automata, service composition is obtained using
parallel product and Petri nets are constructed using our
net synthesis algorithm. This artifact-centric design provides
strong composability over process-oriented designs. Our net
synthesis algorithm has the added benefit that the optimal
representation can be constructed automatically.

B. Service Selection for Composition

Our service composition algorithm takes a composition
goal as the input, selects relevant automaton models from
the service repository, and uses parallel product to build
the composite service that achieves the given goal. This
subsection describes this process in detail.

Let G denote the set of component automata in the service
repository. Since each component automaton in the service
repository represents the life cycle of some object, the
composition task is naturally specified as pairs of initial and
goal states for a subset of component automata, denoted as
G' C G. This subset must be included in the composition.
We start with G’ and expand the set until all relevant
component automata are included. Parallel product synchro-
nizes automata on shared events, therefore all automata
that share events with those in G’ must be included, i.e.,
G =G'U{glge G\G,3he G’ £,NZ; # 0}. We continue
expanding G’ until no new automaton can be added. This
is our basic service selection procedure. Optionally we

Algorithm 1 Petri net synthesis algorithm

Input: Automaton g = (S,X,A,s0)

Output: Petri net N = (P,I1,A, M), where IT = X, and the
reachability graph is isomorphic to g.

: for all @ € X do

1

2: % = all minimal pre-regions of o

3: E ={\gey R — {pre-states of o}

4. for all s E do

5: solve event_seperation_linear_programming(s, o)
6: if feasible solution found then

7: add the solution vector region to #
8: else

9: split_event(c) and start all over

10: end if

11: end for

12: end for

—
(95}

: remove redundant regions and map to Petri net N

can reduce the number of component automata included in
exchange for less flexible solutions. For example, we can
prune dead states in each component automaton, which are
states not reachable from the initial state or states that cannot
reach the goal state. In addition, we can sacrifice alternative
paths for a small composite automaton. For example with
a composition task like map navigation, we may want only
the optimal solution rather than numerous alternatives.

The computational complexity of the above algorithm
depends on the size of the final composite. The parallel
product constructs the Cartesian product for the state sets of
all automata involved in the operation, which dominates the
computation. With many shared events among components,
in practice, the state space is much smaller than the full
Cartesian product. Pruning further reduces the number of
automata in the final composite.

IV. Petri Net Synthesis

The theory of regions is a well-studied body of work.
Section II-C briefly discussed the relevant work and the
two popular concepts of regions, set region and vector
region. Based on the requirements of our synthesis task, we
developed a customized Petri net synthesis algorithm that
combines the benefits of both regions. More specifically,
the algorithm synthesizes both elementary and bounded Petri
nets, and it strives to reduce the size of the synthesized net.
Due to space limit, we try to avoid much of the notation
and development, and instead restrict out attention to the
intuition and the practical implication; see our technical
report [22] for the full development and proofs.

Both set region and vector region algorithms try to satisfy
the event separation condition. This condition requires that
for every state in the automaton, if transition o is not
allowed, there must exist a place in the synthesized Petri net

such that ¢ is disabled by the place at the corresponding
marking. Our key observation is that this place can be
synthesized using either set region or vector region, thus
it allows us to combine the two algorithms and benefit from
both. Algorithm 1 describes the procedure. It is similar to
the algorithm in Fig. 10 of [10], which is based on set
region. The key difference is at lines 5-7, where the event
separation condition cannot be satisfied by set regions alone,
our algorithm seeks vector regions first before splitting
event. The algorithm we use to find vector regions is based
on the linear programming formulation described in [5].

We apply Algorithm 1 to Example 1, and Fig. 3b shows
the synthesized Petri net. It allows fully concurrent execu-
tion. If we use only set regions, event splitting is necessary
and the concurrency is reduced; see Fig. 3a as an example
outcome from a popular Petri net synthesis tool. It is
interesting to note that if we use only structures AND, OR
for this example, the result will not be fully concurrent as
Fig. 3b is. For example, a typical solution puts o and f
in an AND structure, and ¥y and & in a succeeding AND
structure. In this case y and & have to wait until both o and
B finish, a significant performance penalty especially if one
of a and B is much slower than the other. This example
shows that typical workflows with AND/OR structures do
not allow full concurrency even for I/O service models.

For the event splitting at line 9 and the redundant re-
gion removal at line 13, we followed the same strategy
in [10]. The linear programming formulation at line 5 is
slightly different from the one described in [5]. Instead
of a dummy objective function, we added an optimization
goal that is to minimize the number of non-zero entries
in the vector region, therefore minimizing the number of
arcs connected to the corresponding place. This optimization
reduces the size of the Petri net synthesized. In practice,
this optimization often results in simple Petri nets that
can be converted into workflows using AND/OR structures
only. However, with an objective function, the formulation
becomes an integer programming problem rather than linear
programming. In addition to this integer programming step,
line 2 has exponential complexity as the number of pre-
regions can be exponential in the number of states. In
practice, the workflows we collected are small enough such
that the extra optimization is affordable. At last, we present
the following result regarding the concurrency of the Petri
nets synthesized. Both the proof and the correctness of
Algorithm 1 can be found in [22].

