
Polygon: Symbolic Reasoning for SQL using Conflict-Driven
Under-Approximation Search
PINHAN ZHAO, University of Michigan, USA
YUEPENG WANG, Simon Fraser University, Canada
XINYU WANG, University of Michigan, USA

We present a novel symbolic reasoning engine for SQL which can efficiently generate an input 𝐼 for 𝑛 queries
𝑃1, · · · , 𝑃𝑛 , such that their outputs on 𝐼 satisfy a given property (expressed in SMT). This is useful in different
contexts, such as disproving equivalence of two SQL queries and disambiguating a set of queries. Our first
idea is to reason about an under-approximation of each 𝑃𝑖—that is, a subset of 𝑃𝑖 ’s input-output behaviors.
While it makes our approach both semantics-aware and lightweight, this idea alone is incomplete (as a fixed
under-approximation might miss some behaviors of interest). Therefore, our second idea is to perform search

over an expressive family of under-approximations (which collectively cover all program behaviors of interest),
thereby making our approach complete. We have implemented these ideas in a tool, Polygon, and evaluated it
on over 30,000 benchmarks across two tasks (namely, SQL equivalence refutation and query disambiguation).
Our evaluation results show that Polygon significantly outperforms all prior techniques.
CCS Concepts: • Theory of computation→ Automated reasoning; Program reasoning; • Software and
its engineering→ Formal methods.
Additional Key Words and Phrases: Automated Reasoning, Testing, Databases.
ACM Reference Format:
Pinhan Zhao, Yuepeng Wang, and Xinyu Wang. 2025. Polygon: Symbolic Reasoning for SQL using Conflict-
Driven Under-Approximation Search. Proc. ACM Program. Lang. 9, PLDI, Article 200 (June 2025), 26 pages.
https://doi.org/10.1145/3729303

1 Introduction
The general problem we study in this paper is the following.

Given 𝑛 programs 𝑃1, · · · , 𝑃𝑛 , how to generate an input 𝐼 such that their outputs on 𝐼 satisfy a
given property 𝐶 (which is expressed as an SMT formula over variables 𝑦1, · · · , 𝑦𝑛). That is,
𝐶
[
𝑦1 ↦→ 𝑃1 (𝐼), · · · , 𝑦𝑛 ↦→ 𝑃𝑛 (𝐼)

]
is true.

This problem can be viewed as a form of “test input generation” task, which can be instantiated to
different applications with different application conditions𝐶 . One example application is to disprove
equivalence of two programs, with 𝐶 being simply 𝑦1 ≠ 𝑦2. Another is program disambiguation—
e.g., find 𝐼 that can divide 𝑛 programs into disjoint groups, such that: (i) programs within the same
group return the same output given 𝐼 , while (ii) outputs of those from different groups are distinct.
Finding such distinguishing inputs is crucial for example-based program synthesis [32, 33, 46]
Instantiation to SQL. We focus on one instantiation of this general problem, where 𝑃𝑖 ’s are written
in SQL (which is a widely used domain-specific language). The aforementioned applications still
Authors’ Contact Information: Pinhan Zhao, University of Michigan, Ann Arbor, USA, pinhan@umich.edu; Yuepeng
Wang, Simon Fraser University, Burnaby, Canada, yuepeng@sfu.ca; Xinyu Wang, University of Michigan, Ann Arbor, USA,
xwangsd@umich.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 2475-1421/2025/6-ART200
https://doi.org/10.1145/3729303

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 200. Publication date: June 2025.

HTTPS://ORCID.ORG/0009-0002-1149-0706
HTTPS://ORCID.ORG/0000-0003-3370-2431
HTTPS://ORCID.ORG/0000-0002-1836-0202
https://doi.org/10.1145/3729303
https://orcid.org/0009-0002-1149-0706
https://orcid.org/0000-0003-3370-2431
https://orcid.org/0000-0003-3370-2431
https://orcid.org/0000-0002-1836-0202
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3729303
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/

200:2 Pinhan Zhao, Yuepeng Wang, and Xinyu Wang

hold—generating counterexamples to refute SQL equivalence is useful in many ways [9, 10, 15, 28],
and query disambiguation is critical for example-based SQL query synthesis [6, 42, 67, 68].
State-of-the-art. To the best of our knowledge, no existing work can efficiently generate such
inputs for an expressive subset of SQL. While conventional testing-based approaches—e.g., those
based on fuzzing [18] and evolutionary search [7]—can generate many inputs quickly, they do not
consider the (highly complex) semantics of SQL. As a result, they fall short of capturing subtle
differences across queries, which is crucial for generating distinguishing inputs. While some works
(e.g., XData [9, 10]) consider basic semantic information (such as join and selection conditions),
they support a very limited subset of SQL and are specialized in equivalence checking. On the other
end of the spectrum, techniques based on formal methods [15, 28, 66, 69, 71] perform symbolic
reasoning—typically by encoding complete query semantics in SMT. While boiling the problem
down to SMT solving, these methods often create large SMT formulas that are computationally
expensive to solve, especially for problems that involve many large queries with complex semantics.
For instance, for operators like group-by and aggregation, fully encoding all grouping possibilities
would cause an exponential blow-up in the resulting formula’s size.
Key challenge. While clearly critical to consider some semantic information, it would significantly
slow down the reasoning process if we consider the full semantics. The core challenge hence is
how to take into account SQL semantics in a way that is lightweight without hindering completeness.

Prior works fall into two extremes of the spectrum: either (1) fully encoding semantics for all inputs
thus heavyweight and not scalable, or (2) fast by considering no or very little semantic information
but at the cost of missing inputs of interest frequently (i.e., incomplete).
Our key insight. Our key insight is to reason about an under-approximation (or UA) of the program.
This, while much faster than analyzing the full program semantics, is incomplete. Therefore, we
also perform search over an expressive family of UAs (which collectively cover all program behaviors
of interest), thereby making our entire approach complete.

Specifically, given 𝑃1, · · · , 𝑃𝑛 and application condition 𝐶 , we begin with a UA for each 𝑃𝑖 which
encodes a subset O𝑖 of reachable outputs for 𝑃𝑖 (together with their corresponding inputs). Here, an
output is reachable, if it can indeed be returned by the program on an input [49]. We then check if
there exist 𝑂1 ∈ O1, · · · ,𝑂𝑛 ∈ O𝑛 such that 𝐶 [𝑦1 ↦→ 𝑂1, · · · , 𝑦𝑛 ↦→ 𝑂𝑛] is true. If so, we can easily
solve our problem by deriving the corresponding input given the under-approximate semantics (or
UA semantics) of 𝑃1, · · · , 𝑃𝑛 . Otherwise, we try again but use a different choice of UA. This process
terminates, when a desired UA is found or no such UA can be found for the given family of UAs.

Below we briefly summarize the key challenges and our solutions. Section 2 will further illustrate
our approach using a concrete example.
Under-approximating SQL query semantics. The first challenge is how to under-approximate a
query 𝑃 . Our idea is to encode 𝑃 ’s UA semantics in an SMT formula Ψ whose models correspond to
genuine input-output pairs of 𝑃 . In other words, Ψ always encodes reachable outputs. On the other
hand, not all reachable outputs are necessarily encoded by Ψ; therefore Ψ is an under-approximation.
Our first novelty lies in a compositional method to build Ψ for 𝑃 , by conjoining Ψ𝑖 for each AST
node 𝑣𝑖 of 𝑃 . Here, each Ψ𝑖 under-approximates the semantics of the query operator 𝐹 at 𝑣𝑖 .
Defining a family of under-approximations. This compositional encoding method lends itself
well to addressing our second challenge—how to define a family of UAs for a query 𝑃? Our idea is to
first define a familyU𝐹 of UAs for each query operator 𝐹 in the query language, which collectively
covers all inputs of interest to 𝐹 . Then, we define a UA map 𝑀 for 𝑃 , which maps each AST node 𝑣𝑖
in 𝑃 to some UA inUop(𝑣𝑖) . Each UA map𝑀 can be encoded into an SMT formula Ψ := Encode(𝑀),

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 200. Publication date: June 2025.

Polygon: Symbolic Reasoning for SQL using Conflict-Driven Under-Approximation Search 200:3

by taking the conjunction of the encodings of𝑀 ’s entries. We can define a family of such UA maps,
where each Ψ under-approximates 𝑃 in a different way. This approach can be further generalized
to under-approximate 𝑛 queries, by extending the UA map 𝑀 to include all AST nodes across 𝑛
queries. Conceptually, if Φ := Ψ∧𝐶 is satisfiable, we can derive a satisfying input 𝐼 from a satisfying
assignment of Φ that solves our reasoning task for 𝑛 queries.
Conflict-driven under-approximation search. Our third research question is: how to efficiently
find a satisfying UA map𝑀 (i.e., Encode(𝑀) ∧𝐶 is satisfiable)? We propose a novel search algorithm
that explores a sequence of𝑀𝑖 ’s, until reaching a satisfying one. Each iteration is fast, and the number
of iterations is typically small. Our novelty lies in how we generate 𝑀𝑖+1 from an unsatisfiable
𝑀𝑖 . In particular, we first obtain a subset of 𝑀𝑖 ’s entries for a subset 𝑉 of AST nodes in 𝑀𝑖—i.e.,
𝑀𝑖 ↓ 𝑉—such that Encode(𝑀𝑖 ↓ 𝑉) ∧ 𝐶 is unsat. In other words, 𝑀𝑖 ↓ 𝑉 is a conflict. Then, we
resolve this conflict by mapping some nodes in 𝑉 to new UAs, such that 𝑀𝑖+1 ↓ 𝑉 is satisfiable.
During this process, we might also need to adjust mappings for nodes outside 𝑉 , but we do not
analyze their semantics. Our novelty lies in the development of a lattice structure of UAs and an
algorithm that exploits this structure for efficient conflict resolution.
Evaluation. We have implemented these ideas in a tool called Polygon1, and evaluated it on two
applications. The first one is SQL query equivalence refutation. Our evaluation result on 24,455
benchmarks reveals that Polygon can disprove a large number of query pairs using a median of 0.1
seconds—significantly outperforming all prior techniques. Our evaluation result on a total of 6,720
query disambiguation benchmarks also shows Polygon significantly beats all existing approaches
both in terms of the number of benchmarks solved and the solving time.
Contributions. This paper makes the following contributions.
• Develop a new symbolic reasoning engine for SQL based on under-approximate reasoning.
• Formulate the reasoning task as an under-approximation search problem.
• Propose a compositional method to define the search space of under-approximations.
• Design an efficient conflict-driven algorithm for searching under-approximations.
• Evaluate an implementation, Polygon, of these ideas on more than 30,000 benchmarks.

2 Overview

Background on SQL equivalence checking. In this section, we will present a simple example to
illustrate how our approach works for checking the equivalence of two SQL queries. This is an
important problem with applications in various downstream tasks. One such task is automated
grading of SQL queries (consider LeetCode2): a user-submitted query needs to be checked against a
predefined “ground-truth” query; in case of non-equivalence, provide a counterexample to users.
Another task is to validate query rewriting, where a slow query 𝑃1 is transformed to a faster query
𝑃2 using rewrite rules. We can perform translation validation by checking 𝑃1 is equivalent to 𝑃2. A
counterexample in this case can help developers fix the incorrect rewrite rule. We also refer readers
to recent work on SQL equivalence checking [15, 28] for more details.
Equivalence refutation example. Consider a database with the following three relations.

Customers : [customer_id, customer_name, email]
Contacts : [user_id, contact_name, contact_email]
Invoice : [invoice_id, price, user_id]

1When you under-approximate circle (rhymes with SQL), you get Polygon.
2https://leetcode.com/ is an online platform that provides coding problems in different languages (including SQL).

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 200. Publication date: June 2025.

https://leetcode.com/

200:4 Pinhan Zhao, Yuepeng Wang, and Xinyu Wang

𝑣1: SELECT invoice_id, T.customer_name, cnt

FROM Invoices I

𝑣2: LEFT JOIN (

𝐿2: SELECT A.customer_id, customer_name,

COUNT(contact_name) AS cnt

FROM Customers A

𝑣4: LEFT JOIN Contacts B

𝜙2: ON A.customer_id = B.user_id

𝑣3: GROUP BY A.customer_id, customer_name) T

𝜙1: ON I.user_id = T.customer_id

𝑣1 : Project𝐿1

𝑣2 : LJoin𝜙1

𝑣5 : Invoices 𝑣3 : GroupBy ®𝐸,𝐿2

𝑣4 : LJoin𝜙2

𝑣6 : Customers 𝑣7 : Contacts

Fig. 1. SQL query 𝑃 (left) and its corresponding AST (right). While 𝑃 is written in standard SQL syntax, we

express its AST following our grammar in Figure 7. In particular, an AST node is labeled with a query operator,

with non-query parameters (such as column lists and predicates) being part of the label. Project in the AST

means SELECT, LJoin is LEFT JOIN, 𝐿1 corresponds to “invoice_id, T.customer_name, cnt” on the left, etc.

Each AST node is annotated with a unique id 𝑣𝑖 . We also annotate some parts of 𝑃 to illustrate this mapping.

𝐿′: SELECT invoice_id, c.customer_name,

COUNT(t.contact_name) cnt

FROM invoices i

𝑣′4: LEFT JOIN customers c

𝜙 ′
3: ON i.user_id = c.customer_id

𝑣′3: LEFT JOIN contacts t

𝜙 ′
2: ON c.customer_id = t.user_id

𝑣′2: LEFT JOIN customers c1

𝜙 ′
1: ON t.contact_email = c1.email

𝑣′1: GROUP BY invoice_id, c.customer_name

𝑣′1 : GroupBy ®𝐸′,𝐿′

𝑣′2 : LJoin𝜙′
1

𝑣′3 : LJoin𝜙′
2

𝑣′4 : LJoin𝜙′
3

𝑣′5 : invoices 𝑣′6 : customers

𝑣′7 : contacts

𝑣′8 : customers

Fig. 2. SQL query 𝑃 ′ (left) and its corresponding AST (right), following the same protocol as in Figure 1.

Here, Customers table contains customer information, Contacts stores contact information for each
customer, and Invoice tracks price and customer information for invoices.

Let us consider the following simplified task from a LeetCode problem3: for each invoice, find its
corresponding customer’s name and the number of contacts for this customer. Figures 1 and 2 show
two SQL queries (which are simplified from real-life queries submitted by LeetCode users), where
𝑃 is a correct solution but 𝑃 ′ is not. 𝑃 first counts the number of contacts for each customer using
a subquery (rooted at AST node 𝑣3; see Figure 1), then joins it with the Invoices table, and finally
selects the desired columns. On the other hand, 𝑃 ′ first joins Invoices, Customers, and Contacts to
find the customer name and the count of contacts for each invoice (see 𝑣 ′3 in Figure 2), and then
joins the Customers table again. 𝑃 and 𝑃 ′ yield different outputs when multiple rows in Customers

share the same email address (which is possible): in this case, a customer’s contact for an invoice
would be counted multiple times in the output of 𝑃 ′, leading to incorrect aggregation results.

