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In application domains that store data in a tabular format, a common task is to fill the values of some cells
using values stored in other cells. For instance, such data completion tasks arise in the context of missing
value imputation in data science and derived data computation in spreadsheets and relational databases.
Unfortunately, end-users and data scientists typically struggle with many data completion tasks that require
non-trivial programming expertise. This paper presents a synthesis technique for automating data completion
tasks using programming-by-example (PBE) and a very lightweight sketching approach. Given a formula sketch
(e.g., AVG(?1, ?2)) and a few input-output examples for each hole, our technique synthesizes a program to
automate the desired data completion task. Towards this goal, we propose a domain-specific language (DSL)
that combines spatial and relational reasoning over tabular data and a novel synthesis algorithm that can
generate DSL programs that are consistent with the input-output examples. The key technical novelty of our
approach is a new version space learning algorithm that is based on finite tree automata (FTA). The use of
FTAs in the learning algorithm leads to a more compact representation that allows more sharing between
programs that are consistent with the examples. We have implemented the proposed approach in a tool called
DACE and evaluate it on 84 benchmarks taken from online help forums. We also illustrate the advantages of
our approach by comparing our technique against two existing synthesizers, namely Prose and Sketch.
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1 INTRODUCTION
Many application domains store data in a tabular form arranged using rows and columns. For
example, Excel spreadsheets, R dataframes, and relational databases all view the underlying data as
a 2-dimensional table consisting of cells. In this context, a common scenario is to fill the values of
some cells using values stored in other cells. For instance, consider the following common data
completion tasks:
• Data imputation: In statistics, imputation means replacing missing data with substituted
values. Since missing values can hinder data analytics tasks, users often need to fill missing
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Fig. 1. A data completion task taken from StackOverflow.

values using other related entries in the table. For instance, data imputation arises frequently
in statistical computing frameworks, such as R and pandas.
• Spreadsheet computation: In many applications involving spreadsheets, users need to
calculate the value of a cell based on values from other cells. For instance, a common task is
to introduce new columns, where each value in the new column is derived from values in
existing columns.
• Virtual columns in databases: In relational databases, users sometimes create views that
store the result of some database query. In this context, a common task is to add virtual
columns whose values are computed using existing entries in the view.

As illustrated by these examples, users often need to complete missing values in tabular data.
While some of these data completion tasks are fairly straightforward, many others require non-
trivial programming knowledge that is beyond the expertise of end-users and data scientists.
To illustrate a typical data completion task, consider the tabular data shown in Fig. 1. Here,

the table stores measurements for different people during a certain time period, where each row
represents a person and each column corresponds to a day. As explained in a StackOverflow post 1,
a data scientist analyzing this data wants to compute the difference of the measurements between
the first and last days for each person and record this information in the Delta column. Since the
table contains a large number of rows (of which only a small subset is shown in Fig. 1), manually
computing this data is prohibitively cumbersome. Furthermore, since each person’s start and end
date is different, automating this data completion requires non-trivial programming logic.
In this paper, we present a novel program synthesis technique for automating data completion

tasks in tabular data sources, such as dataframes, spreadsheets, and relational databases. Our
synthesis methodology is based on two key insights that we gained by analyzing dozens of posts on
online forums: First, it is often easy for end-users to specify which operators should be used in the
data completion task and provide a specific instantiation of the operands for a few example cells.
However, it is typically very difficult for end-users to express the general operand extraction logic.
For instance, for the example from Fig. 1, the user knows that the missing value can be computed
as C1 −C2, but he is not sure how to implement the logic for extracting C1,C2 in the general case.
Based on this observation, our synthesis methodology for data completion combines pro-

gram sketching and programming-by-example (PBE). Specifically, given a formula sketch (e.g.,
SUM(?1,AVG(?2,?3))) as well as a few input-output examples for each hole, our technique au-
tomatically synthesizes a program that can be used to fill all missing values in the table. For
instance, in our running example, the user provides the sketch MINUS(?1,?2) as well as the follow-
ing input-output examples for the two holes:

?1 ?2
(A, Delta) 7→ (A, Day 6) (A, Delta) 7→ (A, Day 3)
(B, Delta) 7→ (B, Day 4) (B, Delta) 7→ (B, Day 1)

1http://stackoverflow.com/questions/30952426/substract-last-cell-in-row-from-first-cell-with-number
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Fig. 2. High-level overview of our synthesis approach.

Given these examples, our technique automatically synthesizes a program that can be used to fill
all values in the Delta column in Fig. 1.
One of the key pillars underlying our synthesis algorithm is the design of a new domain-

specific language (DSL) that is expressive enough to capture most data completion tasks we have
encountered, yet lightweight enough to facilitate automation. The programs in our DSL take as
input a table and a cell with missing value, and return a list of cells that are used for computing
the missing value. Our main insight in designing this DSL is to use abstractions that combine
spatial reasoning in the tabular structure with relational reasoning. Spatial reasoning allows the
DSL programs to follow structured paths in the 2-dimensional table whereas relational reasoning
allows them to constrain those paths with predicates over cell values.
As shown schematically in Fig. 2, the high-level structure of our synthesis algorithm is similar

to prior techniques that combine partitioning with unification [Alur et al. 2015; Gulwani 2011;
Yaghmazadeh et al. 2016] . Specifically, partitioning is used to classify the input-output examples
into a small number of groups, each of which can be represented using a conditional-free program
in the DSL. In contrast, the goal of unification is to find a conditional-free program that is consistent
with each example in the group. The key novelty of our synthesis algorithm is a new unification
algorithm based on finite tree automata (FTA).

Our unification procedure can be viewed as a new version space learning algorithm [Mitchell 1982]
that succinctly represents a large number of programs. Specifically, a version space represents all
viable hypotheses that are consistent with a given set of examples, and prior work on programming-
by-example have used so-called version space algebras (VSA) to combine simpler version spaces
into more complex ones [Gulwani 2011; Lau et al. 2003; Polozov and Gulwani 2015]. Our use of
FTAs for version space learning offers several advantages compared to prior VSA-based techniques
such as Prose: First, FTAs represent version spaces more succinctly, without explicitly constructing
individual sub-spaces representing sub-expressions. Hence, our approach avoids the need for finite
unrolling of recursive expressions in the DSL. Second, our finite-tree automata are constructed in a
forward manner using the DSL semantics. In constrast to VSA-based approaches such as Prose that
construct VSAs in a backward fashion starting from the outputs, our approach therefore obviates
the need to manually define complex inverse semantics for each DSL construct. As we demonstrate
experimentally, our version space learning algorithm using FTAs significantly outperforms the
VSA-based learning algorithm used in Prose for synthesis tasks in the data completion domain.