Theorem 1: If the Petri net synthesized by Algorithm 1
is unlabeled and self-loop free, then the net is maximally
concurrent. Furthermore, parallel product of I/O service
models always result in a composite automaton that can be
converted into a maximally concurrent unlabeled Petri net.

(a) Petrify [9]

(b) Algorithm 1

Figure 3: Petri nets synthesized for Example 1

V. Experiments

As WSDL is limited to describe the input and output of
services, most WSDL services perform simple data look up
tasks [4]. Semantic-rich services are usually described by
plain text. To evaluate the full capability of our composition
framework and the synthesis algorithm, we designed two
service composition scenarios. First, through the case study
of Google checkout service, we show that the text documents
for these semantic-rich services closely resemble I/O and P/E
service models, which are easily translated into automaton
for automated composition. The second scenario is for
manually composed workflows, for which we experimented
with Oracle online BPEL samples [2]. We built a BPEL
parser to automatically extract automata that represent life
cycles of data objects in these workflows, and we show that
the composite obtained exhibits better parallelism for almost
all non-trivial workflows.

A. Case Study: Google Checkout

Google Checkout is an online payment processing service
that helps merchants manage their order payments. It has
around 20 APIs that communicate to the merchant through
HTTP PUT and GET commands. The parameters of each
API can be sent through name value pair in the HTTP
request, or in a separate XML message. These APIs can
handle simple lump sum payments, as well as complicated
per item order processing operations such as credit autho-
rization, declined payment, partial charge, back order, ship-
ping, return, and refund. Because of this flexibility, there is a
steep learning curve on using these APIs. Google estimates
up to four weeks to integrate its checkout service with the
merchant’s shopping portal [1]. Different order processing
systems result in different integration, and the checkout
service itself is evolving. This makes the whole system
extremely complex and hard to maintain. Our goal is to
model the checkout service in our composition framework,
such that merchants only need to describe their own order
processing systems, and our composition engine handles the
integration.

Many checkout APIs provide simple stateless calculation,
which can be captured by I/O models. For example, shipping
cost and tax calculations are stateless APIs where the input
is the shopping cart and the output is the cost for shipping
and tax, respectively. These I/O models can be constructed

Financial State | Valid Actions Description

REVIEWING None Reviewing the order

CHARGE- authorize-order, | The order is ready to

ABLE cancel-order, be charged

charge-and-ship

CHARGING None Go to CHARGED or
PAYMENT_DECLINED

CHARGED refund-order The order is charged

Table I: Financial order states table (partial) from [1]

Place order
Init
auth

customer changes credit card

—‘mm_Declined

Reviewing

auth fail
cancel charge fail

Cancelled_by_Google

charge| success cancel

Figure 4: The automaton for Google financial status variable

refund order

automatically through the analysis of XML schema. Order
processing and financial command APIs are the core of the
checkout service. Simple I/O model is not sufficient for their
semantics. Table I is a part of the financial status summary
table taken from the online reference, with simplified de-
scriptions. It shows financial states side by side with the list
of commands available in a state. Precondition/effect models
capture these enumeration data type well, as discussed in
Section III-A. The automaton translated from the P/E model
is displayed in Fig. 4. This model construction can be
automated if there are proper structure and syntax added
to the documents.

To illustrate the composition, we constructed a basic
merchant order handling process as follows. After charging
the order, the merchant checks inventory to see if the items
are available, if not, it may cancel or mark the order as
back ordered. Otherwise the order will be shipped. After
shipping, upon receiving the order return notification, the
merchant will refund the customer and cancel the order. In
addition, we have a few WSDL-based data lookup services
that calculate taxes, shipping cost and coupons, to be inte-
grated together with the merchant and the checkout services.
These services are captured by I/O models, and subsequently
translated into automata model.

In the service composition phase, our service selection
algorithm picked twelve Google checkout APIs that are nec-
essary for the completion of the aforementioned basic mer-
chant process. There are a total of 20 component automata
used for the parallel product integration. The composite
automaton has 98 states, 134 transitions and 31 event labels.
It turns out that this automaton cannot be converted into an
unlabeled Petri net for maximum concurrency. Algorithm 1
had to split events and iterate. The final result contains 43
transitions rather than the original 31 events. The overall
computation takes a few seconds. In comparison, Petrify,

the set region based tool [9], generates a Petri net with 49
transitions, which is less concurrent. This case study shows
that our composition framework incorporates real services
well, and that our Petri net synthesis algorithm adds the
benefit of better concurrent representation.