Figure 3 shows a counterexample input, witnessing the non-equivalence of 𝑃 and 𝑃 ′. Note that
Alice and Bob share the same email address in Customers. The goal of equivalence refutation is to
find an input 𝐼 (like the one in Figure 3) such that 𝑃 (𝐼) ≠ 𝑃 ′ (𝐼).
Prior work. Despite the abundance of work on SQL equivalence checking, existing techniques—
such as EvoSQL [7], DataFiller [18], XData [9, 10], Cosette [19, 69], and Qex [66, 69]—all fail
to refute the equivalence of 𝑃 and 𝑃 ′. VeriEQL [28] is the only tool that succeeds, though taking
132 seconds to solve our (original, unsimplified) example. The reason it takes this long is because
VeriEQL precisely encodes the semantics of 𝑃 and 𝑃 ′ for all inputs. In particular, it first considers
3https://leetcode.com/problems/number-of-trusted-contacts-of-a-customer/description/

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 200. Publication date: June 2025.

https://leetcode.com/problems/number-of-trusted-contacts-of-a-customer/description/

Polygon: Symbolic Reasoning for SQL using Conflict-Driven Under-Approximation Search 200:5

customer_id customer_name email
1 Alice a@g.com
2 Bob a@g.com

Customers

user_id contact_name contact_email
2 A a@g.com

Contacts

invoice_id user_id price
3 2 10

Invoices

Fig. 3. A counterexample input database on which 𝑃 and 𝑃 ′ return different outputs.

𝑀 =

{
𝑣1 ↦→ [T, F] 𝑣2 ↦→

[
[T, F], [F, F]

]
𝑣3 ↦→ [TTrue, TTrue] 𝑣4 ↦→

[
[F, T], [F, F]

]
𝑣 ′1 ↦→ [TTrue, F] 𝑣 ′2 ↦→

[
[T, T], [F, F]

]
𝑣 ′3 ↦→

[
[F, T], [F, F]

]
𝑣 ′4 ↦→

[
[F, T], [F, F]

] }
Fig. 4. An example UA map𝑀 , which can be used to generate the counterexample input in Figure 3 to refute

the equivalence of 𝑃 (in Figure 1) and 𝑃 ′ (in Figure 2).

all input tables with at most 1 tuple: under this bound, 𝑃 and 𝑃 ′ are equivalent. Then, it bumps
up the bound to 2 tuples per input table. This ends up creating a complex formula (due to various
complex features, including nested joins and group-by, among others not shown in our simplified
example). It takes a state-of-the-art SMT solver—in particular, z3 [21]—121 seconds to solve.
Insight 1: under-approximating queries. Our key idea is to reason about an under-approximation
(UA), which is represented as a UA map𝑀 . In particular, given 𝑛 queries represented as ASTs,𝑀
maps each AST node 𝑣𝑖 to a UA that under-approximates the query operator at 𝑣𝑖 . For instance,
consider the𝑀 in Figure 4, which under-approximates 𝑃 and 𝑃 ′ from Figures 1 and 2.

Let us explain some of the entries in𝑀 . At a high level,𝑀 maps each AST node to a so-called “UA
choice” (or, simply UA) that is represented by an array (potentially more than one-dimensional). For
example, 𝑣4’s UA 𝑢4—denoted by a 2 × 2 matrix

[
[F, T], [F, F]

]
—considers Customers tables with up

to 2 tuples and Contacts tables with up to 2 tuples (recall from Figure 1 that 𝑣4 is a LJoin operator).
Importantly, the T value at position (1,2) constrains that only the first tuple in Customers and the
second tuple in Contacts meet the join predicate 𝜙2: this additional constraint allows us to focus
on a small set of input-output behaviors. The UAs for 𝑣2, 𝑣4, 𝑣 ′2, 𝑣 ′3 are defined in the same way (see
Example 3.3 with a more detailed explanation), and the UAs for 𝑣1 and 𝑣 ′1 follow a similar rationale.
𝑀 can be encoded into Ψ := Ψ1 ∧ · · · ∧ Ψ4 ∧ Ψ′

1 ∧ · · · ∧ Ψ′
4, where each Ψ𝑖 (resp. Ψ′

𝑖) encodes the
input-output behaviors for 𝑣𝑖 (resp. 𝑣 ′𝑖). As a whole, Ψ encodes a subset of behaviors of 𝑃 and 𝑃 ′.
While we do not show any actual SMT formulas in this example, Section 3.4 will describe how to
build such formulas in detail.

Given this Ψ and application condition 𝐶 (which encodes “the outputs of 𝑃 and 𝑃 ′ are distinct”),
we obtain Φ := Ψ∧𝐶 , which in this example is satisfiable. A satisfying assignment of Φ corresponds
to a counterexample input that witnesses the non-equivalence of 𝑃 and 𝑃 ′ (e.g., 𝐼 from Figure 3).
Notably, checking the satisfiability of such Φ is typically cheap. For instance, z3 gives a model in
0.02 seconds, for the corresponding Φ in our original (unsimplified) example.
Insight 2: under-approximation search for completeness. As mentioned earlier, reasoning over
a fixed UA may miss some behaviors of interest (i.e., Φ may be unsat) and therefore is incomplete.
Our second insight is to construct a family of UA maps and search over this space for one that is
satisfiable. This search space is defined compositionally by defining a family of UAs for each query
operator. Let us take 𝑣4 from the above Figure 4 as an example: its family contains 24 = 16 UAs (i.e.,
each of the four elements can be either T or F), which collectively cover all inputs of interest (i.e.,
input tables with up to two tuples). Each of these 16 UAs can be encoded in an SMT formula whose
models correspond to genuine input-output behaviors for the LJoin operator at 𝑣4. We define UA
families for the other AST nodes similarly. These operator-level UAs induce the search space of UA
maps for queries. The search problem then is how to find a satisfying UA map 𝑀 (mapping all AST
nodes in 𝑃 and 𝑃 ′ to UAs), such that Φ := Encode(𝑀) ∧𝐶 is satisfiable.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 200. Publication date: June 2025.

200:6 Pinhan Zhao, Yuepeng Wang, and Xinyu Wang

𝑀1 =

{
𝑣1 ↦→ [★,★]
𝑣 ′1 ↦→ [★,★]

}
𝑀2 =

{
𝑣1 ↦→ [T, F] 𝑣2 ↦→

[
[★,★], [★,★]

]
𝑣 ′1 ↦→ [F, F] 𝑣 ′2 ↦→

[
[★,★], [★,★]

] }

𝑀3 =

{
𝑣1 ↦→ [T, F] 𝑣2 ↦→

[
[F, F], [F, T]

]
𝑣3 ↦→ [★,★] 𝑣4 ↦→

[
[★,★], [★,★]

]
𝑣 ′1 ↦→ [F, F] 𝑣 ′2 ↦→

[
[F, F], [F, F]

]
𝑣 ′3 ↦→

[
[★,★], [★,★]

]
𝑣 ′4 ↦→

[
[★,★], [★,★]

] }
Fig. 5. An example sequence of UA maps𝑀1 → 𝑀2 → 𝑀3 → 𝑀 that our algorithm may explore, to refute

the equivalence of 𝑃 and 𝑃 ′. Here,𝑀 is the satisfying UA map in Figure 4.

Our search algorithm explores a sequence of UA maps𝑀𝑖 ’s until reaching a satisfying one. In
general,𝑀𝑖 is partial (i.e., containing a subset of AST nodes). Given𝑀𝑖 at each step, we produce
the next𝑀𝑖+1 by either adding more nodes or by adjusting UAs of existing nodes. Figure 5 shows
one such sequence𝑀1 → 𝑀2 → 𝑀3 → 𝑀 , where𝑀 is the satisfying UA map from Figure 4.

While each𝑀𝑖 is structurally similar to𝑀 , they include a special “top” value★, which intuitively
means “I don’t know.” For instance, 𝑣4’s UA in𝑀3 considers all Customers and Contacts tables both
with up to 2 tuples, with no additional constraints. Intuitively, this UA “subsumes” the UA for 𝑣4 in
𝑀 , because the latter considers a specific way of joining the two input tables. Allowing★ essentially
creates a lattice of UAs, which we exploit to perform efficient under-approximation search. Let us
explain how this works in detail, still using Figure 5 as an example.

The algorithm begins with𝑀1, obtains its encoding Ψ1, and confirms Φ1 := Ψ1 ∧𝐶 is satisfiable.
In this case, we map 𝑣1 and 𝑣 ′1 to UAs derived from a model of Φ1, and add 2 new nodes 𝑣2, 𝑣 ′2 (both
mapped to★)—this yields𝑀2. Φ2 for𝑀2 is also sat; therefore, we update𝑀2 in the same way (except
adding 4 nodes this time) and obtain𝑀3.

Φ3 for𝑀3, however, is unsat. In this case, we first obtain a subset 𝑉 (namely, {𝑣 ′1, 𝑣 ′2, 𝑣 ′3, 𝑣 ′4, 𝑣1, 𝑣2})
of nodes, whose UAs in𝑀3 are in conflict; that is, Encode(𝑀3 ↓ 𝑉) ∧𝐶 is unsat (𝑀3 ↓ 𝑉 gives the
“sub-map” of𝑀3 for nodes in 𝑉). Then, we aim to build a new UA map𝑀4 which (i) maps nodes in
𝑉 to new UAs and (ii) maps nodes outside𝑉 to UAs, such that (a) Encode(𝑀4 ↓ 𝑉) ∧𝐶 is sat and (b)
𝑀4 does not contain any previously discovered conflicts. In this example, we have𝑀4 = 𝑀 , which
is a satisfying UA map. Note that step (i) requires searching, among all combinations of UAs for
nodes in 𝑉 , for one that meets (a). To do this efficiently, we take advantage of the aforementioned
lattice structure of UAs to partition this large space into subspaces shown below in Figure 6, which
enables efficient search over this combinatorial space.

(1) 𝑣1 ↦→ [★,★], 𝑣′1 ↦→ [★,★], 𝑣2 ↦→
[
[★,★], [★,★]

]
, 𝑣′2 ↦→

[
[★,★], [★,★]

]
, 𝑣′3 ↦→

[
[T, T], [★,★]

]
, 𝑣′4 ↦→

[
[T, T], [★,★]

]
(2) 𝑣1 ↦→ [★,★], 𝑣′1 ↦→ [★,★], 𝑣2 ↦→

[
[★,★], [★,★]

]
, 𝑣′2 ↦→

[
[★,★], [★,★]

]
, 𝑣′3 ↦→

[
[F, T], [★,★]

]
, 𝑣′4 ↦→

[
[T, T], [★,★]

]
(3) 𝑣1 ↦→ [★,★], 𝑣′1 ↦→ [★,★], 𝑣2 ↦→

[
[★,★], [★,★]

]
, 𝑣′2 ↦→

[
[★,★], [★,★]

]
, 𝑣′3 ↦→

[
[T, T], [★,★]

]
, 𝑣′4 ↦→

[
[F, T], [★,★]

]
(4) 𝑣1 ↦→ [★,★], 𝑣′1 ↦→ [★,★], 𝑣2 ↦→

[
[★,★], [★,★]

]
, 𝑣′2 ↦→

[
[★,★], [★,★]

]
, 𝑣′3 ↦→

[
[F, T], [★,★]

]
, 𝑣′4 ↦→

[
[F, T], [★,★]

]
· · ·

(16) 𝑣1 ↦→ [★,★], 𝑣′1 ↦→ [★,★], 𝑣2 ↦→
[
[★,★], [★,★]

]
, 𝑣′2 ↦→

[
[★,★], [★,★]

]
, 𝑣′3 ↦→

[
[F, F], [★,★]

]
, 𝑣′4 ↦→

[
[F, F], [★,★]

]
Fig. 6. An example partition of the UA space for AST nodes 𝑣 ′1, 𝑣

′
2, 𝑣

′
3, 𝑣

′
4, 𝑣1, 𝑣2 from 𝑃 and 𝑃 ′.

Note that each subspace is a UA map over nodes in 𝑉 . Our algorithm processes them one by one.
It first encodes the UA map 𝑀

(1)
𝑉

in (1) from Figure 6—that is, Encode
(
𝑀

(1)
𝑉

)
∧𝐶—and finds it to

be unsat. In other words, this 𝑀 (1)
𝑉

is still a conflict. Similarly, 𝑀 (2)
𝑉

and 𝑀
(3)
𝑉

are also unsat. On
the other hand, 𝑀 (4)

𝑉
is sat. We therefore obtain a model for 𝑀 (4)

𝑉
, from which we can generate

𝑀4, which is identical to 𝑀 . This concludes the search process. In total, it takes 0.3 seconds for
Polygon to solve the original (unsimplified) example.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 200. Publication date: June 2025.

Polygon: Symbolic Reasoning for SQL using Conflict-Driven Under-Approximation Search 200:7

Query 𝑃 ::= 𝑅 | Project𝐿 (𝑃) | Filter𝜙 (𝑃) | Rename𝑅 (𝑃) | UnionAll(𝑃1, 𝑃2) | ⊗ (𝑃1, 𝑃2)
| Distinct(𝑃) | GroupBy ®𝐸,𝐿,𝜙 (𝑃) | OrderBy𝐸 (𝑃) | With(®𝑃, ®𝑅, 𝑃)

Join Op ⊗ ::= Product | IJoin𝜙 | LJoin𝜙 | RJoin𝜙 | FJoin𝜙
Attr List 𝐿 ::= [𝐸, · · · , 𝐸]

Pred 𝜙 ::= 𝑏 | Null | 𝐸 ⊙ 𝐸 | ®𝐸 ∈ ®𝑣 | ®𝐸 ∈ 𝑄 | IsNull(𝐸) | Exists(𝑃) | 𝜙 ∧ 𝜙 | 𝜙 ∨ 𝜙 | ¬𝜙
Expr 𝐸 ::= 𝑎 | 𝑣 | 𝐸 ⋄ 𝐸 | G(𝑏, 𝐸) | ITE(𝜙, 𝐸, 𝐸) | Case(®𝜙, ®𝐸, 𝐸) | Rename𝑎 (𝐸)

Arith Op ⋄ ::= + | − | × | / | %
Logic Op ⊙ ::= ≤ | < | = | ≠ | > | ≥

𝑅 ∈ Relation Names 𝑎 ∈ Attribute Names 𝑣 ∈ Values 𝑏 ∈ Bools
G ∈ {Count,Min,Max, Sum,Avg}

Fig. 7. Syntax of our query language.

3 Conflict-Driven Under-Approximation Search for SQL
We beginwith the syntax of our query language (Section 3.1). Then, we define under-approximations
for this language and formalize its under-approximate semantics (Sections 3.2-3.4). Finally, we give
our under-approximation search algorithm (Sections 3.5-3.8).

3.1 Query Language

Syntax. Figure 7 shows the syntax of our language, which is a highly expressive subset of SQL. A
query 𝑃 can be a relation 𝑅, a projection Project𝐿 (𝑃) that selects columns 𝐿 from 𝑃 ’s result, a filter
Filter𝜙 (𝑃) that retains from 𝑃 the rows satisfying predicate𝜙 , a renaming operator Rename𝑅 (𝑃) that
renames the output of 𝑃 to relation𝑅. It also supports bag union UnionAll and different types of joins
(including Cartesian product Product, inner join IJoin𝜙 , left join LJoin𝜙 , right join RJoin𝜙 , and full
outer join FJoin𝜙). Distinct(𝑃) removes duplicate rows. GroupBy ®𝐸,𝐿,𝜙 (𝑃) first groups all rows from
𝑃 based on ®𝐸, computes expressions 𝐿 for each group, and returns the result for groups satisfying
𝜙 . OrderBy𝐸 (𝑃) sorts (in ascending order) 𝑃 ’s output by expression list 𝐸. With(®𝑃, ®𝑅, 𝑃) creates
intermediate relations ®𝑅 with the result of queries ®𝑃 , and returns the result of 𝑃 (which potentially
uses ®𝑅). It is worth noting that we support if-then-else ITE(𝜙, 𝐸, 𝐸), case-when Case(®𝜙, ®𝐸, 𝐸), and
predicates like ®𝐸 ∈ 𝑃 and Exists(𝑃).
Semantics. Our semantics is based on prior work [28], which will be formalized in Section 3.3.