We have implemented our synthesis algorithm in a tool called DACE 2 and evaluated it on 84
real-world data completion tasks collected from online help forums. Our evaluation shows that
DACE can successfully synthesize over 92% of the data completion tasks in an average of 0.7
seconds. We also empirically compare our approach against two existing techniques, i.e., Prose
and Sketch, and show that our new synthesis technique outperforms these baseline algorithms by
orders of magnitude in the data completion domain.
2DACE stands for DAta Completion Engine.
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To summarize, this paper makes the following key contributions:
• We propose a new program synthesis methodology that combines program sketching and
programming-by-example techniques to automate a large class of data completion tasks
involving tabular data.
• We describe a DSL that can concisely express a large class of data completion tasks and that
is amenable to an efficient synthesis algorithm.
• We propose a new unification algorithm that uses finite tree automata to construct version
spaces that succinctly represent DSL programs that are consistent with a set of input-output
examples.
• We evaluate our approach on real-world data completion tasks involving dataframes, spread-
sheets, and relational databases. Our experiments show that the proposed learning algorithm
is effective in practice.

2 MOTIVATING EXAMPLES
In this section, we present some representative data completion tasks collected from online help
forums. Our main goal here is to demonstrate the diversity of data completion tasks and motivate
various design choices for our DSL.

Example 2.1. A numerical ecologist needs to perform data imputation in R using the last obser-
vation carried forward (LOCF) method 3. Specifically, he would like to replace each missing entry
with the previous non-missing entry incremented by 1. For instance, if the original row contains
[2,2,?,?,8,?], the new row should be [2,2,3,3,8,9].

Here, the desired imputation task can be expressed using the simple formula sketch SUM(?1,1).
The synthesis task is to find an expression that retrieves the previous non-missing value for each
missing entry.

Example 2.2. An astronomer needs to perform data imputation using Python’s pandas data
analysis library 4. Specifically, the astronomer wants to replace each missing value with the previous
non-missing value with the same id. The desired data imputation task is illustrated in Fig. 3 (a).

As this example illustrates, some data completion tasks require finding a cell that satisfies a
relational predicate. In this case, the desired cell with non-missing value must have the same id as
the id of the cell with missing value.

Example 2.3. A businessman using Excel wants to add a new column to his spreadsheet 5. As
shown in Fig. 3 (b), the entries in the new column D are obtained from column C. Specifically, the
data completion logic is as follows: First, find the previous row that has value 1 in column B. Then,
go down from that row and find the first non-zero value in columnC and use that value to populate
the cell in column D. Fig. 3 (b) shows the desired values for column D.

As this example illustrates, the cell extraction logic in some tasks can be quite involved. In this
example, we first need to find an intermediate cell satisfying a certain property (namely, it must be
upwards from the missing cell and have value 1 in column B). Then, once we find this intermediate
cell, we need to find the target cell satisfying a different property (namely, it must be downwards
from the intermediate cell and store a non-zero value in column C).

This example illustrates two important points: First, the data extraction logic can combine both
geometric (upward and downward search) and relational properties. Second, the data extraction
3http://stackoverflow.com/questions/38100208/fill-missing-value-based-on-previous-values
4http://stackoverflow.com/questions/16345583/fill-in-missing-pandas-data-with-previous-non-missing-value-grouped-by-key
5http://stackoverflow.com/questions/29606616/find-values-between-range-fill-in-next-cells
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1 2
1: id x
2: 1 10
3: 1 ? � 10
4: 2 100
5: 2 200
6: 1 ? � 10
7: 2 ? � 200
8: 1 300

· · · ·

A B C D
1 18404.00 1 20 ? << 1C
2 018404x0 2 0 ? << 1C
3 1004-1101 1 0 ? << 4C
4 0720-0125 3 40 ? << 4C
5 11001-0000 1 0 ? << 6C
6 1001-1110 4 80 ? << 6C
7 0720-0001 5 0 ? << 6C
8 0720-0002 4 0 ? << 6C
9 052275.00 1 0 ? << 10C
10 052275v2 2 160 ? << 10C
11 … … … …

A B
1 Group Name Student ID
2 GroupA
3 83038
4 14363
5 GroupA Total: ? << COUNT(3B, 4B)
6 GroupB
7 57863
8 76813
9 10958
10 GroupB Total: ? << COUNT(7B, 8B, 9B)
11 GroupC
12 … …

1 2 3 4
1: 2016-11-01 A ? � 12 ? � 200
2: 2016-11-02 B 12 ? � 200
3: 2016-11-03 A ? � 12 200
4: 2016-11-04 C 18 400
5: 2016-11-05 B 10 ? � 400
6: 2016-11-06 B ? � 10 800
7: 2016-11-07 C ? � 10 1000

· · · · · · · ·

(a) (b) (c) (d)

Fig. 3. (a) Replace missing entry by previous non-missing value with same id. (b) Fill cells in column D by

copying values in column C. (c) Calculate total count for each group. (d) Replace missing value by previous

non-missing value (if exists), otherwise use next non-missing one.

logic can require “making turns” — in this example, we first go up to an intermediate cell and then
change direction by going down to find the target cell using a different logic.

Example 2.4. A statistician working on spreadsheet data needs to complete the “Group Total”
rows from Fig. 3 (c) using the count of entries in that group 6. For instance, the GroupA Total entry
should be filled with 2.

This example illustrates the need for allowing holes of type list in the sketches. Since each
missing value is obtained by counting a variable number of entries, the user instead provides a
sketch COUNT(?1), where ?1 represents a list of cells. Furthermore, this example also illustrates the
need for a language construct that can extract a range of values satisfying a certain property. For
instance, in this example, we need to extract all cells between the cell c to be completed and the
first empty entry that is upwards from c .