B. Oracle BPEL Workflow Samples

We apply the model extraction technique described in Sec-
tion III-A to real BPEL workflows, and evaluate the benefit
of our Petri net synthesis algorithm for better concurrency.
The model extraction has to preserve the semantics of the
workflow so the recomposed workflow produces the same
result. We follow two rules for this purpose. First, each
read of a variable in the workflow must see the same write.
Second, invocations of an external service, called partner
links in BPEL, must follow the same order. The second rule
is conservative especially if the external service is stateless.
We require this rule as we assume no knowledge about
external services.

Following the two rules, we build an automaton for
each variable and partner link in a BPEL workflow. The
transitions of these automata are activities in the workflow.
There are around 20 activities defined in BPEL specifi-
cation [3], including basic activities such as receive,
reply, invoke, and assign, and structured activities
such as sequence, flow, and switch. In addition, some
examples include Oracle’s BPEL extensions. Basic activities
access variables either explicitly through an attribute, e.g.,
variable="replyInput," or through functions in
an expression, e.g., getVariableData (' input’ ...).
These activities also specify whether the access is a read or
write. Structured activities define the ordering relationship of
basic activities, which is captured by the automaton model.
For example if two accesses to the same variable occur in a
sequence and at least one of them is a write, we add these
two activities as consecutive transitions in the automaton. If
both of them are reads, it is safe to include all interleaving
of the two activities in the automaton. Branches in the
automaton capture switch, while flow is safely ignored
as concurrent activities must access different objects.

We implemented a model extraction tool for BPEL by
parsing the XML file. We applied the tool to 194 BPEL sam-
ples downloaded from Oracle BPEL designer website [2].
These samples are divided into categories including “de-
mos”, “references,” “tutorials,” and “utils.” Our model ex-
traction tool successfully parsed 192 of them. One example
caused a SAXParseException in the XML parser, and
another contains a 1ink structure that we do not handle yet.
Most of these samples are very small, with no more than 10
activities, and even less variables. After extracting life-cycle
automata for variables and partner links, the parallel product
of these automata contains less than 100 states, except one
example with a state size of 1,186. It is an XPath that

- Same concurrency
l:l Better concurrency

Frequency

2 4 6 8 10 12 14 1‘6 18
Number of activites

Figure 5: 31 Oracle BPEL examples in the “demos” category

contains value assignments to many different variables that
can be arbitrarily interleaved, hence state explosion.

Our Petri net synthesis algorithm successfully converted
all 192 composite automata to Petri nets using only set
regions. The linear programming function for vector region
was never invoked. Due to the small size of these examples,
the calculation takes less than a second for all cases. To
compare our results with the original workflow, we manually
examined all 31 examples in the “demos” category, which
contains some of the largest examples in our collection. The
result is displayed as histogram in Fig. 5. There are 18 cases
where our Petri nets are more concurrent, and the rest 13 are
exactly the same. These 13 cases are mostly trivial examples
with less than 10 activities organized as one sequence. For
the other 18 cases, the most common source for better
concurrency is value assignments to different variables or
different portions of the same variable that can take place in
parallel. Another common pattern is a generic reply message
that does not depend on any computation, and therefore can
be sent in parallel. There are a few cases where different
service invocations can happen simultaneously. Interestingly,
we discovered a case where we believe that the programmer
forgot to put an output variable in a service invocation to
store the result. Therefore, the service invocation becomes
independent with the subsequent activities, and our synthesis
tool fully exploited the optimization opportunity.

For the purpose of illustration, we picked one example,
called “CheckoutFlow,” in the “demos” category. The code
snippet is displayed in Fig. 6. The whole workflow contains
one big sequence structure with 14 activities in total. The
figure shows the middle part with 6 activities. The first three
activities, invoke, assign, and reply, must take place
in order because the output of the previous activity is the
input of the next. The next activity, receive, has to follow
reply as well since they both invoke the same partner link
client. The next activity, the second invoke, only de-
pends on the first invoke as they use the same partner link.
Therefore it can take place in parallel with the preceding

<sequence name="main">

<invoke partnerLink="CRMService" ... inputVariable=
"crmRequest" outputVariable="crmAddressResponse"/>

<assign><copy>
<from variable="crmAddressResponse" part="payload"/>
<to variable="replyInput" part="payload"/>
</copy></assign>

<reply partnerLink="client" ... variable="replyInput"/>
<receive partnerLink="client" ... variable="continue"/>

<invoke partnerLink="CRMService" ... inputVariable=
"crmRequest" outputVariable="crmCreditCardResponse"/>

<assign><copy>
<from variable="continue" part="payload"/>
<to variable="input" part="payload"/>
</copy><copy>
<from variable="crmCreditCardResponse" part=".
<to variable="replyContinue" part="payload"/>
</copy></assign>

L"/>

</sequence>

Figure 6: Code snippet of one Oracle BPEL example

Reply Receive

Assign

Figure 7: Petri net (partial) of the Oracle BPEL example

four activities. The last assign activity must wait for all
the preceding activities to finish, as it has two input variables
that depend on both branches. All these ordering constraints
are enforced by the parallel product of component automata
that models these variables and the partner links, in a similar
fashion as Example 1 demonstrates. Figure 7 shows the part
of the final synthesis result that corresponds to this code
snippet.