3.2 Representing Under-Approximations
This section presents a method to define a family of under-approximations for each Query operator
𝐹 from Figure 7. In a nutshell, our under-approximation (UA) describes some subset of 𝐹 ’s reachable
outputs (i.e., outputs that can indeed be produced by 𝐹 for some input). This notion is consistent
with the under-approximation idea from O’Hearn’s seminal paper on incorrectness logic [49]. Our
work, however, realizes UAs using a two-step approach: (i) first describe a subset of inputs for 𝐹 ,
(ii) then define their corresponding input-output behaviors (per 𝐹 ’s semantics). Here, (i) is simply a
“pointer” that refers to a subset of inputs, whereas (ii) is the actual encoding of the UA. This section
focuses on step (i), while Sections 3.3-3.4 will explain step (ii).

In this work, we call a subset of inputs in step (i) “a UA choice”—or, with a slight abuse of notation,
simply “a UA”—which is denoted by 𝑢. More specifically, 𝑢 for each 𝐹 is always represented by an
array (potentially more than one-dimensional) of values. The interpretation of 𝑢 is specific to 𝐹 ,
which we will explain below. As mentioned earlier, 𝑢 is just used to refer to a subset of inputs.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 200. Publication date: June 2025.

200:8 Pinhan Zhao, Yuepeng Wang, and Xinyu Wang

Filter. The UA 𝑢 for Filter𝜙 is always of the form {T, F,★}𝑛 . That is, 𝑢 is always a vector of 𝑛 values,
where each value is T, F or ★. Here, 𝑛 is the maximum input table size; that is, we consider input
tables 𝑅 with at most 𝑛 tuples. If the 𝑖th value 𝑢𝑖 is T, it means the 𝑖th tuple 𝑡𝑖 in 𝑅 satisfies predicate
𝜙 . On the other hand, 𝑢𝑖 = F means either 𝑡𝑖 is not present4 in 𝑅, or 𝑡𝑖 does not satisfy 𝜙 . Finally, ★
is the “top” value (i.e., “I don’t know”), meaning 𝑡𝑖 can be either T or F. As we can see, any table (of
size up to 𝑛) can be covered by some 𝑢, no matter how its tuples satisfy the filtering condition 𝜙 .

Example 3.1. Let us consider Filterid>3, and a UA choice 𝑢 = [T, F] for it. Here, 𝑢 refers to those
(input) relations 𝑅 whose first tuple has id greater than 3—this is what the first value 𝑢1 = T in 𝑢
means. The second value 𝑢2 = F means that the second tuple in 𝑅 is either not present (meaning 𝑅
has exactly one row), or its id is not greater than 3 (in this case, 𝑅 has exactly two rows). Note that
𝑅 has at most 2 tuples, since 𝑢 has length 2. As another example, let us consider 𝑢′ = [T,★] for the
same filter operator. Different from 𝑢2, 𝑢′

2 puts no restrictions on the second tuple. So 𝑢′ refers to
all tables with up to two tuples, whose first tuple must satisfy predicate id > 3. In other words, 𝑢′

“subsumes” 𝑢, or 𝑢 “refines” 𝑢′.

Projection and UnionAll. The UAs for projection are defined in the same way as filter, but their
interpretation is slightly different. In particular, 𝑢𝑖 being T or F indicates whether or not 𝑡𝑖 from the
input table is present. On the other hand, ★ is still the top value that means either T or F. The UA
for UnionAll is essentially the same as for projection, except that it is a vector of 𝑛1 + 𝑛2 values,
where the first 𝑛1 (resp. the last 𝑛2) values correspond to tuples from the first (resp. second) table.
Joins. Now, let us consider the join operators. Take the inner join IJoin𝜙 as an example. Its UA 𝑢

is an 𝑛1 × 𝑛2 matrix, where 𝑢𝑖, 𝑗 is T, F or ★. Here, 𝑛1 (resp. 𝑛2) is the maximum size of the first (resp.
second) table. For each 𝑢𝑖, 𝑗 , T means the 𝑖th tuple 𝑡𝑖 from the first table and the 𝑗th tuple 𝑡 𝑗 from
the second are both present and satisfy the join condition 𝜙 ; whereas F means at least one of 𝑡𝑖 , 𝑡 𝑗
is deleted, or they are both present but cannot be joined. The UA definitions for the other joins are
quite similar; we refer readers to the extended version [72] of this paper for more details.
GroupBy and Distinct. The UA definition for GroupBy ®𝐸,𝐿,𝜙 is different from all operators above.
Recall that GroupBy first groups all input tuples based on ®𝐸, then evaluates 𝐿 for each group, and
finally returns an output table with groups satisfying predicate 𝜙 . A UA choice 𝑢 for GroupBy is
always of the form {T, T𝜙 , F,★}𝑛 . Similar to before, 𝑢𝑖 corresponds to the 𝑖th tuple 𝑡𝑖 in the input.
The interpretation, however, is different. If 𝑢𝑖 = T or T𝜙 , it means 𝑡𝑖 is present and distinct from all
tuples 𝑡 𝑗 (𝑗 < 𝑖) before it, with respect to columns in ®𝐸. In other words, 𝑡𝑖 will form a new group.
The difference between T and T𝜙 is that T𝜙 means this new group further satisfies 𝜙 , whereas T
means it does not. On the other hand, F means 𝑡𝑖 will not lead to a new group (either it is deleted,
or it belongs to an existing group). Finally, ★ is still our top value, which means T, T𝜙 , or F. The UA
𝑢 for Distinct is a vector of 𝑛 values chosen from {T, F,★}, where 𝑢𝑖 = Tmeans 𝑡𝑖 is distinct from all
prior tuples 𝑡 𝑗 (𝑗 < 𝑖), and F means there exists some 𝑗 < 𝑖 such that 𝑡𝑖 = 𝑡 𝑗 (i.e., 𝑡𝑖 is a duplicate).

Example 3.2. Consider GroupBy ®𝐸,𝐿2 at node 𝑣3 from Figure 1(b), where 𝐿2 is shown in Figure 1(a)
and ®𝐸 = [A.customer_id, customer_name]. Note that the having predicate 𝜙 here is True (so our
notation omitted it). Consider UA 𝑢 = [T𝜙 , F], which refers to tables with at most two tuples 𝑡1, 𝑡2.
It further states: (i) 𝑡1 exists and forms a new group, and this group satisfies 𝜙 (which is always
true as we have 𝜙 = True in this example); (ii) 𝑡2 either does not exist, or ®𝐸 evaluates on 𝑡2 to the
same result as a previous tuple (in this example, 𝑡1).
4The formal encoding of a table will be described in Section 3.3. In brief, while a table always has exactly 𝑛 tuples, we allow
some of the tuples to be deleted (i.e., not present). This allows us to encode all tables with at most (not just exactly) 𝑛 tuples.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 200. Publication date: June 2025.

Polygon: Symbolic Reasoning for SQL using Conflict-Driven Under-Approximation Search 200:9

Lattice of UAs. As we can see, UAs for each operator form a (semi-)lattice, due to the top value ★.
In particular, given two UAs 𝑢 and 𝑢′ for the same operator, we define 𝑢 ⊒ 𝑢′ if we have 𝑢𝑖 ⊒ 𝑢′

𝑖 for
all 𝑖 . That is, 𝑢 subsumes 𝑢′ (or, 𝑢′ refines 𝑢) if the 𝑖th value in 𝑢 subsumes the 𝑖th value in 𝑢′. The
value subsumption relation is straightforward: the top value ★ subsumes any non-top value, and
non-top values do not subsume each other. A UA whose values are all ★ is called a “top UA”, while
we call a UA with only non-top values a “minimal UA”. We useU𝐹 to denote the set of UAs for 𝐹 .
Other query operators. We refer readers to the extended version [72] for OrderBy’s UA definition.
For operators 𝑅, Rename, and With, we have one UA that always considers all inputs up to a given
size (i.e., effectively no under-approximation).

3.3 Encoding Full Semantics
This section formalizes the full semantics of query operators from Figure 7, which Section 3.4 will
use to build under-approximate semantics. Our formalization is based on prior work [28]: a table is
encoded symbolically using 𝑛 symbolic tuples, a tuple can be deleted (this allows us to consider all
tables up to size 𝑛), and operator semantics is encoded in SMT following SQL standard. The key
distinction from prior work is that we embed the UA choices into the semantics encoding—we will
further elaborate on this as we go over the encoding rules below. We note that, our “full semantics”
is still bounded, in that it considers tables up to a finite size bound. We use “full” just to differentiate
it from under-approximate semantics (which will be presented in Section 3.4).

Figure 8 gives the semantics encoding rules for a representative subset of query operators. Please
find the full set of rules in our extended version [72]. Here, EncFullSemantics generates an SMT
formula Ψ that encodes a given operator 𝐹 ’s semantics for all input tables up to a certain bound.5
Ψ is always over free variables 𝑥 (denoting an input table) and 𝑦 (denoting 𝐹 ’s output table). Any
satisfying assignment of Ψ corresponds to a genuine input-output behavior of 𝐹 ; that is, all outputs
encoded by Ψ are reachable. Ψ has another free variable 𝑧, called “UA variable”, which denotes the
UA choice—as we will see below, this UA variable 𝑧 plays a central role in our encoding.
Filter. Rule (1) encodes Filter𝜙 ’s reachable outputs for all input tables with up to 𝑛 tuples. Each 𝑡𝑖
is a symbolic tuple from the input table 𝑥 , and 𝑡 ′𝑖 is the corresponding symbolic tuple in the output
table 𝑦. We use an uninterpreted predicate Del to denote if a tuple is deleted. Some 𝑡𝑖 ’s may be
deleted, so 𝑥 may have fewer than 𝑛 tuples. For a non-deleted 𝑡𝑖 that does not meet the filtering
condition 𝜙 , we use Del(𝑡 ′𝑖) to mean the corresponding 𝑡 ′𝑖 is deleted in 𝑦.

Our key novelty is to embed UA variable 𝑧 into the semantics encoding. For Filter𝜙 , 𝑧 is a vector
of variables, where each 𝑧𝑖 denotes the 𝑖th value 𝑢𝑖 in the UA. Recall from Section 3.2 that 𝑢𝑖 = T
means 𝑡𝑖 is present and satisfies 𝜙 . For such 𝑡𝑖 , Ψ𝑖,T encodes the corresponding 𝑡 ′𝑖 . Ψ𝑖,F handles the F
case. The final formula Ψ is built compositionally, by conjoining Ψ𝑖,T ∧ Ψ𝑖,F across all 𝑖’s from 1 to 𝑛.
As we will show shortly, all of our semantics encoding rules are compositional. To simplify our
presentation, Rule (1) uses some auxiliary functions. Exist(𝑡𝑖 , 𝑡 ′𝑖 , 𝜙) :=

(
¬Del(𝑡𝑖) ∧⟦𝜙⟧𝑡𝑖

)
∧¬Del(𝑡 ′𝑖)

encodes the case where input tuple 𝑡𝑖 is present and satisfies 𝜙 , and (therefore) the output tuple 𝑡 ′𝑖
exists. In this case, we also have Copy(𝑡𝑖 , 𝑡 ′𝑖 , 𝐿) :=

∧
𝑎∈𝐿

⟦𝑡 ′𝑖 .𝑎⟧ = ⟦𝑡𝑖 .𝑎⟧, which creates the content of

𝑡 ′𝑖 by copying values of attributes in 𝐿6 from 𝑡𝑖 to 𝑡 ′𝑖 . Ψ𝑖,F encodes the situation where 𝑡 ′𝑖 is deleted
using NotExist(𝑡𝑖 , 𝑡 ′𝑖 , 𝜙) :=

(
Del(𝑡𝑖) ∨

(
¬Del(𝑡𝑖) ∧ ¬⟦𝜙⟧𝑡𝑖

))
∧Del(𝑡 ′𝑖). Here, the corresponding 𝑡𝑖 is

either not present or does not meet 𝜙 . Finally, we note that 𝑧𝑖 only considers non-top values—i.e., T
and F for filter—because considering ★ is not necessary when encoding the full semantics.

5Note that the actual values of 𝐹 ’s non-table arguments (such as predicates and expressions) are all given.
6We assume attributes are given, to simplify our presentation. In general, they can be easily inferred from the input schema.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 200. Publication date: June 2025.

200:10 Pinhan Zhao, Yuepeng Wang, and Xinyu Wang

(1)

𝑥 = [𝑡1, · · · , 𝑡𝑛] 𝑦 = [𝑡 ′1, · · · , 𝑡 ′𝑛] 𝑧 = [𝑧1, · · · , 𝑧𝑛] 𝐿 = Attrs(𝑥)
Ψ𝑖,T = (𝑧𝑖 = T) →

(
Exist(𝑡𝑖 , 𝑡 ′𝑖 , ⟦𝜙⟧𝑡 ′𝑖) ∧ Copy(𝑡𝑖 , 𝑡 ′𝑖 , 𝐿)

)
Ψ𝑖,F = (𝑧𝑖 = F) → NotExist(𝑡𝑖 , 𝑡 ′𝑖 , ⟦𝜙⟧𝑡 ′𝑖)

EncFullSemantics

(
Filter𝜙

)
↠

∧
𝑖=1,· · · ,𝑛 Ψ𝑖,T ∧ Ψ𝑖,F

(2)

𝑥 = [𝑡1, · · · , 𝑡𝑛] 𝑦 = [𝑡 ′1, · · · , 𝑡 ′𝑛] 𝑧 = [𝑧1, · · · , 𝑧𝑛]
Ψ𝑖,T = (𝑧𝑖 = T) →

(
Exist(𝑡𝑖 , 𝑡 ′𝑖 , True) ∧ Copy(𝑡𝑖 , 𝑡 ′𝑖 , 𝐿)

)
Ψ𝑖,F = (𝑧𝑖 = F) → NotExist(𝑡𝑖 , 𝑡 ′𝑖 , True)

EncFullSemantics

(
Project𝐿

)
↠

∧
𝑖=1,· · · ,𝑛 Ψ𝑖,T ∧ Ψ𝑖,F

(3)

𝑥1 = [𝑡1, · · · , 𝑡𝑛1] 𝑥2 = [𝑡 ′1, · · · , 𝑡 ′𝑛2] 𝑦 = [𝑡 ′′1,1, · · · , 𝑡 ′′𝑛1,𝑛2] 𝑧 =
[
[𝑧1,1, · · · 𝑧1,𝑛2], · · · , [𝑧𝑛1,1, · · · , 𝑧𝑛1,𝑛2]

]
𝐿𝑖 = Attrs(𝑥𝑖)

Ψ𝑖,𝑗,T = (𝑧𝑖,𝑗 = T) → Exist

(
(𝑡𝑖 , 𝑡 ′𝑗), 𝑡 ′′𝑖,𝑗 , ⟦𝜙⟧𝑡𝑖 ,𝑡 ′𝑗

)
∧ Copy(𝑡𝑖 , 𝑡 ′′𝑖,𝑗 , 𝐿1) ∧ Copy(𝑡 ′𝑗 , 𝑡 ′′𝑖,𝑗 , 𝐿2)

Ψ𝑖,𝑗,F = (𝑧𝑖,𝑗 = F) → NotExist

(
(𝑡𝑖 , 𝑡 ′𝑗), 𝑡 ′′𝑖,𝑗 , ⟦𝜙⟧𝑡𝑖 ,𝑡 ′𝑗

)
EncFullSemantics

(
IJoin𝜙

)
↠

∧
𝑖=1,· · · ,𝑛1

∧
𝑗=1,· · · ,𝑛2 Ψ𝑖,𝑗,T ∧ Ψ𝑖,𝑗,F

(4)

𝑥 = [𝑡1, · · · , 𝑡𝑛] 𝑦 = [𝑡 ′1, · · · , 𝑡 ′𝑛] 𝑧 = [𝑧1, · · · , 𝑧𝑛]
Ψ𝑖,F = (𝑧𝑖 = F) →

((
Del(𝑡𝑖) ∨

(
¬Del(𝑡𝑖) ∧

∨
𝑗=1,· · · ,𝑖−1

(
¬Del(𝑡 𝑗) ∧

∧
𝑎∈ ®𝐸⟦𝑡𝑖 .𝑎⟧ = ⟦𝑡 𝑗 .𝑎⟧ ∧ g(𝑡𝑖) = 𝑗

)))
∧ Del(𝑡 ′𝑖)

)
Ψ𝑖,¬F = ¬Del(𝑡𝑖) ∧ ¬∨

𝑗=1,· · · ,𝑖−1
(
¬Del(𝑡 𝑗) ∧

∧
𝑎∈ ®𝐸⟦𝑡𝑖 .𝑎⟧ = ⟦𝑡 𝑗 .𝑎⟧

)
∧ g(𝑡𝑖) = 𝑖

Ψ𝑖,T = (𝑧𝑖 = T) →
(
Ψ𝑖,¬F ∧ ¬⟦𝜙⟧

g
−1 (𝑖) ∧ Del(𝑡 ′𝑖)

)
Ψ𝑖,T𝜙 = (𝑧𝑖 = T𝜙) →

(
Ψ𝑖,¬F ∧ ⟦𝜙⟧

g
−1 (𝑖) ∧ ¬Del(𝑡 ′𝑖) ∧ Copy(g−1 (𝑖), 𝑡 ′𝑖 , 𝐿)

)
EncFullSemantics

(
GroupBy ®𝐸,𝐿,𝜙

)
↠

∧
𝑖=1,· · · ,𝑛 Ψ𝑖,T ∧ Ψ𝑖,T𝜙 ∧ Ψ𝑖,F

Fig. 8. Full semantics for a representative subset of query operators from Figure 7.