Example 2.5. An R user wants to perform imputation on the dataframe shown in Fig. 3 (d) using
the LOCF method. Specifically, she wants to impute the missing value by substituting it with the
first previous non-missing value in the same column. However, if no such entry exists, she wants to
fill the missing entry by using the first following non-missing value in the same column instead.

This example illustrates the need for allowing a conditional construct in our DSL: Here, we first
try some extraction logic, and, if it fails, we then resort to a back-up strategy. Many of the data
completion tasks that we have encountered follow this pattern — i.e., they try different extraction
logics depending on whether the previous logic succeeds. Based on this observation, our DSL
introduces a restricted form of switch statement, where the conditional implicitly checks if the
current branch fails.

3 SPECIFICATIONS
A specification in our synthesis methodology is a pair (S,E), where S is a formula sketch and
E is a set of input-output examples. Specifically, formula sketches are defined by the following
grammar:

Sketch S := t | F (S1, ··,Sn ), F ∈ Λ
Term t := const | ?id

Here, Λ denotes a family of pre-defined functions, such as AVG, SUM, MAX, etc. Holes in the sketch
represent unknown cell extraction programs to be synthesized. Observe that formula sketches can
contain multiple functions. For instance, SUM(MAX(?1,?2),1) is a valid sketch and indicates that a
missing value in the table should be filled by adding one to the maximum of two unknown cells.
6http://stackoverflow.com/questions/13998218/count-values-in-groups/13999520
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Task Sketch Input-output examples

Example 2.1 SUM(?1, 1)
{
?1 ↪→ {(1, 3) 7→ [(1, 2)], (1, 4) 7→ [(1, 2)], (1, 6) 7→ [(1, 5)]}

}

Example 2.2 ?1
{
?1 ↪→ {(3, 2) 7→ [(2, 2)], (6, 2) 7→ [(2, 2)], (7, 2) 7→ [(5, 2)]}

}

Example 2.3 ?1
{
?1 ↪→ {(1, D ) 7→ [(1,C )], (3, D ) 7→ [(4,C )], (8, D ) 7→ [(6,C )]}

}

Example 2.4 COUNT(?1)
{
?1 ↪→ {(5, B ) 7→ [(3, B ), (4, B )], (10, B ) 7→ [(7, B ), (8, B ), (9, B )]}

}

Example 2.5 ?1
{
?1 ↪→ {(3, 3) 7→ [(2, 3)], (7, 3) 7→ [(5, 3)], (1, 4) 7→ [(3, 4)]}

}

Fig. 4. Specifications for examples from Section 2.

In many cases, the data completion task involves copying values from an existing cell. In this
case, the user can express her intent using the identity sketch ID(?1). Since this sketch is quite
common, we abbreviate it using the notation ?1.

In addition to the sketch, users of DACE are also expected to provide one or more input-output
examples E for each hole. Specifically, examples E map each hole ?id in the sketch to a set of pairs
of the form i 7→ [o1, ··,on], where i is an input cell and [o1, ··,on] is the desired list of output cells.
Hence, examples in DACE have the following shape:

Examples E :=
{
?id ↪→ {i 7→ [o1, ··,on]}

}
Each cell in the table is represented as a pair (x ,y), where x and y denote the row and column

of the cell respectively. Fig. 4 provides the complete specifications for the examples described in
Section 2.

Given a specification (S,E), the key learning task is to synthesize a program Pid for each hole ?id
such that Pid satisfies all examples E[?id]. 7 For a list of programs P = [P1, ··,Pn], we write S[P] to
denote the resulting program that is obtained by filling each hole ?id in sketch S with program Pid.
Once DACE learns a cell extraction program Pid for each hole, it computes missing values in the
table T using S[P](T,c ) where c denotes a cell to be completed in table T. In the rest of the paper,
we assume that missing values in the table are identified using the special symbol ?. For instance,
the analog of ? is the symbol NA in R and blank cell in Excel.

4 DOMAIN-SPECIFIC LANGUAGE
In this section, we present our domain-specific language (DSL) for cell extraction programs. As
mentioned earlier, our DSL is designed to achieve a good trade-off between expressiveness of the
language and efficiency of synthesis. The syntax of the DSL is shown in Fig. 5, and its denotational
semantics is presented in Fig. 6. We now review the key constructs in the DSL together with their
semantics.

A cell extraction program π takes as input a table T and a cell x , and returns a list of cells [c1, ··,cn]
or the special value ⊥. Here, ⊥ can be thought of as an “exception" and indicates that π fails to
extract any cells on its input cell x . A cell extraction program π is either a simple program ρ without
branches or a conditional of the form Seq(ρ,π ). As shown in Fig. 6, the semantics of Seq(ρ,π ) is that
the second argument π is only evaluated if ρ fails (i.e., returns ⊥). Our DSL includes conditionals
in the form of an Seq construct rather than a full-fledged conditional statement (e.g., if (C) then
... else ... ) because we have found the Seq construct to be sufficiently expressive to capture most
real-world data completion scenarios. Furthermore, this design choice simplifies the synthesis task
because the learning algorithm does not need to infer predicates for each branch.

7Since expressions in the holes of the sketch formula only depend on input cells (and not on other holes), running the
synthesis algorithm once per hole is sufficient.
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Extractor π := λT.λx .ρ | λT.λx .Seq(ρ, π )
Simple prog. ρ := List(τ1, · ·, τn ) | Filter(τ1, τ2, τ3, λy .λz .ϕ )

Cell prog. τ := x | GetCell(τ , dir, k, λy .λz .ϕ )
Predicate ϕ := True | Val(χ (z )) = s | Val(χ (z )) , s | Val(χ (y )) = Val(χ (z )) | ϕ1 ∧ ϕ2

Cell mapper χ := λc .c | λc .(k, col(c )) | λc .(row(c ), k )
Direction dir := u | d | l | r

Fig. 5. Syntax of the DSL. Here, T is a table, x is a cell, and y and z are bound to cells in table T. Also, k
denotes an integer constant, and s denotes a string constant. Val(·) returns the value in a given cell.