VI. Conclusion

In this paper, we studied the representation problem
for service composition and showed how theory of re-
gions, can be applied to find the optimal representation
of composition. To apply the theory, we first proposed an
automaton-based composition framework that incorporates
most existing composition techniques without changing the
service semantics or its description language. Then based on
the special requirements of the composition representation,
we developed our own Petri net synthesis algorithm that
combines the benefits of two well known algorithms from
the theory of regions. We demonstrated that workflow-based
representation can limit the concurrency even for simple
input/output based service composition, and we proved that
our Petri net-based representation is optimal in terms of
flexibility and parallelism. Our experimental evaluations,
which include a case study on Google Checkout Service,
and the study on Oracle BPEL samples, demonstrates that
our algorithm obtains better concurrent representations for
almost all non-trivial cases.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[91]

[10]

[11]
[12]
[13]
[14]

[15]

[16]

[17]

(18]
[19]

[20]

(21]

[22]

(23]

Google checkout service.
checkout/developer/index.html.
Oracle online BPEL samples. http://soasamples.samplecode.
oracle.com/.

WS-BPEL 2.0, OASIS standard. http://docs.oasis-open.org/
wsbpel/2.0/wsbpel-v2.0.html.

E. Al-Masri and Q. H. Mahmoud. Investigating Web services
on the world wide web. In WWW, pages 795-804, 2008.

E. Badouel and P. Darondeau. Theory of regions. In Lectures
on Petri Nets I: Basic Models, Advances in Petri Nets, the
volumes are based on the Advanced Course on Petri Nets,
pages 529-586, London, UK, 1998. Springer-Verlag.

K. Bhattacharya and et al. Towards formal analysis of artifact-
centric business process models. In BPM, pages 288-304,
2007.

T. Bultan and et al. Conversation specification: a new
approach to design and analysis of e-service composition. In
WWW, pages 403—410, 2003.

J. Carmona and et al. A region-based algorithm for discov-
ering petri nets from event logs. In BPM, pages 358-373,
2008.

J. Cortadella and et al. Petrify: a tool for manipulating concur-
rent specifications and synthesis of asynchronous controllers.
IEICE Transactions on Information and Systems, 80:315-325,
1997.

J. Cortadella and et al. Deriving petri nets from finite
transition systems. [EEE Trans. Comput., 47(8):859-882,
1998.

J. Desel and W. Reisig. The synthesis problem of petri nets.
Acta Inf., 33(4):297-315, 1996.

V. Diekert and G. Rozenberg. The book of traces. World
Scientific Pub Co Inc, 1995.

A. Ehrenfeucht and G. Rozenberg. Partial (set) 2-structures.
Acta Informatica, 27:315-368, 1990.

R. Milner. Communication and concurrency. Prentice Hall
International (UK) Ltd., Hertfordshire, UK, UK, 1995.

S. Narayanan and S. A. Mcllraith. Simulation, verification
and automated composition of web services. In WWW, pages
77-88, 2002.

M. Pistore and et al. Automated synthesis of composite
BPEL4WS Web services. In ICWS, pages 293-301, 2005.
A. Ragone and et al. Fully automated Web services orchestra-
tion in a resource retrieval scenario. In ICWS, pages 427434,
2005.

A. Riabov and et al. Wishful search: interactive composition
of data mashups. In WWW, pages 775-784, 2008.

Z. Shen and J. Su. On completeness of Web service compo-
sitions. In ICWS, pages 800-807, 2007.

V. Srinivasmurthy and et al. Web2exchange: A model-based
service transformation and integration environment. pages
324 -331, Sept. 2009.

W. M. P. van der Aalst. The application of Petri nets to
workflow management. The Journal of Circuits, Systems and
Computers, 8(1):21-66, 1998.

Y. Wang and et al. Finding the optimal representation for
service composition using the theory of regions. Technical
Report HPL-2010-191, HP Labs, Palo Alto, CA, 2010.

Y. Wang and et al. A language-based framework for ana-
lyzing service representation models and service composition
approaches. In IEEE International Conference on e-Business
Engineering, 2010.

http://code.google.com/apis/