Projection. Rule (2) is almost the same as Rule (1), except that the attribute list 𝐿 is given and the
“filtering condition” is always True. Note that aggregate functions are always precisely encoded
(i.e., no UAs) as also shown in the rule, although under-approximation happens when encoding the
semantics of projection. This is also the case for other operators that use aggregate functions.
Inner join. Rule (3) follows the same principle, but is slightly more involved. First, each tuple 𝑡 ′′𝑖, 𝑗
in 𝑦 corresponds to the join result of 𝑡𝑖 from 𝑥1 and 𝑡 ′𝑗 from 𝑥2. Variable 𝑧𝑖, 𝑗 denotes UA value 𝑢𝑖, 𝑗 .
Ψ𝑖, 𝑗,T encodes the input-output behavior when 𝑧𝑖, 𝑗 = T. Here, we first assert 𝑡 ′′𝑖, 𝑗 exists in the output,
and then use Copy to construct the content in 𝑡 ′′𝑖, 𝑗 . Note that Exist is extended here to accept a pair
of input tuples: Exist

(
(𝑡𝑖 , 𝑡 ′𝑗), 𝑡 ′′𝑖, 𝑗 , 𝜙

)
:=

(
¬Del(𝑡𝑖) ∧ ¬Del(𝑡 ′𝑗) ∧ ⟦𝜙⟧𝑡𝑖 ,𝑡 𝑗

)
∧¬Del(𝑡 ′′𝑖, 𝑗). Ψ𝑖, 𝑗,F encodes

the F case, with an extended NotExist function.

NotExist

(
(𝑡𝑖 , 𝑡 ′𝑗), 𝑡 ′′𝑖, 𝑗 , 𝜙

)
:=

(
Del(𝑡𝑖) ∨ Del(𝑡 ′𝑗) ∨

(
¬Del(𝑡𝑖) ∧ ¬Del(𝑡 ′𝑗) ∧ ¬⟦𝜙⟧𝑡 ′′

𝑖,𝑗

))
∧ Del(𝑡 ′′𝑖, 𝑗)

GroupBy. Rule (4) also constructs the final encoding compositionally, by conjoining the formulas
for T, T𝜙 and F across all 𝑖’s from 1 to 𝑛. Recall from Section 3.2 that 𝑢𝑖 = F means 𝑡𝑖 does not form
a new group. Therefore, Ψ𝑖,F encodes the constraints for 𝑡𝑖 and asserts 𝑡 ′𝑖 is not present. There are
two possibilities: 𝑡𝑖 is deleted, or there exists some 𝑡 𝑗 (𝑗 < 𝑖) in the same group as 𝑡𝑖 . Here, g is an
uninterpreted function to record a tuple’s belonging group, which will be useful later. Ψ𝑖,T and Ψ𝑖,T𝜙
both consider the case where 𝑡𝑖 forms a new group; so they share Ψ𝑖,¬F as a common piece, which
simply says 𝑡𝑖 is present and there is no prior tuple 𝑡 𝑗 that belongs to the same group. Ψ𝑖,T further
states that those tuples in 𝑡𝑖 ’s group do not satisfy 𝜙 and therefore we have 𝑡 ′𝑖 deleted. On the other
hand, Ψ𝑖,T𝜙 encodes the case where 𝜙 is met and output tuple 𝑡 ′𝑖 is present. Here, Copy creates the
content in 𝑡 ′𝑖 , based on a set ®𝑡 of input tuples belonging to a group (given by g

−1).

Copy

(®𝑡, 𝑡 ′𝑖 , 𝐿) := ∧
𝑎∈𝐿

⟦𝑡 ′𝑖 .𝑎⟧ = ⟦𝑎⟧®𝑡

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 200. Publication date: June 2025.

Polygon: Symbolic Reasoning for SQL using Conflict-Driven Under-Approximation Search 200:11

3.4 Encoding Under-Approximate Semantics
To under-approximate a query, we first under-approximate its operators.
Encoding UA semantics for query operators. Given a UA choice 𝑢 ∈ U𝐹 for a query operator 𝐹 ,
we encode the UA semantics of 𝐹 against 𝑢 as follows.

EncUASemantics(𝐹,𝑢) := EncUAChoice(𝑢) ∧ EncFullSemantics(𝐹)
EncFullSemantics is described in Figure 8, and EncUAChoice is defined below.

EncUAChoice(𝑢) :=
∧

𝑢𝑖 ∈𝑢 EncUAChoiceValue(𝑢𝑖)

EncUAChoiceValue(𝑢𝑖) :=
{

𝑧𝑖 = 𝑢𝑖 if 𝑢𝑖 ≠ ★∨
𝑐∈dom(𝑢𝑖)\{★} 𝑧𝑖 = 𝑐 if 𝑢𝑖 = ★

Here, dom(𝑢𝑖) gives all possible values for 𝑢𝑖—including top ★—but EncUAChoiceValue removes ★;
hence the final encoding considers only minimal UAs. While EncFullSemantics constructs a fixed
formula for 𝐹 that encodes reachable outputs for all inputs (up to a bound), EncUASemantics only
encodes reachable outputs for the subset of inputs specified by 𝑢. This (further) under-approximates
𝐹 , and enables efficient symbolic reasoning.
Encoding UA semantics for queries. We can further encode the UA semantics for query 𝑃 , given
a UA map 𝑀 that maps each of 𝑃 ’s AST node 𝑣 to a UA choice 𝑢 ∈ U𝑣 , as follows.

EncUASemantics(𝑀) := ∧
(𝑣 ↦→ 𝑢) ∈𝑀

children(𝑣)=[𝑣1,· · · ,𝑣𝑙]

(
EncUASemantics(𝑣,𝑢) ∧ (𝑥 𝑣1 = 𝑦𝑣1 ∧ · · · ∧ 𝑥 𝑣

𝑙
= 𝑦𝑣𝑙)

)
l𝑣

Here, 𝑣 is an AST node in 𝑃 with 𝑙 children, andU𝑣 = Uop(𝑣) . EncUASemantics(𝑣,𝑢) is defined as:
EncUASemantics(𝑣,𝑢)

:=

(
EncFullSemantics

(
op(𝑣)

)) [
𝑥1 ↦→ 𝑥𝑅1 , · · · , 𝑥𝑙 ↦→ 𝑥𝑅

𝑙
, 𝑦 ↦→ 𝑦𝑣

]
if op(𝑣) = 𝑅(

EncFullSemantics

(
op(𝑣)

)) [
𝑥1 ↦→ 𝑥𝑣

1 , · · · , 𝑥𝑙 ↦→ 𝑥𝑣
𝑙
, 𝑦 ↦→ 𝑦𝑣

]
if op(𝑣) = With or Rename(

EncUAChoice(𝑢) ∧ EncFullSemantics

(
op(𝑣)

)) [
𝑥1 ↦→ 𝑥𝑣

1 , · · · , 𝑥𝑙 ↦→ 𝑥𝑣
𝑙
, 𝑦 ↦→ 𝑦𝑣, 𝑧 ↦→ 𝑧𝑣

]
otherwise

which encodes the UA semantics for query operator op(𝑣) at 𝑣 against𝑢.We highlight the “otherwise”
case, where we rename each variable 𝑥𝑖 to 𝑥 𝑣𝑖 (that denotes the 𝑖th input to 𝑣), and similarly 𝑦 to 𝑦𝑣𝑖
(which denotes 𝑣 ’s output), as well as 𝑧 to 𝑧𝑣 (which denotes the UA choice at 𝑣). Operators in the
other cases always have one UA, so we do not need to encode it. For operator 𝑅, we use 𝑥𝑅 (instead of
𝑥 𝑣), since multiple AST nodes may be labeled with the same relation. EncUASemantics(𝑀) conjoins
encodings across all 𝑣 ↦→ 𝑢 entries in 𝑀 . Each clause is labeled with l𝑣 , which (as we will see in
later sections) is used for conflict extraction. As a final minor note, EncUASemantics assumes access
to 𝑃 ’s schema, which allows EncFullSemantics to obtain attributes of 𝑃 ’s intermediate tables.
EncUASemantics(𝑀) can be generalized to encode UA semantics for multiple queries 𝑃1, · · · , 𝑃𝑛 ,

by extending𝑀 to include all 𝑣 ↦→ 𝑢 entries across all 𝑃𝑖 ’s.

Example 3.3. Consider the UA map𝑀 from Figure 4. Let us briefly explain some of its entries.
Consider 𝑣2 ↦→

[
[T, F], [F, F]

]
, where 𝑣2 is a left join operator with two input tables 𝑥 𝑣21 (i.e., Invoices)

and 𝑥 𝑣22 (i.e., output of 𝑣3).𝑀 (𝑣2) states: 𝑥 𝑣21 and 𝑥 𝑣22 have up to 2 tuples; the first tuple in 𝑥 𝑣21 and the
first tuple in 𝑥

𝑣2
2 meets the join condition; the other 3 tuple pairs do not join. Consider 𝑣1 ↦→ [T, F],

where 𝑣1 is a projection.𝑀 (𝑣1) states that only the first tuple in 𝑥 𝑣1 exists. In other words, although
𝑦𝑣2 has up to 2 tuples (according to𝑀 (𝑣2)),𝑀 (𝑣1) considers only those tables of size one7. Consider
7Polygon sets a node’s UA size heuristically, ranging from 2 to 16 and 2x2 to 16x16 for unary and binary operators.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 200. Publication date: June 2025.

200:12 Pinhan Zhao, Yuepeng Wang, and Xinyu Wang

Algorithm 1 Top-level algorithm.
procedure GenInput(𝑃1, · · · , 𝑃𝑛,𝐶)
input: Each 𝑃𝑖 is a query. 𝐶 is an application condition (expressed as an SMT formula).
output: A database 𝐼 that satisfies 𝐶 , or 𝑛𝑢𝑙𝑙 indicating no such 𝐼 is found.
1: 𝑀 := ConflictDrivenUASearch(𝑃1, · · · , 𝑃𝑛,𝐶);
2: if 𝑀 = 𝑛𝑢𝑙𝑙 then return 𝑛𝑢𝑙𝑙 ;
3: return ExtractInputDB(𝑀,𝐶);

𝑣3 ↦→ [TTrue, TTrue], where 𝑣3 is GroupBy.𝑀 (𝑣3) describes tables 𝑥 𝑣3 with 2 tuples, where each tuple
leads to a new group. 𝑣 ′1 ↦→ [TTrue, F] also concerns GroupBy but uses a different UA. It considers
𝑥 𝑣

′
1 with up to 2 tuples, where the first tuple forms a new group but the second does not.

3.5 Top-Level Algorithm and Problem Statement
Let us switch gears and present our under-approximation search algorithm. Algorithm 1 shows our
top-level algorithm. Given 𝑃1, · · · , 𝑃𝑛 and an SMT formula 𝐶 (encoding the application condition)
over variables 𝑦1, · · · , 𝑦𝑛 (each 𝑦𝑖 denoting 𝑃𝑖 ’s output), GenInput returns a satisfying input 𝐼 such
that 𝐶 [𝑦1 ↦→ 𝑃1 (𝐼), · · · , 𝑦𝑛 ↦→ 𝑃𝑛 (𝐼)] is true, or returns 𝑛𝑢𝑙𝑙 if no such 𝐼 is found.

Our key novelty lies in ConflictDrivenUASearch (line 1), which searches for a satisfying UA
map𝑀 . Given such an𝑀 , we invoke ExtractInputDB (line 3) to derive a satisfying input. Below, we
first formulate the under-approximation search problem, and then explain ExtractInputDB.

Definition 3.4. (Under-Approximation Search Problem). Given 𝑛 queries 𝑃1, · · · , 𝑃𝑛 from the
language in Figure 7, given U𝐹 that defines a family of UAs for each query operator 𝐹 , and given
an SMT formula 𝐶 over variables 𝑦1, · · · , 𝑦𝑛 , find a UA map𝑀 which maps each AST node 𝑣 in 𝑃𝑖
(for all 𝑖 ∈ [1, 𝑛]) to a minimal UA 𝑢 ∈ Uop(𝑣) such that

EncUASemantics(𝑀) ∧
(
𝐶 [𝑦1 ↦→ 𝑦𝑣1 , · · · , 𝑦𝑛 ↦→ 𝑦𝑣𝑛]

)
lc

(1)

is satisfiable. Here, 𝑣𝑖 is 𝑃𝑖 ’s root AST node (and recall that we use variable 𝑦𝑣 to denote 𝑣 ’s output),
and lc is simply a label for the application condition (which will later be used for conflict extraction).
We call such𝑀 a satisfying under-approximation map, or satisfying UA map for short.

In fact, given any𝑀 that maps AST nodes to UAs (which can be non-minimal), we can check the
satisfiability of the above formula (1): if it is satisfiable, we can obtain a satisfying UA map from𝑀 ,
by refining all non-minimal UAs in 𝑀 to minimal ones with the help of a satisfying assignment
of (1). The next section will explain how this works in detail.

Given a satisfying UA map𝑀 , ExtractInputDB first obtains a model 𝜎 for the formula in (1). Then,
𝜎 (𝑥𝑅) gives the content for each input relation 𝑅.

Example 3.5. Figure 4 shows a satisfying UA map𝑀 for the equivalence refutation example from
Section 2. Given this𝑀 , ExtractInputDB can generate the database in Figure 3.