JVal(χ (z )) = sKT,c1,c2 = Eval(T(χ (c2)), =, s )
JVal(χ (z )) , sKT,c1,c2 = Eval(T(χ (c2)), ,, s )

JVal(χ (y )) = Val(χ (z ))KT,c1,c2 = Eval(T(χ (c1)), =, T(χ (c2)))
Jϕ1 ∧ ϕ2KT,c1,c2 = Jϕ1KT,c1,c2 ∧ Jϕ2KT,c1,c2

JxKT,c = c

JGetCell(τ , dir, k, λy .λz .ϕ )KT,c =




⊥ if Jτ KT,c =⊥ or |k | ≥ len(L)

L.get(k ) if k ≥ 0

L.get
(
len(L) − |k |

)
if k < 0

where L = filter
(
range(Jτ KT,c , dir), (λy .λz . ϕ )Jτ KT,c

)
JList(τ1, · ·, τn )KT,c = Jτ1KT,c ⊎ · · ⊎JτnK

T,c

JFilter(τ1, τ2, τ3, λy .λz .ϕ )KT,c =



⊥ if Jτ1KT,c =⊥ or Jτ2KT,c =⊥ or Jτ3KT,c =⊥

filter
(
range(Jτ2KT,c , Jτ3KT,c ), (λyλz . ϕ )Jτ1KT,c

)
otherwise

JSeq(ρ, π )KT,c =



JρKT,c if JρKT,c ,⊥

Jπ KT,c otherwise

Eval(s1, ◁, s2) =



false if s1 = ? or s2 = ?

s1 ◁ s2 otherwise

c =



⊥ if c =⊥
[c] otherwise

c1 ⊎ c2 =



⊥ if c1 =⊥ or c2 =⊥
c1 :: c2 otherwise

Fig. 6. Semantics of the DSL. Here, T(·) gives the value of the given cell in table T. Function range(c,dir)
returns all cells in the direction dir from c (including c). Function range(c1,c2) returns all cells between c1 and
c2 (including c1 and c2) if c1 and c2 are in the same row/column, otherwise it gets stuck. Function filter(L,p)
is the standard combinator that returns a list of elements satisfying p in L.

Let us now consider the syntax and semantics of simple programs ρ. A simple program is either
a list of individual cell extraction programs (i.e., List(τ1, ··,τn )), or a filter construct of the form
Filter(τ1,τ2,τ3,λy.λz.ϕ). Here, τ denotes a so-called cell program for extracting a single cell. The
semantics of the Filter construct is that it returns all cells between τ2 and τ3 that satisfy the predicate
ϕ. Here, ϕ takes two arguments y and z, where y is bound to the result of τ1 and z is bound to each
of the cells between τ2 and τ3. As illustrated in Example 2.4, List and Filter constructs are necessary
because many data completion tasks require extracting a range of values rather than a single value.

The key building block of cell extraction programs is the GetCell construct. In the simplest case,
a GetCell construct has the form GetCell(x ,dir,k,λy.λz.ϕ) where x is a cell, dir is a direction (up
u, down d, left l, right r), k is an integer constant drawn from the range [−3,3], and ϕ is a predicate.
The semantics of this construct is that it finds the k’th cell satisfying predicate ϕ in direction dir

from the starting cell x . For instance, the expression GetCell(x , r,0,λy.λz.True) refers to x itself,
while GetCell(x , r,1,λy.λz.True) extracts the neighboring cell to the right of cell x . An interesting
point about the GetCell construct is that it is recursive: For instance, if x is bound to cell (r ,c ), then

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 62. Publication date: October 2017.
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Task Sketch Implementation in our DSL

Ex. 2.1 SUM(?1, 1) ?1 ↪→ λT.λx . GetCell(x, l, 0, λy .λz .Val(z ) , ?)

Ex. 2.2 ?1 ?1 ↪→ λT.λx . GetCell
(
x, u, 0, λy .λz .Val(z ) , ? ∧ Val((row(y ), 1)) = Val((row(z ), 1))

)
Ex. 2.3 ?1

?1 ↪→ λT.λx . GetCell
(
GetCell(GetCell(x, l, 1, λy .λz .True), u, 0, λy .λz .Val((row(z ), 2)) =

“1”), d, 0, λy .λz .Val(z ) , “0”
)

Ex. 2.4 COUNT(?1) ?1 ↪→ λT.λx . Filter(x,GetCell(x, u, 0, Val(z ) = “ ”), x, λy .λz .Val(z ) , “ ”)
Ex. 2.5 ?1 ?1 ↪→ λT.λx . Seq

(
GetCell(x, u, 0, λy .λz .Val(z ) , ?),GetCell(x, d, 0, λy .λz .Val(z ) , ?)

)
Fig. 7. Code in the DSL for examples. The List keyword is omitted if it has only one cell program as argument.

the expression
GetCell(GetCell(x ,u,1,λy.λz.True), r,1,λy.λz.True)

retrieves the cell at row r − 1 and column c + 1. Effectively, the recursive GetCell construct allows
the program to “make turns" when searching for the target cell. As we observed in Example 2.3 from
Section 2, the ability to “make turns" is necessary for expressing many real-world data extraction
tasks.

Another important point about theGetCell construct is that it returns⊥ if the k’th entry from the
starting cell falls outside the range of the table. For instance, if the input table has 3 rows and variable
x is bound to the cell in the third row and first column of the table, then GetCell(x ,d,1,λy.λz.True)
yields ⊥. Finally, another subtlety about GetCell is that the k value can be negative. For instance,
GetCell(x ,u,−1, λy.λz.True) returns the uppermost cell in x ’s column.
So far, we have seen how the GetCell construct allows us to express spatial (geometrical) rela-

tionships by specifying a direction and a distance. However, as illustrated through the examples
in Section 2, many real-world data extraction tasks require combining geometrical and relational
reasoning. For this purpose, predicates in our DSL can be constructed using conjunctions of an
expressive family of relations. Specifically, unary predicates Val(χ (z)) = s and Val(χ (z)) , s in our
DSL check whether or not the value of a cell χ (z) is equal to a string constant s . Similarly, binary
predicates Val(χ (y)) = Val(χ (z)) check whether two cells contain the same value. Observe that
the mapper function χ used in the predicate yields a new cell that shares some property with its
input cell z. For instance, the cell mapper λc .(row(c ),1) yields a cell that has the same row as c
but whose column is 1. The use of mapper functions in predicates allows us to further combine
geometric and relational reasoning.