3.6 Conflict-Driven Under-Approximation Search
Now, let us unpack the ConflictDrivenUASearch procedure—see Algorithm 2. At a high level, it
iteratively generates a sequence of candidate UAmaps:𝑀 is initially empty (line 1), and is iteratively
updated in two ways depending on if it satisfies Φ at line 3. This Φ is essentially the same condition
as in (1), but we omit the variable renaming part and the label for 𝐶 , to simplify the presentation.
Note that before termination,𝑀 is partial; that is,𝑀 does not contain all AST nodes from all 𝑃𝑖 ’s.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 200. Publication date: June 2025.

Polygon: Symbolic Reasoning for SQL using Conflict-Driven Under-Approximation Search 200:13

Algorithm 2 Algorithm for ConflictDrivenUASearch.
procedure ConflictDrivenUASearch(𝑃1, · · · , 𝑃𝑛,𝐶)
input: Each 𝑃𝑖 is a query. 𝐶 is an application condition.
output: A satisfying UA map𝑀 , or 𝑛𝑢𝑙𝑙 indicating no such𝑀 is found.
1: 𝑀 := ∅; Ω := ∅; 𝑊 :=

⋃
𝑖∈[1,𝑛] ASTNodes(𝑃𝑖);

2: while true do
3: Φ := EncUASemantics(𝑀) ∧𝐶;
4: if Φ is satisfiable then
5: 𝜎 := GetModel(Φ); 𝑀 := 𝑀

[
𝑣 ↦→ 𝜎 (𝑧𝑣) | 𝑣 ∈ dom(𝑀)

]
;

6: if𝑊 = ∅ then return𝑀 ;
7: (𝑣1, · · · , 𝑣𝑘) :=𝑊 .remove(); 𝑀 := 𝑀 [𝑣1 ↦→ GetTopUA(U𝑣1), · · · , 𝑣𝑘 ↦→ GetTopUA(U𝑣𝑘)];
8: else
9: 𝑉 := ExtractConflict(Φ); (𝑀,Ω) := ResolveConflict(𝑀,𝑉 ,𝐶,Ω);
10: if 𝑀 = 𝑛𝑢𝑙𝑙 then return 𝑛𝑢𝑙𝑙 ;

To update𝑀 , we either (i) add more entries with new AST nodes (line 7), or (ii) modify existing
entries by remapping some of the existing nodes to new UAs (done by ResolveConflict at line 9).
In what follows, we explain in more detail how (i) and (ii) work, beginning with (i).
Lines 4-7. If Φ is satisfiable (line 4), we first update𝑀 using a satisfying assignment 𝜎 of Φ (line 5).
In particular, 𝜎 maps 𝑧𝑣 to aminimal UA, for every AST node in the domain of𝑀 . This updated𝑀 is
guaranteed to satisfy Φ and contains only minimal UAs. But it may still be partial. Therefore, line 6
checks if𝑊 (which initially includes all AST nodes) contains any additional nodes. If not (meaning
𝑀 contains all nodes),𝑀 must be a satisfying UA map and hence the algorithm terminates (line 6).
Otherwise (i.e.,𝑀 is partial), line 7 adds 𝑘 entries to𝑀 , each mapping a new node 𝑣𝑖 (removed from
𝑊) to a Top UA (fromU𝑣𝑖). An implication of line 7 is that𝑀 at line 3 may map some nodes to Top
UAs—this is exactly why we need line 5. This way, we also maintain an invariant that𝑀 at line 3
has at most 𝑘 entries with non-minimal UAs (𝑘 is a hyperparameter that can be tuned heuristically).
Maintaining such a lightweight 𝑀 helps make the satisfiability check (at line 4) fast. We will next
explain how the else branch (lines 8-10) maintains this invariant.

Example 3.6. Consider 𝑃 and 𝑃 ′ from Section 2. Suppose𝑀1 in Figure 5 is the (partial) UA map at
line 3.𝑀1’s corresponding Φ1 is satisfiable, so line 5 will obtain a satisfying assignment 𝜎 . Suppose
𝜎 (𝑧𝑣1) = [T, F] and 𝜎 (𝑧𝑣′1) = [F, F]. This leads to𝑀1 =

{
𝑣1 ↦→ [T, F], 𝑣 ′1 ↦→ [F, F]

}
after line 5.𝑊 is

not empty at line 6, so line 7 loads in more nodes—say 𝑣2, 𝑣 ′2—from𝑊 , and maps them to Top UAs.
At this point, we obtain the UA map𝑀2 shown in Figure 5.

Lines 8-10. Let us now examine the else branch where Φ is unsatisfiable. Intuitively, this means
some entries 𝑀 must be adjusted, in order for 𝑀 to be compatible with 𝐶 . Recall that Φ is a
conjunction of |𝑀 | + 1 clauses, one for 𝐶 and each of the entries in𝑀 . So if Φ is unsat, we know
a subset of clauses must be in conflict (i.e., their conjunction is unsat). In this case, we first use
ExtractConflict to obtain the set𝑉 of nodes corresponding to these conflicting clauses (line 9). More
formally:

𝑉 = {𝑣𝑖 | l𝑣𝑖 ∈ UnsatCore(Φ)}
Here, UnsatCore extracts an unsatisfiability core of Φ. Then, 𝑉 includes an AST node 𝑣𝑖 only if
this unsat core has a clause labeled l𝑣𝑖 (recall that a different label lc is used for 𝐶). Given 𝑉 , we
define the following “projection” operation which gives us the subset of entries from𝑀 at 𝑉 .

𝑀 ↓ 𝑉 = {𝑣 ↦→ 𝑀 (𝑣) | 𝑣 ∈ 𝑉 }

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 200. Publication date: June 2025.

200:14 Pinhan Zhao, Yuepeng Wang, and Xinyu Wang

We call this set of entries a conflict.𝑀 must be updated to map some nodes in 𝑉 to different UAs,
because otherwise𝑀 ↓ 𝑉 will always be a conflict, no matter how the other entries are modified or
what new entries are added. This update is done by ResolveConflict (line 9), which Section 3.7
will describe in detail. At a high level, ResolveConflict returns a new𝑀 with no conflicts at𝑉 , and
also maintains the aforementioned invariant that𝑀 is lightweight. It also takes as input Ω—which
is a set of currently discovered conflicts—and returns a new one. For instance, the previous conflict
𝑀 ↓ 𝑉 will be added to Ω. ResolveConflict guarantees the returned𝑀 does not manifest any of
these known conflicts; this is critical for termination. If 𝑀 is 𝑛𝑢𝑙𝑙 (line 10), it means no UA map
exists—given the family of UAs—that can avoid the current conflict at 𝑉 . We note that, while the
update of𝑀 is driven by a conflict of Φ, the updated𝑀 may not satisfy Φ; however, future iterations
will keep fixing new conflicts until satisfaction.

Example 3.7. Consider our example in Section 2, and suppose𝑀3 in Figure 5 is the UA map at
line 3. Its corresponding Φ3 is unsat. ExtractConflict at line 9 returns 𝑉 = {𝑣 ′1, 𝑣 ′2, 𝑣 ′3, 𝑣 ′4, 𝑣1, 𝑣2}. That
is,𝑀3 ↓ 𝑉 is a conflict—to understand why, focus on Invoices which is shared by 𝑃 and 𝑃 ′. Let us
assume Φ3 is sat. Given𝑀3 (𝑣 ′1), 𝑀3 (𝑣 ′2), 𝑀3 (𝑣 ′3), 𝑀3 (𝑣 ′4), we know Invoices must be empty, because
𝑀3 (𝑣 ′1) constrains its input to be empty and 𝑣 ′2, 𝑣 ′3, 𝑣 ′4 are all left join operators. But,𝑀3 (𝑣1), 𝑀3 (𝑣2)
suggest otherwise (i.e., Invoices is non-empty). Contradiction. Note that 𝑣3 and 𝑣4 are not part of the
conflict (although they were added by the previous iteration). ResolveConflict takes this conflict
as input, and yields the𝑀 in Figure 4. In particular, UAs at 𝑉 for𝑀 are not in conflict anymore.

3.7 Conflict Resolution and Accumulation
Now let us proceed to the ResolveConflict procedure, which is presented in Algorithm 3. It takes
four inputs. 𝐶 is the application condition,𝑀 is a UA map, 𝑉 ⊆ dom(𝑀) is a subset of AST nodes
from𝑀 where𝑀 ↓ 𝑉 is a conflict, and Ω is a set of conflicts. It returns a pair (𝑀 ′,Ω′). In particular,
𝑀 ′ is guaranteed to satisfy the following three properties, if it is not 𝑛𝑢𝑙𝑙 .
(1) 𝑀 ′ is conflict-free at 𝑉 . That is, EncUASemantics(𝑀 ′ ↓ 𝑉) ∧𝐶 is satisfiable.
(2) 𝑀 ′ doesn’t exhibit any of the conflicts in Ω′ ⊇ Ω. That is, no subset of entries from𝑀 ′ is in Ω′.
(3) 𝑀 ′ is lightweight. In fact, all entries in𝑀 use minimal UAs.
If no such𝑀 ′ exists, for the given family of UAs, 𝑛𝑢𝑙𝑙 will be returned.

Let us now dive into the internals of ResolveConflict. Line 1 first creates Ω′ that additionally
includes conflict𝑀 ↓ 𝑉 . Then, lines 2-8 aim to generate𝑀 ′ that satisfies the above three properties.
The basic idea is simple. We first try to fix the conflict at 𝑉 , by considering “each”8 UA 𝑢𝑖 from U𝑣𝑖

for each node 𝑣𝑖 in𝑉 (line 2). Given (𝑢1, · · · , 𝑢𝑚), we encode the UA semantics of𝑀𝑉 (line 3). If the
conflict persists (line 4), we add a new conflict𝑀𝑉 to Ω′ and continue. On the other hand, if Φ𝑉 is
satisfiable—meaning property (1) holds at this point—we further make sure property (2) also holds.
This is done by line 5 that further encodes Ω′ and all UAs for𝑀’s nodes outside 𝑉 . Specifically,

EncConflicts(Ω′) :=
∨

{𝑣1 ↦→𝑢1,· · · ,𝑣𝑟 ↦→𝑢𝑟 }∈Ω′

∧
𝑖=1,· · · ,𝑟

EncUAChoice(𝑢𝑖) [𝑧 ↦→ 𝑧𝑣𝑖]

If this Φ′ is satisfiable (line 6), we can easily construct an𝑀 ′ from a satisfying assignment 𝜎 of Φ′

(line 7) that is guaranteed to satisfy both properties (1) and (2). Here, 𝜎 maps every 𝑧𝑣 to a minimal
UA; therefore,𝑀 ′ also meets property (3). We finally return at line 8. If Φ′ is unsat for all iterations
(meaning all combinations of UAs at 𝑉 are exhausted), we return 𝑛𝑢𝑙𝑙 (line 9).
Remarks. A few things are worth noting. First, line 2 uses CoverUAswhich does not return all UAs
inU𝑣𝑖 , but returns a covering set 𝑆 ⊆ U𝑣𝑖 of UAs. That is, for every minimal UA𝑢 ∈ U𝑣𝑖 , there exists
8We actually only consider those 𝑢𝑖 ’s from a covering set. We will expand on this later.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 200. Publication date: June 2025.

Polygon: Symbolic Reasoning for SQL using Conflict-Driven Under-Approximation Search 200:15

Algorithm 3 Algorithm for ResolveConflict.
procedure ResolveConflict(𝑀,𝑉 ,𝐶,Ω)
input: 𝑉 is a subset of AST nodes from𝑀 . 𝐶 is the application condition. Ω is a set of known conflicts. In

particular, the entries from𝑀 at 𝑉 (i.e.,𝑀 ↓ 𝑉) are known to cause a conflict.
output: A new UA map𝑀′ with no conflict at 𝑉 . Ω′ ⊇ Ω is a new set of conflicts.
1: Ω′ := Ω ∪ {𝑀 ↓ 𝑉 };
2: for 𝑢1 ∈ CoverUAs(U𝑣1), · · · , 𝑢𝑚 ∈ CoverUAs(U𝑣𝑚) where 𝑉 = {𝑣1, · · · , 𝑣𝑚} do
3: 𝑀𝑉 := {𝑣1 ↦→ 𝑢1, · · · , 𝑣𝑚 ↦→ 𝑢𝑚}; Φ𝑉 := EncUASemantics(𝑀𝑉) ∧𝐶;
4: if Φ𝑉 is not satisfiable then Ω′ := Ω′ ∪ {𝑀𝑉 }; continue;
5: Φ′ := Φ𝑉 ∧ EncUAChoice

({
𝑣 ↦→ TopUA(U𝑣) | 𝑣 ∈ dom(𝑀) \𝑉

})
∧ ¬EncConflicts(Ω′);

6: if Φ′ is satisfiable then
7: 𝜎 := GetModel(Φ′); 𝑀′ := 𝑀

[
𝑣 ↦→ 𝜎 (𝑧𝑣) | 𝑣 ∈ dom(𝑀)

]
;

8: return (𝑀′,Ω′);
9: return (𝑛𝑢𝑙𝑙,Ω′);

a UA 𝑢′ ∈ 𝑆 such that 𝑢′ ⊒ 𝑢. This allows us to search the entire space of UAs symbolically, without
explicitly enumerating all (minimal) UAs, thereby speeding up the search. The implementation of
CoverUAs can be tuned heuristically. Polygon chooses to set a fixed number of values in the UA
for each 𝑣𝑖 ∈ 𝑉 to top, and then enumerate all permutations of non-top values for the rest. Second,
line 4 accumulates additional conflicts, with the same goal of accelerating the search. Finally, Φ′ (at
line 5) encodes all UAs choices for AST nodes outside 𝑉 . This is necessary for completeness. In
other words, our algorithm would become incomplete, if it were to only modify UAs for 𝑉 .

Example 3.8. Consider𝑀3 from Figure 5, which has a conflict at𝑉 = {𝑣 ′1, 𝑣 ′2, 𝑣 ′3, 𝑣 ′4, 𝑣1, 𝑣2}. Suppose
Figure 6 corresponds to line 2. That is,
CoverUAs(𝑣1) = {[★,★]} CoverUAs(𝑣 ′1) = {[★,★]}

CoverUAs(𝑣2) = {
[
[★,★], [★,★]

]
} CoverUAs(𝑣 ′2) = {

[
[★,★], [★,★]

]
}

CoverUAs(𝑣 ′3) =
{ [

[T, T], [★,★]
]
,
[
[T, F], [★,★]

][
[F, T], [★,★]

]
,
[
[F, F], [★,★]

] }
CoverUAs(𝑣 ′4) =

{ [
[T, T], [★,★]

]
,
[
[T, F], [★,★]

][
[F, T], [★,★]

]
,
[
[F, F], [★,★]

] }
In particular, during the first iteration of the loop (lines 2-8),𝑀𝑉 at line 3 is the first UA map𝑀

(1)
𝑣

from Figure 6. Φ𝑉 is unsat; therefore,𝑀𝑉 is added to Ω′ (line 4). The next two iterations add𝑀 (2)
𝑉

and𝑀 (3)
𝑉

to Ω′ (line 4), since they are both unsat. At this point, Ω′ contains a total of four conflicts,
including the initial𝑀3 ↓ 𝑉 . Now, consider the fourth iteration.𝑀 (4)

𝑉
from Figure 6 corresponds to

a satisfiable Φ𝑉 at line 3. In this case, line 5 encodes the UA choices for nodes outside 𝑉—namely,
𝑣3 and 𝑣4—and also encodes the current conflicts Ω′, which are conjoined with Φ𝑉 to form Φ′. Note
that Φ′ only considers UA semantics for those AST nodes in 𝑉 . In other words, if 𝑉 is small, the
satisfiability check at line 6 should be pretty fast. It turns out Φ′ is indeed sat. Therefore, we obtain
a model 𝜎 at line 7, from which we construct𝑀 ′—this is the𝑀 from Figure 4. ResolveConflict
terminates at this point, returning𝑀 and Ω (with four conflicts).