Example 4.1. Fig. 7 gives the desired cell extraction program for each hole from Fig. 4. For
instance, the program λT.λx . GetCell(x , l,0,λy.λz.Val(z) , ?) yields the first non-missing value to
the left of x . Similarly, the cell extraction program for Example 2 yields the first cell c such that (1)
c does not have a missing value, (2) c has the same entry as x at column 1, and (3) c is obtained by
going up from x .

5 LEARNING CONDITIONAL-FREE PROGRAMS
Before we present the synthesis algorithm for learning arbitrary programs in the DSL from Section 4,
we first describe our algorithm for synthesizing conditional-free programs (i.e., simple programs).
The key idea underlying our algorithm is to construct a finite tree automaton (FTA) that represents
all conditional-free DSL programs that are consistent with the provided input-output examples.
As mentioned in Section 1, our FTA-based method can be viewed as a new version space learning
algorithm that offers several advantages over prior VSA-based techniques for our data completion
domain (see Section 6.2).
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5.1 Preliminaries
Since the remainder of this section relies on basic knowledge about finite tree automata, we first
provide some background on this topic. At a high level, tree automata generalize standard automata
by accepting trees rather than words (i.e., chains).
Definition 5.1 (FTA). A (bottom-up) finite tree automaton (FTA) over alphabet F is a tuple
A = (Q ,F ,Qf ,∆) where Q is a set of states, Qf ⊆ Q is a set of final states, and ∆ is a set of
transitions (rewrite rules) of the form f (q1, ··,qn ) → q where we have q,q1, ··,qn ∈ Q and f ∈ F
has arity n.

Fig. 8. Tree for ¬(1 ∧ ¬0), annotated with states.

Here, the alphabet is ranked in that every symbol
f in F has an arity (rank) associated with it. The
set of function symbols of arity k is denoted Fk . In
the context of tree automata, we view ground terms
over alphabet F as trees. Intuitively, an FTA accepts
a ground term t if we can rewrite t to some q ∈ Qf
using rules in ∆. The language of an FTAA, written
L (A), is the set of all ground terms accepted by A.
Example 5.2. Consider the tree automaton defined by states Q = {q0,q1}, F0 = {0,1}, F1 = {¬}
F2 = {∧}, final state q1, and the following transitions ∆:

1→ q1 0→ q0 ∧(q0,q0) → q0 ∧(q0,q1) → q0
¬(q1) → q0 ¬(q0) → q1 ∧(q1,q0) → q0 ∧(q1,q1) → q1

This tree automaton accepts exactly those propositional logic formulas (without variables) that
evaluate to true. As an example, Fig. 8 shows the tree for the formula ¬(1∧¬0) where each sub-term
is annotated with its state by executing A on the formula. Since q0 is not a final state, this formula
is rejected by the tree automaton.

5.2 Synthesis Algorithm for Conditional-Free Programs
Our synthesis algorithm for learning conditional-free programs is presented in Fig. 9. The Learn-
SimpProg procedure takes as input a table T and a set of examples E, where each example is
represented as a mapping from an input cell i to a list of output cells L or the special value ⊥. The
return value of LearnSimpProg is a simple (conditional-free) program ρ such that ρ (T,i ) = L for
all (i 7→ L) ∈ E.

The key idea underlying the LearnSimpProg procedure is to construct a finite tree automatonA
for each example i 7→ L such thatA accepts exactly those simple programs that produce L on input
i . In other words, the language of A includes exactly those abstract syntax trees of DSL programs
that are consistent with the example i 7→ L. Given an FTA for each individual example, we then
use standard FTA intersection to construct an automaton whose language includes programs that
are consistent with all input-output examples in E. If the language of the resulting automaton A
is empty, there is no conditional-free DSL program that is consistent with examples E; therefore,
the algorithm returns null in this case (line 8). Otherwise, we use a procedure Rank (described in
Section 5.3) to find a “best" program ρ that is accepted by A and return ρ as the learnt program.
The key part of the LearnSimpProg algorithm is the FTA procedure for constructing a finite

tree automaton that is consistent with a single input-output example i 7→ L. At a high level, the
construction works as follows: The alphabet of the FTA corresponds to our DSL constructs, and the
states in the FTA represent cells in table T. We have a transition f (c1, ··,cn ) → c if it is possible to
get to cell c from cells c1, ··,cn via the DSL construct f . Hence, given an input cell c and output cell
c ′, the trees accepted by our FTA correspond to simple programs that produce c ′ on input cell c .
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1: procedure LearnSimpProg(Table T,Examples E)

input: E is the map {i1 7→ L1, ··,in 7→ Ln } where each Li is either a list of cell or ⊥. We assume L1 , ⊥.
output: A conditional-free (simple) program satisfying examples E.

▷ Initialization.
2: if ∃i,i ′ ∈ dom(E). E[i] , ⊥ ∧ E[i ′] , ⊥ ∧ len(E[i]) , len(E[i ′])
3: then t := −1;
4: else t := len(E[i1])

5: A := FTA(T,i1,E[i1],t ); ▷ Construct FTA for first example.
6: for i ∈ dom(E) \ {i1} do ▷ Intersect with FTA of next example.
7: A := A ∩ FTA(T,i,E[i],t );

8: if JAK = ∅ then return null;
9: ρ := Rank(A); ▷ Rank programs in FTA.
10: return ρ;

Fig. 9. Algorithm for LearnSimpProg(T,E+,E−).