3.8 Theorems
This section presents key theorems, whose proofs can be found in the extended version [72].

Theorem 3.9 (Correctness of UA semantics). Suppose EncUASemantics(𝐹,𝑢) yields an SMT

formula 𝜑 , for query operator 𝐹 and UA 𝑢 ∈ U𝐹 . For any model 𝜎 of 𝜑 , the corresponding inputs 𝜎 (®𝑥)

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 200. Publication date: June 2025.

200:16 Pinhan Zhao, Yuepeng Wang, and Xinyu Wang

and output 𝜎 (𝑦) are consistent with the precise semantics of 𝐹 ; that is, ⟦𝐹⟧𝜎 (®𝑥) = 𝜎 (𝑦). Intuitively,
this theorem states that any under-approximation 𝑢 of 𝐹 is always encoded into an SMT formula whose

satisfying assignments correspond to genuine input-output behaviors of 𝐹 . Therefore, our approach is

consistent with incorrectness logic [49] in that both consider reachable outputs (no false positives).

Theorem 3.10 (Refinement of UA Semantics). Given query operator 𝐹 , and two UAs𝑢 ∈ U𝐹 and

𝑢′ ∈ U𝐹 where 𝑢′
refines 𝑢 (i.e., 𝑢′ ⊑ 𝑢), we have EncUASemantics(𝐹,𝑢) ⇒ EncUASemantics(𝐹,𝑢′).

Intuitively, this means the set of 𝐹 ’s reachable outputs for 𝑢′
should be a subset of that for 𝑢; therefore,

the UA semantics encoding for 𝑢′
is entailed by that for 𝑢.

Theorem 3.11 (Soundness). Given queries 𝑃1, · · · , 𝑃𝑛 and application condition 𝐶 , if GenInput

returns an input database 𝐼 , then we have 𝐶 [𝑦1 ↦→ 𝑃1 (𝐼), · · · , 𝑦𝑛 ↦→ 𝑃𝑛 (𝐼)] is true. Intuitively, this is
because our UAs always encode genuine input-output behaviors of 𝑃𝑖 .

Theorem 3.12 (Completeness). Given queries 𝑃1, · · · , 𝑃𝑛 and application condition𝐶 , ifGenInput
returns 𝑛𝑢𝑙𝑙 , then there does not exist an input 𝐼 (with respect to the semantics presented in Figure 8)

for which 𝐶 [𝑦1 ↦→ 𝑃1 (𝐼), · · · , 𝑦𝑛 ↦→ 𝑃𝑛 (𝐼)] is true. Intuitively, this is because our approach essentially

performs exhaustive search while using the lattice structure of UAs to soundly prune the search space.

4 Evaluation
This section describes a series of experiments designed to answer the following questions:
• RQ1: Can Polygon effectively solve real-world benchmarks?
• RQ2: How does Polygon compare against state-of-the-art techniques?
• RQ3: How useful are various ideas in Polygon?

Two applications. The first one is the long-standing problem of SQL equivalence checking [13,
15, 28, 69]. Given 𝑃1 and 𝑃2, the goal is to generate 𝐼 such that 𝑦1 ≠ 𝑦2, where 𝑦𝑖 is 𝑃𝑖 ’s output 𝑃𝑖 (𝐼).
The other is query disambiguation [6, 69]. Given 𝑃1, · · · , 𝑃𝑛 , find an input 𝐼 as well as an even split
of them into two disjoint sets, such that for all 𝑃𝑖 and 𝑃 𝑗 : if they belong to the same set, 𝑂𝑖 = 𝑂 𝑗 ;
otherwise𝑂𝑖 ≠ 𝑂 𝑗 .9 In what follows, we describe how we collect benchmarks for both applications.
Equivalence refutation benchmarks. We reuse the 24,455 benchmarks from a recent equivalence-
checking work VeriEQL [28], where each benchmark is a pair of SQL queries. These query pairs
are obtained from a wide range of downstream tasks, including auto-grading, query rewriting and
mutation testing. For instance, more than 20,000 query pairs correspond to auto-grading, where one
query in the pair is the ground-truth and the other is a user submission accepted by LeetCode (i.e.,
passing LeetCode’s test cases). In other words, non-equivalence in this case indicates inadequate
testing, and counterexamples can help LeetCode developers further strengthen their test suites. We
believe this is a comprehensive set of benchmarks for evaluating Polygon. Finally, we note that,
while VeriEQL [28] was able to refute more than 3,000 of these benchmarks, the solvability for the
rest is unknown (and manually checking these benchmarks is a non-starter).
Disambiguation benchmarks. We curate an extensive set of query disambiguation benchmarks,
based on query synthesis tasks from theCubeswork [6] (which is a state-of-the-art SQL synthesizer).
In particular, given input-output examples from each Cubes task, we generate one disambiguation
task, containing all satisfying queries that can be synthesized within 2 minutes. This yields 2,861
disambiguation tasks. The number of queries per task ranges from 2 to 3,434, with an average of 272
and a median of 191. While Polygon is directly applicable, a challenge for conducting our evaluation
here is how to interpret the results: if a task was not solved, is that because it is not solvable at all,
9The encoding of this application condition can be found in the extended version [72].

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 200. Publication date: June 2025.

Polygon: Symbolic Reasoning for SQL using Conflict-Driven Under-Approximation Search 200:17

or is it due to Polygon’s inability? Manually solving these tasks (even a subset) is nearly impossible.
To address this, we develop a procedure to curate disambiguation benchmarks (based on our 2,816
tasks) which are by construction solvable. In particular, given a set 𝑆 of synthesized queries from
the task, our first step is to partition 𝑆 into a set of equivalence classes 𝐺 as follows.

procedure Partition(𝑆)
𝐺 := ∅;
while 𝑆 is not empty do
𝑃 := 𝑆.remove(); 𝐶 = [𝑃];
foreach 𝑃𝑖 ∈ 𝑆 do

if 𝑃𝑖 is equivalent to 𝑃 up to bound 𝑏 then 𝐶.add(𝑃𝑖); 𝑆.remove(𝑃𝑖);
else if 𝑃𝑖 is not equivalent to 𝑃 then continue;
else 𝑆.remove(𝑃𝑖); ⊲ bounded verifier timed out

𝐺 := 𝐺 ∪ {𝐶};
return 𝐺 ;

The key idea is to leverage a (bounded) equivalence verifier (in particular,VeriEQL [28]) to partition
𝑆 : queries in the same class𝐶 are equivalent to each other (up to a certain bound 𝑏), whereas queries
from different classes are not. In particular, the first query 𝑃 in each class 𝐶 is a representative. We
have a counterexample for any two representatives from two classes.
Then, given 𝐺 , we create a disambiguation benchmark with 2𝑛 queries, by selecting the first 𝑛

queries from each of any two classes. We consider 𝑛 = 25, 50 in our evaluation, yielding 4,245 and
2,475 disambiguation benchmarks, respectively. We name them D-50 and D-100.

4.1 RQ1: Can Polygon Solve Real-World Benchmarks?

Polygon solved 5,497 equivalence refutation benchmarks (out of 24,455 in total), with a median
running time of 0.1 seconds per benchmark. Among 4,245 disambiguation benchmarks (each
with 50 queries), Polygon solved 94% of them using a median of 3.7 seconds per benchmark.

Setup. Given a benchmark (either equivalence refutation or disambiguation), we run Polygon
and record: (1) if the benchmark is solved before timeout (1 minute), and (2) if so, the running time.
We also log detailed statistics, which we will summarize and report below.
Results. Table 1 summarizes our key results. Polygon can solve 22.5% of the equivalence refutation
benchmarks. This is a surprisingly high ratio, given that 98.1% of our ER benchmarks are queries
accepted by LeetCode. For disambiguation, Polygon consistently solves over 90% of the benchmarks
in all settings. The solving time in general is pretty fast. Polygon slows down when disambiguating
more queries, which is expected; but still, within 40 seconds, it can solve over 83% of the benchmarks.

The next columns report some key internal statistics. In general, it takes Polygon a small number
of iterations to solve a benchmark. This is because—while the number of AST nodes in a benchmark
is large—line 7 in Algorithm 2 loads in multiple nodes in one iteration; therefore, we observe far
fewer iterations. Some iterations are spent on fixing conflicts, by invoking ResolveConflict; we
report the number of such iterations in “#ResolveConflict”. While the maximum can be over 100,
the number of such calls is quite small in general. But the impact of each call is much larger—look
at the “#Nodes adjusted” column. On average, over a quarter of a benchmark’s nodes are remapped
to different UAs. In other words, there are quite some backtrackings happening, but they are packed
into a small number of ResolveConflict calls. We should note that the number of nodes in conflict
(i.e., |𝑉 | at line 9 of Algorithm 2) is typically small. In particular, the median and average for ER are
4 and 5.1. For D-50 and D-100, median/average are 2/49.2 and 2/64.3, respectively. In other words,

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 200. Publication date: June 2025.

200:18 Pinhan Zhao, Yuepeng Wang, and Xinyu Wang

Table 1. Polygon results across all benchmarks for equivalence refutation (ER) and disambiguation (D-50 and

D-100). We first report the (average, median, maximum) number of AST nodes per benchmark—the number

of AST nodes for a benchmark is the sum of AST sizes across all queries in the benchmark. Then we show the

number of benchmarks solved (with the total number of benchmarks below it) in “#Solved (#Total)” column,

followed by the (average, median) running times across all solved benchmarks (recall: timeout is 1 minute).

“#Iterations” shows the (average, median, maximum) number of iterations (lines 2-10 in Algorithm 2) across all

solved benchmarks. The next column reports the number of calls to ResolveConflict. Finally, we present the

(average, median, maximum) number of AST nodes adjusted before and after calling ResolveConflict—that

is, the number of AST nodes in𝑀 (see Algorithm 3) that are mapped to different UAs in𝑀′
(i.e., |𝑀′ \𝑀 |).

#Nodes per benchmark #Solved Time (sec) #Iterations #ResolveConflict #Nodes adjusted
avg. med. max. (#Total) avg. med. avg. med. max. avg. med. max. avg. med. max.

ER 9 8 33 5,497
(24,455) 0.6 0.1 4.5 3 139 2.5 1 137 6 5 26

D-50 211 213 343 4,004
(4,245) 6.4 3.7 4.8 4 39 1.8 1 36 82 51 280

D-100 435 442 616 2,392
(2,475) 21.7 18 4.9 4 23 1.9 1 20 126 101 380

line 5 of Algorithm 3 encodes UA semantics for very few nodes (i.e., those in𝑉), whereas it encodes
UA choices for far more nodes (i.e., those outside 𝑉). The latter is typically much cheaper to solve.
Discussion. In our experience, the number of AST nodes added to𝑀 (i.e., 𝑘 at line 7 in Algorithm 2)
in each iteration has a significant impact on the overall performance. One extreme is to set 𝑘 = 1;
in this case, the number of iterations would be at least the number of AST nodes across 𝑃𝑖 ’s (see
“#Nodes per benchmark” column in Table 1). This would slow down the algorithm significantly. On
the other hand, adding all nodes in one iteration is also suboptimal (as we will show in Section 4.3).
Polygon’s heuristic is to add all nodes for 𝑘 queries (e.g., 𝑘 = 50 for D-100), which seems to achieve
a good balance between (1) the number of iterations and (2) SMT solving overhead in each iteration.
The implementation of CoverUAs also matters noticeably in practice. The two extremes (namely,
returning Top UA for each 𝑣𝑖 at line 2 of Algorithm 3, and returning all minimal UAs for 𝑣𝑖) would
be slow (which we will show in Section 4.3). Polygon’s heuristic is to use top for a fixed number of
values in 𝑣𝑖 ’s UA (in particular, we set 8 UA choices to ★ in our experiments), while spelling out all
permutations for the rest of the UA values. In our experience, how many UA values are set to top
seems to impact the performance more than which values.

4.2 RQ2: Polygon vs. State-of-the-Art

Polygon outperforms all state-of-the-art techniques by a significant margin—in particular, 1.7x
more benchmarks solved for equivalence refutation and 1.4x for disambiguation.

Baselines. For each application, we consider all relevant existing work—to our best knowledge—as
our baselines. For equivalence refutation, we include 6 baselines: (1) VeriEQL [28, 71] (SMT-based),
(2) Cosette [15] (based on Rosette [63], with provenance-based pruning [69]), (3) Qex [66] (SMT-
based, with provenance-based pruning [69]), (4) DataFiller [18] (fuzzing-based), (5) XData [9, 10]
(mutation-based tester), and (6) EvoSQL [7] (search-based tester using random search and genetic
algorithms). For disambiguation, we include 3 baselines: (i) the disambiguation component (fuzzing-
based) from Cubes [6], (ii) a modified version of VeriEQL that encodes full semantics for multiple
(not just two) queries and the disambiguation condition, and (iii) DataFiller.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 200. Publication date: June 2025.

Polygon: Symbolic Reasoning for SQL using Conflict-Driven Under-Approximation Search 200:19

Polygon
VeriEQL

EvoSQL
DataFiller

Cosette Qex XData
0

1000

2000

3000

4000

5000

6000

Be

nc
hm

ar
ks

 S
ol

ve
d

5497

3177

1824

134 17 14 1

(a) Equivalence refutation.

D-50 D-100

20

40

60

80

100

%
 B

en
ch

m
ar

ks
 S

ol
ve

d

94.3 96.6

76.2
67.9

55.5 55.3

13.9 14.5

Polygon
VeriEQL
Cubes
DataFiller

(b) Disambiguation.

Fig. 9. Polygon vs. baselines, in terms of benchmarks solved. Note that for disambiguation, we present the

percentage of benchmarks solved. (Recall: all of our disambiguation benchmarks are solvable by construction).

Polygon
VeriEQL

EvoSQL
DataFiller

Cosette Qex XData

0.01

0.1

1

10

60

Ti
m

e
(s

ec
on

ds
)

(a) Equivalence refutation.

D-50 D-100
0.5

1

2

5

10

30

60

Ti
m

e
(s

ec
on

ds
)

Polygon
VeriEQL
Cubes
DataFiller

(b) Disambiguation.

Fig. 10. Polygon vs. baselines, in terms of solving time. For each tool (including Polygon and all baselines),

we present the quartile statistics of its solving times across all solved benchmarks.

Setup. We use the same setup as RQ1 for all baselines (with 1-minute timeout). For each application,
we record the benchmarks that are solved by each tool and the corresponding solving times.
Results. Figure 9 and Figure 10 present our results. Polygon is a clear winner for both applications.
It disproves significantly more query pairs than the best baseline VeriEQL (5,497 vs. 3,177). Across
all refuted query pairs, Polygon’s median running time is 0.1 seconds, which is even faster than
VeriEQL (with a median of 0.4 seconds across its solved benchmarks). For disambiguation, Polygon
also solves significantly more benchmarks than all baselines. It is interesting that Polygon solves
more D-100 benchmarks than D-50, which is also observed for DataFiller. In terms of time—see
Figure 10(b)—Polygon is comparable with VeriEQL. DataFiller and Cubes are understandably
faster (due to their fuzzing-based methods), but they solve far fewer benchmarks (see Figure 9).

4.3 RQ3: Ablation Studies

All of our design choices (including the top-level conflict-driven search algorithm architecture,
the lattice structure of UAs, conflict extraction from unsatisfiability core, conflict accumulation)
play an important role for Polygon’s performance.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 200. Publication date: June 2025.

200:20 Pinhan Zhao, Yuepeng Wang, and Xinyu Wang

Two sets of ablations. The first set considers ablations that perform brute-force enumeration
over UAs, with the goal of understanding the impact of the top-level architecture of our algorithm.
Variants in the second set alter lower-level designs, and reuse the same architecture as Polygon.
First set of ablations. To be complete, these ablations must search a covering set of UAs for U𝑣 ,
for each AST node 𝑣 . We create the following variants that use different covering sets.
• Enum-MinUAs, which considers all minimal UAs for each 𝑣 . It enumerates all combinations of
minimal UAs (one per node), and stops when a satisfying UA map is found.

• Enum-TopUAs, which considers only Top UA for each 𝑣 ; i.e., it encodes the full semantics for 𝑣 .
• Enum-50%Top, which considers UAs with half of the values set to top. In particular, for each 𝑣 ,
we first set 50% of the values (randomly picked) in 𝑣 ’s UA to top. Then, we create all permutations
of non-top values for the remaining half, each of which corresponds to a UA for 𝑣 .

• Enum-25%Top and Enum-75%Top, which are constructed in the same fashion as Enum-50%Top
but set 25% and 75% (respectively, randomly selected) of the values to top.

While still based on UAs, these ablations differ from our algorithm architecturally: they enumerate
UA choices for every AST node in a brute-force manner, and return the first working combination.
The reason we consider five ablations here is to obtain a full range of their performance data.
Second set of ablations. We create the following variants.
• TopUACover, where CoverUAs is changed to return Top UA for each 𝑣𝑖 at line 2 of Algorithm 3.
• MinUAsCover, where CoverUAs returns all minimal UAs for each 𝑣𝑖 at line 2 of Algorithm 3.
• NoNewConflicts, which removes line 4 from Algorithm 3 and hence does not add new conflicts
other than the one at line 1 (which is necessary for termination).

• NoUnsatCore, where 𝑉 includes all nodes from𝑀 at line 9 of Algorithm 2.
• AddMinUAs, which maps each 𝑣𝑖 at line 7 of Algorithm 2 to a minimal UA (randomly selected
fromU𝑣𝑖) and also removes line 5 (which is no longer necessary).

Setup. We use the same setup as in RQ2 to run all ablations and collect experimental data.
Results. Figure 11 and Figure 12 present our results. Let us begin with the first set of ablations.
Our take-away is that the Enum-X ablations are significantly worse than Polygon, both in terms of
benchmarks solved and the solving time—for both equivalence refutation and disambiguation. This
underscores the advantage of Polygon’s algorithm architecture. On the other hand, ablations from
the second set are on par with Polygon (except for MinUAsCover which performs poorly) on ER
and D-50: they solve slightly fewer benchmarks than Polygon, using slightly more time. However,
they become significantly worse on D-100 (with more queries to disambiguate). This highlights the
importance of our various design choices—e.g., the lattice structure of UAs which allows CoverUAs
to partition the search space—especially for harder problems (e.g., those involving more queries).

5 Related Work
This section briefly discusses some closely related work.
Under-approximate reasoning. Ourwork is inspired by O’Hearn’s seminal work on incorrectness
logic [49] and a long line of works that leverage under-approximate reasoning for various tasks, such
as proving non-termination [55], detecting memory errors [40], reasoning about concurrency [5, 54],
scaling static analysis [22], dynamic symbolic execution [24], among others [4, 20, 26, 34, 48, 51, 53].
Polygon can be viewed as a successful use of under-approximate reasoning to generate test inputs
for SQL—in particular, for equivalence refutation and disambiguation. Building upon the literature,
we contribute a compositional approach (based on SMT) to define a family of under-approximations
per SQL operator, and a fast algorithm to search within this space for desired under-approximations.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 200. Publication date: June 2025.

Polygon: Symbolic Reasoning for SQL using Conflict-Driven Under-Approximation Search 200:21

Pol
ygon

Enum-To
pUAs

Enum-75%Top

Enum-50%Top

Enum-25%Top

Enum-MinUAs

Top
UACove

r

MinUAsCove
r

NoN
ew

Conflic
ts

NoU
nsat

Core

AddMinUAs0

1000

2000

3000

4000

5000

6000

Be

nc
hm

ar
ks

 S
ol

ve
d 5497

4651
4292

3799

1722
1381

5496

2571

548854725340

(a) Equivalence refutation.

Polyg
on

Enum-TopUAs

Enum-75%Top

Enum-50%Top

Enum-25%Top

Enum-MinUAs

TopUACover

MinUAsCover

NoNewConflic
ts

NoUnsatCore

AddMinUAs
Polyg

on

Enum-TopUAs

Enum-75%Top

Enum-50%Top

Enum-25%Top

Enum-MinUAs

TopUACover

MinUAsCover

NoNewConflic
ts

NoUnsatCore

AddMinUAs0

20

40

60

80

100

%
 B

en
ch

m
ar

ks
 S

ol
ve

d

94 97

55

38

2 0

19

00 00 0

92

48

33 36

92

44

92

34

89

14

D-50 D-100

(b) Disambiguation.

Fig. 11. Polygon vs. ablations, in terms of benchmarks solved.

Pol
ygon

Enum-To
pUAs

Enum-75%Top

Enum-50%Top

Enum-25%Top

Enum-MinUAs

Top
UACove

r

MinUAsCove
r

NoN
ew

Conflic
ts

NoU
nsat

Core

AddMinUAs
10−2

10−1

100

101

Ti
m

e
(s

ec
on

ds
)

(a) Equivalence refutation.

Polyg
on

Enum-TopUAs

Enum-75%Top

Enum-50%Top

Enum-25%Top

Enum-MinUAs

TopUACover

MinUAsCover

NoNewConflic
ts

NoUnsatCore

AddMinUAs
Polyg

on

Enum-TopUAs

Enum-75%Top

Enum-50%Top

Enum-25%Top

Enum-MinUAs

TopUACover

MinUAsCover

NoNewConflic
ts

NoUnsatCore

AddMinUAs
0

10

20

30

40

50

60

Ti
m

e
(s

ec
on

ds
)

D-50 D-100

(b) Disambiguation.

Fig. 12. Polygon vs. ablations, in terms of solving time. A red bar at the topmeans “timeout on all benchmarks”.

Symbolic execution. Our work can be viewed as a form of (backward) symbolic execution [3, 8, 11]:
it begins with the application condition𝐶 (i.e., an assertion) and under-approximates the semantics
(akin to picking execution paths) of AST nodes top-down (i.e., backwards). We perform backtracking
when the current UAmap does not meet𝐶—but in a different fashion from prior work—by analyzing
a subset of UAs that are in conflict. In particular, we utilize our lattice structure of UAs to search
many UAs at the same time, which allows us to efficiently find a fix for the conflict. During this
process, we discover and block additional conflicts, to speed up future search. This is related to, but
different from, prior pruning techniques, such as those based on interpolation [31, 47] and detecting
inconsistent code [57]. Our work is also related to summary-based symbolic execution [1, 59, 60]—
especially compositional dynamic symbolic execution [2, 24, 58]—in the sense that we also utilize
(under-approximate) function summaries. Our contribution is a novel compositional method to
define a lattice of summaries (per SQL operator), which allows us to perform combinatorial search
efficiently. Non-minimal UAs essentially correspond to state merging [24, 35, 41, 52], and are used
locally (when analyzing conflicts or adding new AST nodes) to not overly stress the SMT solver.
Symbolic reasoning for SQL. Polygon is especially related to prior symbolic reasoning techniques
that are tailored towards SQL [12, 14–16, 28, 66, 69] (all of which we compare with in our evaluation).
Unlike these works, Polygon under-approximates SQL semantics and performs reasoning while
searching under-approximations. There is a long line of work on SQL equivalence verification [14, 16,
27, 74, 75]. Polygon focuses on generating inputs to satisfy properties of query outputs, including
but not limited to checking (non-)equivalence. Alloy [29, 30, 64] represents another line of related

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 200. Publication date: June 2025.

200:22 Pinhan Zhao, Yuepeng Wang, and Xinyu Wang

work, which natively supports relational operators and hence in principle can be used to reason
about SQL. The key distinction of our work lies in the granularity of UAs and the capability of
performing search over them. In contrast, it is unclear if Alloy’s “scope” mechanism is as flexible as
our UAs. More importantly, Alloy’s scope is always fixed beforehand and cannot be dynamically
changed during analysis.
Test data generation for SQL. Polygon is also closely related to works on testing SQL queries. For
instance,XData [9, 10] is a mutation-based tester to detect common SQLmistakes.DataFiller [18]
is a fuzzer that generates random test inputs, given the database schema. EvoSQL [7] generates
test data via an evolutionary search algorithm, guided by predicate coverage [65]. Different from
these approaches, we incorporate SQL semantics to generate satisfying inputs for a given property.
Polygon is also related to property-based testing [17, 25, 36–39, 50, 76], in the sense that we aim to
generate input databases for a given property over SQL queries. Our generation process, however,
uses SMT-based under-approximate reasoning over both the property and the queries, rather than
some form of random input generation (as in many prior works) or enumeration [45, 56].
Conflict-driven search. The idea of conflict-driven search has received success in multiple areas.
For example, modern constraint solvers use conflict-driven clause learning to derive new clauses
for faster boolean satisfiability solving [43]. In program synthesis, a candidate program that fails to
meet the specification can be viewed as a conflict. Various algorithms [23, 44, 61, 70] have been
proposed to generalize such a conflict to unseen programs that would fail due to the same reason.
Our work is distinct in a few ways: we perform conflict-driven search over under-approximations,
our conflict is generalized to new ones in a way that takes advantage of a predefined lattice structure
of UAs, and we aim to generate inputs for SQL queries to meet a given property.

6 Conclusion and Discussion
This paper presented a new method based on under-approximation search to perform symbolic
reasoning for SQL. Our evaluation demonstrated significant performance boost over all state-of-the-
art techniques, for two reasoning tasks (namely SQL equivalence refutation and disambiguation).

While this work is largely focused on SQL, we believe the underlying principles have the potential
to generalize to other languages and domains. A fundamental assumption is: analyzing an under-
approximation (UA) of a program is cheap—which we believe holds true in general. Then, we need to
curate a family of UAs for the language. In the case of SQL, we were able to do this compositionally.
We believe this is also possible, in general, for programs representable using a loop-free composition
of blocks (like an AST). Finally, our search technique (Algorithms 2 and 3) does not assume SQL. It,
however, assumes a lattice of UAs, which we believe is definable for other languages.

To explore the full generality of this idea, one interesting future direction is to build the idea on
top of the Rosette solver-aided programming language [62]. For instance, one approach is to build
a Rosette-based symbolic interpreter that is parameterized with a UA. Then, given 𝑛 programs, it
can perform symbolic execution to check against the given application condition with respect to
the given UA. On top of this symbolic interpreter, we can implement the UA search algorithm.

Acknowledgments
We would like to thank the PLDI anonymous reviewers for their insightful feedback. We thank
Zheng Guo, ChenglongWang, andWenxi Wang for their feedback on earlier drafts of this work. We
would also like to thank Danny Ding for helping with a baseline in the evaluation, Xiaomeng Xu
and Yuxuan Zhu for their contributions to earlier versions of this work, and Brian Zhang for helping
process some of the benchmarks. This research is supported by the National Science Foundation

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 200. Publication date: June 2025.

Polygon: Symbolic Reasoning for SQL using Conflict-Driven Under-Approximation Search 200:23

under Grant Numbers CCF-2210832, CCF-2318937, CCF-2236233, and CCF-2123654, as well as an
NSERC Discovery Grant.

Artifact Availability Statement
The artifact that implements the techniques and supports the evaluation results reported in this
paper is available on Zenodo [73].

References
[1] Leonardo Alt, Sepideh Asadi, Hana Chockler, Karine Even Mendoza, Grigory Fedyukovich, Antti EJ Hyvärinen, and

Natasha Sharygina. 2017. HiFrog: SMT-based function summarization for software verification. In Tools and Algorithms

for the Construction and Analysis of Systems: 23rd International Conference, TACAS 2017, Held as Part of the European

Joint Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, Part II

23. Springer, 207–213.
[2] Saswat Anand, Patrice Godefroid, and Nikolai Tillmann. 2008. Demand-driven compositional symbolic execution. In

Tools and Algorithms for the Construction and Analysis of Systems: 14th International Conference, TACAS 2008, Held

as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March

29-April 6, 2008. Proceedings 14. Springer, 367–381.
[3] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and Irene Finocchi. 2018. A survey of symbolic

execution techniques. ACM Computing Surveys (CSUR) 51, 3 (2018), 1–39.
[4] Thomas Ball, Orna Kupferman, and Greta Yorsh. 2005. Abstraction for falsification. In Computer Aided Verification:

17th International Conference, CAV 2005, Edinburgh, Scotland, UK, July 6-10, 2005. Proceedings 17. Springer, 67–81.
[5] Sam Blackshear, Nikos Gorogiannis, Peter W O’Hearn, and Ilya Sergey. 2018. RacerD: compositional static race

detection. Proceedings of the ACM on Programming Languages 2, OOPSLA (2018), 1–28.
[6] Ricardo Brancas, Miguel Terra-Neves, Miguel Ventura, Vasco Manquinho, and Ruben Martins. 2022. CUBES: a parallel

synthesizer for SQL using examples. arXiv preprint arXiv:2203.04995 (2022).
[7] Jeroen Castelein, Maurício Aniche, Mozhan Soltani, Annibale Panichella, and Arie van Deursen. 2018. Search-based test

data generation for SQL queries. In Proceedings of the 40th international conference on software engineering. 1220–1230.
doi:10.1145/3180155.3180202

[8] Marek Chalupa and Jan Strejček. 2021. Backward symbolic execution with loop folding. In Static Analysis: 28th

International Symposium, SAS 2021, Chicago, IL, USA, October 17–19, 2021, Proceedings 28. Springer, 49–76.
[9] Bikash Chandra, Ananyo Banerjee, Udbhas Hazra, Mathew Joseph, and S Sudarshan. 2019. Automated grading of sql

queries. In 2019 IEEE 35th International Conference on Data Engineering (ICDE). IEEE, 1630–1633. doi:10.1109/ICDE.
2019.00159

[10] Bikash Chandra, Bhupesh Chawda, Biplab Kar, KV Maheshwara Reddy, Shetal Shah, and S Sudarshan. 2015. Data
generation for testing and grading SQL queries. The VLDB Journal 24, 6 (2015), 731–755.

[11] Satish Chandra, Stephen J Fink, and Manu Sridharan. 2009. Snugglebug: a powerful approach to weakest preconditions.
In Proceedings of the 30th ACM SIGPLAN Conference on Programming Language Design and Implementation. 363–374.