With this intuition in mind, let us now consider the FTA construction procedure in more detail.
Given a table T, an input cell i , a list of output cells L (or ⊥), and an integer t denoting the number
of output cells, we construct a tree automaton A = (Q ,F ,Qf ,∆) in the following way:
• The states Q include all cells in table T as well as two special symbols q⊥ and q⋆:

Q = {qc | c ∈ Cells(T)} ∪ {q⊥,q
⋆}

Here, q⊥ denotes any cell that is outside the range of the input table, and q⋆ indicates we
have reached all desired output cells.
• The final states Qf only include the special symbol q⋆ (i.e., Qf = {q

⋆}).
• The alphabet F is F0 ∪ F1 ∪ F3 ∪ Ft 8 where F0 = {x }, Ft = {List}, and

F3 =
{
Filterϕ

��� ϕ ∈ Preds(T)
}

F1 =
{
GetCelldir,k,ϕ

����
dir ∈ {u,d, l, r} ∧ k ∈ [−3,3] ∧ ϕ ∈ Preds(T)

}
In other words, the alphabet of A consists of the DSL constructs for simple programs. Since
Filter and GetCell statements also use predicates, we construct the universe of predicates
Preds(T) as shown in Fig. 10 and generate a different symbol for each different predicate.
Furthermore, since GetCell also takes a direction and position as input, we also instantiate
those arguments with concrete values.
• The transitions ∆ of A are constructed using the inference rules in Fig. 11. The Init rule
says that argument x is bound to input cell i . The GetCell rule states that GetCelldir,k,ϕ (qc )
can be rewritten to qc ′ if we can get to cell c ′ from c using the GetCell construct in the DSL.
The List 1 rule says that we can reach the final state q⋆ if the arguments of List correspond
to cells in the output L. Finally, the Filter 1 rule states that we can reach the final state q⋆
from states qc1 ,qc2 ,qc3 via Filterϕ if Filter(c1,c2,c3,ϕ) yields the output L on input table T. The
second variants of the rules (labeled 2) deal with the special case where L = ⊥. For instance,
according to the List 2 rule, we can reach the final state q⋆ if the desired output is ⊥ and any
of the arguments of List is ⊥.

8If t is −1, then we have F = F0 ∪ F1 ∪ F3. Recall from Fig. 9 that t = −1 indicates that the positive examples differ in the
number of output cells; hence, there can be no simple program constructed using List that is consistent with all examples.
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λc .c ∈ Mappers(T)

1 ≤ k ≤ NumCols(T)

λc .(k, col(c )) ∈ Mappers(T)

1 ≤ k ≤ NumRows(T)

λc .(row(c ), k ) ∈ Mappers(T) True ∈ Preds(T)

χ ∈ Mappers(T), ◁ ∈ {=, ,}

∃c ∈ Cells(T). s = Val(c )

(Val(χ (z )) ◁ s ) ∈ Preds(T)

χ ∈ Mappers(T)

Val(χ (y )) = Val(χ (z )) ∈ Preds(T)
ϕ1 ∈ Preds(T), ϕ2 ∈ Preds(T)

ϕ1 ∧ ϕ2 ∈ Preds(T)

Fig. 10. Rules for constructing the universe of predicates.

T, i, L ⊢ x → qi ∈ ∆
(Init)

c ∈ Cells(T) ∪ {⊥}
JGetCell(c, dir, k, λy .λz .ϕ )KT = c′

T, i, L ⊢ GetCell
dir,k,ϕ (qc ) → qc′ ∈ ∆

(GetCell)

L = [o1, · ·, on ]
c1 ∈ Cells(T), c2 ∈ Cells(T), c3 ∈ Cells(T)

JFilter(c1, c2, c3, λy .λz .ϕ )KT = L
T, i, L ⊢ Filterϕ (qc1, qc2, qc3 ) → q⋆ ∈ ∆

(Filter 1)

L = [o1, · ·, on ]
T, i, L ⊢ List(qo1, · ·, qon ) → q⋆ ∈ ∆

(List 1)

L = ⊥
∃k ∈ [1, n]. qjk = q⊥
∀k ∈ [1, n]. qjk , q

⋆

T, i, L ⊢ List(qj1, · ·, qjn ) → q⋆ ∈ ∆
(List 2)

L = ⊥
∃k ∈ [1, 3]. qjk = q⊥
∀k ∈ [1, 3]. qjk , q

⋆

T, i, L ⊢ Filterϕ (qj1, qj2, qj3 ) → q⋆ ∈ ∆
(Filter 2)

Fig. 11. Rules for constructing transition rules ∆ for table T and example i 7→ L.

Theorem 5.3. (Soundness and Completeness) Let A be the finite tree automaton constructed
by our technique for example i 7→ L and table T. Then, A accepts the tree that represents a simple
program ρ iff JρKT,i = L.

Proof. Provided in the appendix. □

Example 5.4. Consider a small table with two rows, where the first row is [4,5] and the second row
is [6,?]. Furthermore, suppose the user provides the sketch ?1 and the example {(2,2) 7→ [(1,2)]}
(i.e., ? should be 5).

Let us consider the FTA construction for this example. The states in the FTA are {q (1,1) ,q (1,2) ,q (2,1) ,
q (2,2) ,q⊥,q

⋆}, and the final state is q⋆. The transition ∆ of the FTA are constructed according to
rules from Fig. 11. For example, ∆ includes x → q (2,2) because cell (2,2) is the input cell in the
example (Init). It also includes GetCellu,1,True (q (2,2) ) → q (1,2) because, using GetCell, we have

JGetCell((2,2),u,1,λy.λz.True)KT = (1,2)

Using List 1, ∆ also include the transition List(q (1,2) ) → q⋆ and, using Filter 1, it contains:

FilterVal(z ),? (q (2,2) ,q (1,2) ,q (2,2) ) → q⋆

To see the full construction of an FTA for this example, let us consider a small DSL in which
k ∈ [0,1] and ϕ can be only True. The states in the FTA are {q (1,1) ,q (1,2) ,q (2,1) ,q (2,2) ,q⊥,q⋆}, and
the final state is q⋆. To construct the transitions, we first apply the Init rule and add a transition
x → q (2,2) . Then we apply the GetCell rule to construct transitions that involve the GetCell operator.
In particular, it yields the following 8 transitions with argument q (2,2) .
GetCellu,0,True (q (2,2) ) → q (2,2) GetCelld,0,True (q (2,2) ) → q (2,2) GetCelll,0,True (q (2,2) ) → q (2,2) GetCellr,0,True (q (2,2) ) → q (2,2)
GetCellu,1,True (q (2,2) ) → q (1,2) GetCelld,1,True (q (2,2) ) → q⊥ GetCelll,1,True (q (2,2) ) → q (2,1) GetCellr,1,True (q (2,2) ) → q⊥
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Tr
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.

List

(
GetCell(x, u, 1, λy .λz .True)

)
List

(
GetCell(x, u, 0, λy .λz .Val(z ) , ?)

) Filter

(
x, GetCell(x, u, −1, λy .λz .True),

GetCell(x, d, −1, λy .λz .True),
λy .λz .Val(z ) , ?

)

D
es
c. The previous cell upwards The previous non-missing cell upwards All non-missing cells in the same column

Fig. 12. Three terms (programs) accepted by the tree automaton in Example 5.4.

Similarly, it also constructs transitions whose arguments are q (1,1) , q (1,2) , q (2,1) , q⊥ according to the
GetCell rule from Fig. 11. Next ,we apply the List 1 rule. It yields the transition List(q (1,2) ) → q⋆.
List 2 rule is not applicable here since the output example (1,2) is not ⊥. Finally, we apply the
Filter 1 rule, and it constructs the transition FilterTrue (q (1,2) ,q (1,2) ,q (1,2) ) → q⋆. Filter 2 rule is not
applicable here due to the same reason as List 2 rule.

5.3 Ranking Programs Accepted by Tree Automaton
We now briefly discuss how we rank programs accepted by a tree automaton. The ranking function
Rank(A) selects the best program by finding a tree t inL (A) such that the size of the AST, denoted
as | |t | |, is minimized. We define the size of a tree as follows:

Definition 5.5. The size of a tree (term) t , denoted by | |t | |, is inductively defined by:
- | |t | | = 1 if t ∈ F0,
- | |t | | = 1 + Σi ∈{1, · ·,n } | |ti | | if Root(t ) ∈ Fn , where ti is the i-th argument of t .

In general, the FTA may accept multiple trees with the same minimum size. In this case, our
ranking algorithm breaks ties by selecting the program with the highest score according to a
heuristic scoring function θ . Intuitively, θ assigns a positive score to each language construct in our
DSL so that a more “general” construct has a higher score. For example, the identity mapper λc .c is
assigned a higher score than the other cell mappers, and predicate True has a higher score than
other predicates. More details about the heuristic scoring function θ are provided in the appendix.

Example 5.6. Fig. 12 shows a subset of the programs accepted by the tree automaton A from
Example 5.4. The first program, List(GetCell(x ,u,1,λy.λz.True)), is selected as the best program,
because it is of the minimum size (3), and it only uses the most general predicate True.

6 OVERALL SYNTHESIS ALGORITHM
In the previous section, we discussed how to learn a conditional-free program given a set of input-
output examples using finite tree automata. In this section, we present our algorithm for learning
programs with conditionals (i.e., Seq programs) and discuss how our FTA-based method can be
generalized to synthesis tasks over other DSLs.

6.1 Learning Programs with Conditionals
We now describe how the LearnSimpProg procedure from the previous section can be utilized to
learn programs with conditionals. Fig. 13 shows the high-level structure of our synthesis algorithm. 9
The algorithm Learn takes as input a table T and a set of examples E of the form {i1 7→ L1, ··,in 7→

9Because formula sketches provided by the user can contain multiple holes, the Learn procedure is invoked once per hole.
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1: procedure Learn(table T,examples E)

input: Table T, and input-output examples E of the form {i1 7→ L1, ··,in 7→ Ln }.
output: A Seq program satisfying all examples in E.

2: π := null ;
3: for k := 1, ··, |E | do ▷ Enumerate # branches.
4: π := LearnExtractor(T,k,E);
5: if π , null then return π ;
6: return null;

Fig. 13. Algorithm for Learn(T,E).

1: procedure LearnExtractor(table T, int k,examples E)

input: Table T, number of partitions k , and examples E of the form {i1 7→ L1, ··,in 7→ Ln }.
output: A Seq program with k branches satisfying E.

2: if k = 1 then ▷ Base case.
3: ρ := LearnSimpProg(T,E);
4: return ρ;

5: π ′ := null; ▷ Recursive case.
6: for all P ∈ 2dom(E)

do

7: ρ := LearnSimpProg(T,E ▷ P);
8: if ρ = null then continue;
9: π := LearnExtractor(T,k − 1,E ⊖ P );
10: if π = null then continue;
11: π ′′ := Seq(ρ,π );
12: if θ (π ′′) > θ (π ′) then π ′ := π ′′;
13: return π ′;

Fig. 14. Algorithm for LearnExtractor(T,k,E).

Ln } and returns a Seq program π such that π is consistent with all examples E. Essentially, the
Learn algorithm enumerates the number of branches k in the Seq program π . In each iteration
of the loop (lines 3–5), it calls the LearnExtractor function to find the “best" program that has
exactly k branches and satisfies all the input-output examples, and returns the program with the
minimum number of branches. If no such program is found after the loop exits, it returns null,
meaning there is no program in the DSL satisfying all examples in E.
Let us now consider the LearnExtractor procedure in Fig. 14 for learning a program with

exactly k branches. At a high level, LearnExtractor partitions the inputs E into k disjoint subsets
S1, ··,Sk and checks whether each Si can be “unified", meaning that all examples in Si can be
represented using the same conditional-free program. Our algorithm performs unification using
the FTA-based LearnSimpProg method from Section 5.

Let us now consider the recursive LearnExtractor procedure in a bit more detail. The base case
corresponds to learning a simple (i.e., conditional-free) program. Since the synthesized program
should not introduce any branches, it simply calls the LearnSimpProg function to find a unifier ρ
for examples E. Note that the conditional-free program ρ here could be null.
The recursive case of LearnExtractor enumerates all subsets of all the input cells dom(E)

that are to be handled by the first simple program in the Seq construct (line 6). Here the notation
dom(E) is defined as follows:

dom(E) = {i | (i 7→ L) ∈ E}
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Given a subset P of all the input cells, we first try to unify the examples whose inputs belong to P.
In particular, the notation E ▷ P used at line 9 is defined as follows:

E ▷ P = {i 7→ L | i ∈ P ∧ (i 7→ L) ∈ E} ∪ {i 7→ ⊥ | i < P ∧ (i 7→ L) ∈ E}

Observe that E ▷ P maps input examples not in P to ⊥ because the second argument of the Seq
construct is only evaluated when the first argument returns ⊥. Hence, if the call to LearnSimpProg
at line 7 returns non-null, this means there is a conditional-free program ρ satisfying all examples
in P and that returns ⊥ on all inputs that are not in P.