[12] Alvin Cheung, Maaz Bin Safeer Ahmad, Brandon Haynes, Chanwut Kittivorawong, Shadaj Laddad, Xiaoxuan Liu,
Chenglong Wang, and Cong Yan. 2023. Towards Auto-Generated Data Systems. Proceedings of the VLDB Endowment

16, 12 (2023), 4116–4129.
[13] Shumo Chu, Daniel Li, Chenglong Wang, Alvin Cheung, and Dan Suciu. 2017. Demonstration of the cosette automated

sql prover. In Proceedings of the 2017 ACM International Conference on Management of Data. 1591–1594.
[14] Shumo Chu, BrendanMurphy, Jared Roesch, Alvin Cheung, and Dan Suciu. 2018. Axiomatic foundations and algorithms

for deciding semantic equivalences of SQL queries. arXiv preprint arXiv:1802.02229 (2018).
[15] Shumo Chu, Chenglong Wang, Konstantin Weitz, and Alvin Cheung. 2017. Cosette: An Automated Prover for SQL.. In

CIDR.
[16] Shumo Chu, Konstantin Weitz, Alvin Cheung, and Dan Suciu. 2017. HoTTSQL: Proving query rewrites with univalent

SQL semantics. ACM SIGPLAN Notices 52, 6 (2017), 510–524.
[17] Koen Claessen and John Hughes. 2000. QuickCheck: a lightweight tool for random testing of Haskell programs. In

Proceedings of the fifth ACM SIGPLAN international conference on Functional programming. 268–279.
[18] Fabien Coelho. 2013. DataFiller – generate random data from database schema. https://github.com/memsql/datafiller.
[19] Cosette. 2018. Cosette website. https://cosette.cs.washington.edu/.
[20] Thibault Dardinier and Peter Müller. 2024. Hyper Hoare Logic:(Dis-) Proving Program Hyperproperties. Proceedings of

the ACM on Programming Languages 8, PLDI (2024), 1485–1509.
[21] Leonardo Mendonça de Moura and Nikolaj S. Bjørner. 2008. Z3: An Efficient SMT Solver. In Proceedings of the

International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS) (Lecture Notes in

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 200. Publication date: June 2025.

https://doi.org/10.1145/3180155.3180202
https://doi.org/10.1109/ICDE.2019.00159
https://doi.org/10.1109/ICDE.2019.00159
https://github.com/memsql/datafiller
https://cosette.cs.washington.edu/

200:24 Pinhan Zhao, Yuepeng Wang, and Xinyu Wang

Computer Science, Vol. 4963). 337–340. doi:10.1007/978-3-540-78800-3_24
[22] Dino Distefano, Manuel Fähndrich, Francesco Logozzo, and Peter W O’Hearn. 2019. Scaling static analyses at Facebook.

Commun. ACM 62, 8 (2019), 62–70.
[23] Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig. 2018. Program synthesis using conflict-driven learning. In

Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI). ACM,
420–435. doi:10.1145/3192366.3192382

[24] Patrice Godefroid. 2007. Compositional dynamic test generation. In Proceedings of the 34th annual ACM SIGPLAN-

SIGACT symposium on Principles of programming languages. 47–54.
[25] Harrison Goldstein, Joseph W Cutler, Daniel Dickstein, Benjamin C Pierce, and Andrew Head. 2024. Property-Based

Testing in Practice. In Proceedings of the IEEE/ACM 46th International Conference on Software Engineering. 1–13.
[26] Nikos Gorogiannis, Peter W O’Hearn, and Ilya Sergey. 2019. A true positives theorem for a static race detector.

Proceedings of the ACM on Programming Languages 3, POPL (2019), 1–29.
[27] Todd J Green. 2009. Containment of conjunctive queries on annotated relations. In Proceedings of the 12th international

conference on database theory. 296–309.
[28] Yang He, Pinhan Zhao, Xinyu Wang, and Yuepeng Wang. 2024. VeriEQL: Bounded Equivalence Verification for

Complex SQL Queries with Integrity Constraints. Proceedings of the ACM on Programming Languages 8, OOPSLA1
(2024), 1071–1099.

[29] Daniel Jackson. 2002. Alloy: a lightweight object modelling notation. ACM Transactions on software engineering and

methodology (TOSEM) 11, 2 (2002), 256–290.
[30] Daniel Jackson. 2012. Software Abstractions: logic, language, and analysis. MIT press.
[31] Joxan Jaffar, Vijayaraghavan Murali, and Jorge A Navas. 2013. Boosting concolic testing via interpolation. In Proceedings

of the 2013 9th Joint Meeting on Foundations of Software Engineering. 48–58.
[32] Susmit Jha, Sumit Gulwani, Sanjit A Seshia, and Ashish Tiwari. 2010. Oracle-guided component-based program

synthesis. In Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering-Volume 1. 215–224.
[33] Ruyi Ji, Jingjing Liang, Yingfei Xiong, Lu Zhang, and Zhenjiang Hu. 2020. Question selection for interactive program

synthesis. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation.
1143–1158.

[34] Daniel Kroening, Matt Lewis, and Georg Weissenbacher. 2015. Under-approximating loops in C programs for fast
counterexample detection. Formal methods in system design 47 (2015), 75–92.

[35] Volodymyr Kuznetsov, Johannes Kinder, Stefan Bucur, and George Candea. 2012. Efficient state merging in symbolic
execution. Acm Sigplan Notices 47, 6 (2012), 193–204.

[36] Leonidas Lampropoulos, Diane Gallois-Wong, Cătălin Hriţcu, John Hughes, Benjamin C Pierce, and Li-yao Xia. 2017.
Beginner’s luck: a language for property-based generators. In Proceedings of the 44th ACM SIGPLAN Symposium on

Principles of Programming Languages. 114–129.
[37] Leonidas Lampropoulos, Michael Hicks, and Benjamin C Pierce. 2019. Coverage guided, property based testing.

Proceedings of the ACM on Programming Languages 3, OOPSLA (2019), 1–29.
[38] Leonidas Lampropoulos, Zoe Paraskevopoulou, and Benjamin C Pierce. 2017. Generating good generators for inductive

relations. Proceedings of the ACM on Programming Languages 2, POPL (2017), 1–30.
[39] Leonidas Lampropoulos and Benjamin C Pierce. 2018. QuickChick: Property-Based Testing in Coq. Software Foundations

series 4 (2018).
[40] Quang Loc Le, Azalea Raad, Jules Villard, Josh Berdine, Derek Dreyer, and Peter W O’Hearn. 2022. Finding real bugs in

big programs with incorrectness logic. Proceedings of the ACM on Programming Languages 6, OOPSLA1 (2022), 1–27.
[41] Sirui Lu and Rastislav Bodík. 2023. Grisette: Symbolic Compilation as a Functional Programming Library. Proceedings

of the ACM on Programming Languages 7, POPL (2023), 455–487.
[42] Vasco Manquinho and Ruben Martins. 2024. Towards Reliable SQL Synthesis: Fuzzing-Based Evaluation and Disam-

biguation. In FASE 2024, Vol. 14573. Springer Nature, 232.
[43] João Marques-Silva, Inês Lynce, and Sharad Malik. 2021. Conflict-Driven Clause Learning SAT Solvers. In Handbook of

Satisfiability - Second Edition. Vol. 336. IOS Press, 133–182. doi:10.3233/FAIA200987
[44] Ruben Martins, Jia Chen, Yanju Chen, Yu Feng, and Isil Dillig. 2019. Trinity: An Extensible Synthesis Framework for

Data Science. Proc. VLDB Endow. 12, 12 (2019), 1914–1917. doi:10.14778/3352063.3352098
[45] RudyMatela Braquehais. 2017. Tools for Discovery, Refinement and Generalization of Functional Properties by Enumerative

Testing. Ph. D. Dissertation. University of York.
[46] Mikaël Mayer, Gustavo Soares, Maxim Grechkin, Vu Le, Mark Marron, Oleksandr Polozov, Rishabh Singh, Benjamin

Zorn, and Sumit Gulwani. 2015. User interaction models for disambiguation in programming by example. In Proceedings
of the 28th Annual ACM Symposium on User Interface Software & Technology. 291–301.

[47] Kenneth L McMillan. 2010. Lazy annotation for program testing and verification. In Computer Aided Verification: 22nd

International Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceedings 22. Springer, 104–118.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 200. Publication date: June 2025.

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/3192366.3192382
https://doi.org/10.3233/FAIA200987
https://doi.org/10.14778/3352063.3352098

Polygon: Symbolic Reasoning for SQL using Conflict-Driven Under-Approximation Search 200:25

[48] Toby Murray. 2020. An under-approximate relational logic: heralding logics of insecurity, incorrect implementation &
more. arXiv preprint arXiv:2003.04791 (2020).

[49] Peter W O’Hearn. 2019. Incorrectness logic. Proceedings of the ACM on Programming Languages 4, POPL (2019), 1–32.
[50] Rohan Padhye, Caroline Lemieux, and Koushik Sen. 2019. Jqf: Coverage-guided property-based testing in java. In

Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis. 398–401.
[51] Corina S Păsăreanu, Radek Pelánek, and Willem Visser. 2005. Concrete model checking with abstract matching and

refinement. In Computer Aided Verification: 17th International Conference, CAV 2005, Edinburgh, Scotland, UK, July 6-10,

2005. Proceedings 17. Springer, 52–66.
[52] Sorawee Porncharoenwase, Luke Nelson, Xi Wang, and Emina Torlak. 2022. A formal foundation for symbolic

evaluation with merging. Proceedings of the ACM on Programming Languages 6, POPL (2022), 1–28.
[53] Azalea Raad, Josh Berdine, Hoang-Hai Dang, Derek Dreyer, Peter O’Hearn, and Jules Villard. 2020. Local reasoning

about the presence of bugs: Incorrectness separation logic. In Computer Aided Verification: 32nd International Conference,

CAV 2020, Los Angeles, CA, USA, July 21–24, 2020, Proceedings, Part II 32. Springer, 225–252.
[54] Azalea Raad, Julien Vanegue, Josh Berdine, and Peter O’Hearn. 2023. A General Approach to Under-Approximate

Reasoning About Concurrent Programs. In 34th International Conference on Concurrency Theory (CONCUR 2023).
Schloss-Dagstuhl-Leibniz Zentrum für Informatik.

[55] Azalea Raad, Julien Vanegue, and Peter O’Hearn. 2024. Non-termination Proving at Scale. Proceedings of the ACM on

Programming Languages 8, OOPSLA2 (2024), 246–274.
[56] Colin Runciman, Matthew Naylor, and Fredrik Lindblad. 2008. Smallcheck and lazy smallcheck: automatic exhaustive

testing for small values. Acm sigplan notices 44, 2 (2008), 37–48.
[57] Daniel Schwartz-Narbonne, Martin Schäf, Dejan Jovanović, Philipp Rümmer, and Thomas Wies. 2015. Conflict-directed

graph coverage. In NASA Formal Methods: 7th International Symposium, NFM 2015, Pasadena, CA, USA, April 27-29,

2015, Proceedings 7. Springer, 327–342.
[58] Koushik Sen, George Necula, Liang Gong, and Wontae Choi. 2015. Multise: Multi-path symbolic execution using value

summaries. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering. 842–853.
[59] Ondrej Sery, Grigory Fedyukovich, and Natasha Sharygina. 2011. Interpolation-based function summaries in bounded

model checking. In Haifa verification conference. Springer, 160–175.
[60] Ondrej Sery, Grigory Fedyukovich, and Natasha Sharygina. 2012. Incremental upgrade checking by means of

interpolation-based function summaries. In 2012 Formal Methods in Computer-Aided Design (FMCAD). IEEE, 114–121.
[61] Aalok Thakkar, Nathaniel Sands, George Petrou, Rajeev Alur, Mayur Naik, and Mukund Raghothaman. 2023. Mobius:

Synthesizing Relational Queries with Recursive and Invented Predicates. Proc. ACM Program. Lang. 7, OOPSLA2 (2023),
1394–1417. doi:10.1145/3622847

[62] Emina Torlak and Rastislav Bodik. 2013. Growing solver-aided languages with Rosette. In Proceedings of the 2013 ACM

international symposium on New ideas, new paradigms, and reflections on programming & software. 135–152.
[63] Emina Torlak and Rastislav Bodík. 2014. A lightweight symbolic virtual machine for solver-aided host languages. In

ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI). 530–541. doi:10.1145/2594291.
2594340

[64] Emina Torlak and Daniel Jackson. 2007. Kodkod: A relational model finder. In International Conference on Tools and

Algorithms for the Construction and Analysis of Systems. Springer, 632–647.
[65] Javier Tuya, María José Suárez-Cabal, and Claudio De La Riva. 2010. Full predicate coverage for testing SQL database

queries. Software Testing, Verification and Reliability 20, 3 (2010), 237–288.
[66] Margus Veanes, Nikolai Tillmann, and Jonathan de Halleux. 2010. Qex: Symbolic SQL query explorer. In International

Conference on Logic for Programming Artificial Intelligence and Reasoning. Springer, 425–446.
[67] Chenglong Wang, Alvin Cheung, and Rastislav Bodik. 2017. Interactive query synthesis from input-output examples.

In Proceedings of the 2017 ACM International Conference on Management of Data. 1631–1634.
[68] Chenglong Wang, Alvin Cheung, and Rastislav Bodik. 2017. Synthesizing highly expressive SQL queries from

input-output examples. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and

Implementation. 452–466.
[69] Chenglong Wang, Alvin Cheung, and Rastislav Bodík. 2018. Speeding up symbolic reasoning for relational queries.

Proceedings of the ACM on Programming Languages 2, OOPSLA (2018), 1–25.
[70] Yuepeng Wang, Rushi Shah, Abby Criswell, Rong Pan, and Isil Dillig. 2020. Data Migration using Datalog Program

Synthesis. Proc. VLDB Endow. 13, 7 (2020), 1006–1019. doi:10.14778/3384345.3384350
[71] Pinhan Zhao, Yang He, Xinyu Wang, and Yuepeng Wang. 2024. Demonstration of the VeriEQL Equivalence Checker

for Complex SQL Queries. Proceedings of the VLDB Endowment (PVLDB) 17, 12 (2024), 4437–4440.
[72] Pinhan Zhao, Yuepeng Wang, and Xinyu Wang. 2025. Polygon: Symbolic Reasoning for SQL using Conflict-Driven

Under-Approximation Search. arXiv:2504.06542

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 200. Publication date: June 2025.

https://doi.org/10.1145/3622847
https://doi.org/10.1145/2594291.2594340
https://doi.org/10.1145/2594291.2594340
https://doi.org/10.14778/3384345.3384350
https://arxiv.org/abs/2504.06542

200:26 Pinhan Zhao, Yuepeng Wang, and Xinyu Wang

[73] Pinhan Zhao, Yuepeng Wang, and Xinyu Wang. 2025. Polygon: Symbolic Reasoning for SQL using Conflict-Driven
Under-Approximation Search. doi:10.5281/zenodo.15059866

[74] Qi Zhou, Joy Arulraj, Shamkant Navathe, William Harris, and Dong Xu. 2019. Automated verification of query
equivalence using satisfiability modulo theories. Proceedings of the VLDB Endowment 12, 11 (2019), 1276–1288.

[75] Qi Zhou, Joy Arulraj, Shamkant B Navathe, William Harris, and Jinpeng Wu. 2022. SPES: A Symbolic Approach to
Proving Query Equivalence Under Bag Semantics. In 2022 IEEE 38th International Conference on Data Engineering

(ICDE). IEEE, 2735–2748.
[76] Zhe Zhou, Ashish Mishra, Benjamin Delaware, and Suresh Jagannathan. 2023. Covering all the bases: Type-based

verification of test input generators. Proceedings of the ACM on Programming Languages 7, PLDI (2023), 1244–1267.

Received 2024-11-15; accepted 2025-03-06

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 200. Publication date: June 2025.

https://doi.org/10.5281/zenodo.15059866

	Abstract
	1 Introduction
	2 Overview
	3 Conflict-Driven Under-Approximation Search for SQL
	3.1 Query Language
	3.2 Representing Under-Approximations
	3.3 Encoding Full Semantics
	3.4 Encoding Under-Approximate Semantics
	3.5 Top-Level Algorithm and Problem Statement
	3.6 Conflict-Driven Under-Approximation Search
	3.7 Conflict Resolution and Accumulation
	3.8 Theorems

	4 Evaluation
	4.1 RQ1: Can Polygon Solve Real-World Benchmarks?
	4.2 RQ2: Polygon vs. State-of-the-Art
	4.3 RQ3: Ablation Studies

	5 Related Work
	6 Conclusion and Discussion
	References