On the other hand, if the call to LearnSimpProg at line 7 returns null (line 8), we know that P
is not a valid subset and we move on to the next subset. Otherwise, we try to construct a program
that contains k − 1 branches and that is consistent with the remaining examples E ⊖ P, where
E ⊖ P is defined as follows:

E ⊖ P = {i 7→ L | i < P ∧ (i 7→ L) ∈ E}

If such a program exists (i.e, the recursive call to LearnExtractor at line 9 returns non-null),
we have found a program Seq(ρ,π ) that has exactly k branches and that satisfies all input-output
examples E. However, our algorithm does not return the first consistent program it finds: In general,
our goal is to find the “best" program, according to some heuristic cost metric θ (described in the
appendix), that is consistent with the examples and that minimizes the number of branches. For
this reason, the algorithm only returns π ′ after it has explored all possible partitions (line 13).

Example 6.1. Consider a row vector [?,1,?,2,?]. The user wants to fill each missing value by the
previous non-missing value, if one exists, and by the next non-missing value otherwise. Here, the
formula sketch is ?1, and suppose that the user gives two examples for ?1:

(1,1) 7→ (1,2) and (1,3) 7→ (1,2)
Given this input, DACE first tries to learn a Seq program with one branch by unifying two examples.
Since there is no such program in the DSL, the algorithm then tries to learn a program π =
Seq(ρ1,ρ2) by partitioning the examples into two disjoint sets. There are two ways of partitioning
the examples:
(1) The first partition is {(1,1)}, meaning that ρ1 should return (1,2) on (1,1) and ⊥ on (1,3),

and ρ2 should return (1,2) on (1,3). In this case, DACE learns the following two programs
ρ1,ρ2:

ρ1 : GetCell(x , r,−2,λy.λz.Val(z) , ?)
ρ2 : GetCell(x , l,0,λy.λz.Val(z) , ?)

(2) The second partition is {(1,3)}, meaning that ρ1 should return (1,2) on (1,3) and ⊥ on (1,1),
and ρ2 should return (1,2) on (1,1). In this case, DACE learns the following two programs
ρ1,ρ2:

ρ1 : GetCell(x , l,0,λy.λz.Val(z) , ?)
ρ2 : GetCell(x , r,0,λy.λz.Val(z) , ?)

After learning these two programs, DACE compares them according to a scoring function θ . In
this case, the second program has a higher score (because the scoring function prefers k values in
GetCell with smaller absolute value), hence we select the Seq program learned in the second case.

Complexity. The complexity of our synthesis algorithm depends on the number of examples n,
the number of branches k in the target program, and the size of the input tablem (number of cells).
Specifically, the running time complexity of the algorithm is O (kn · (m2)n ). To see where this result
comes from, observe that the worst-case complexity of our FTA construction is O ( |∆|), where ∆ is
the set of transitions. In our case, |∆| is bound bym2 because we can have a transition for each pair
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Cell prog. τ := x | GetCell(τ , dir, k, λy .λz .True) ;
Direction dir := u | d | l | r ;
int k := −1 | 1 ;

Fig. 15. A simple DSL.

Cell prog. τ := x | GetCell(τ1, dir, k, λy .λz .True) ;
Cell prog. τ1 := x | GetCell(τ2, dir, k, λy .λz .True) ;
Cell prog. τ2 := x | GetCell(x, dir, k, λy .λz .True) ;
Direction dir := u | d | l | r ;
int k := −1 | 1 ;

Fig. 16. The unrolled grammar in Prose.

(2,2) => (2,2)

(2,2) => (1,2)

(2,2) => (1,1)

(2,2) => (2,1)

(2,2) => (1,2)

(2,2) => (1,1) (2,2) => (1,2)

(2,2) => (2,2)

(2,2) => (1,1) (2,2) => (1,2) (2,2) => (2,1)

Fig. 17. Part of the VSA in Prose.

of cells. Since the number of examples is n and FTA intersection takes quadratic time in the size of
each FTA, the time to unify n examples is bound by O ((m2)n ). Finally, if the learned program has k
branches, our algorithm searches for kn possible partitions. Thus, an upper bound on the run-time
complexity is O (kn · (m2)n ). However, in practice, since the constructed FTAs are quite sparse, FTA
intersection does not result in a quadratic blow-up and remains roughly linear. Hence, in practice,
the complexity is closer to O (kn ·m2). Furthermore, in PBE systems, the user is expected to provide
a small number of examples; otherwise, the technique would be too cumbersome for the user.
Therefore, in practice, n is expected to be a small number (at most 5 in our experiments). Finally,
since the target programs typically do not have a large number of branches, k is also expected to
be quite small in practice (at most 3 in our experiments).

6.2 Comparison with Prior Version Space Learning Techniques
Since the synthesis technique we have presented in this paper can be viewed as a new version
space learning algorithm, we briefly compare our method with the Prose, which implements a
state-of-the-art learning algorithm based on version space algebras (VSA). Specifically, let us see
how Prose would solve the simple synthesis problem from Example 5.4. For simplicity, we consider
the DSL shown in Fig. 15. Here, the top-level construct is a cell program τ , which is either the input
cell x , or a GetCell program whose arguments are chosen from a restricted space. Note that GetCell
is recursive, and we assume Prose allows at most 3 GetCell programs to be nested together.
Fig. 17 shows how Prose constructs the VSA data structure. Conceptually, Prose first performs

backpropagation of examples in the unrolled grammar (shown in Fig. 16). 10 In particular, given
examples of an expression e it deduces examples of each argument in e using witness functions. In
our case, if τ is chosen to be a GetCell program, the example {(2,2) 7→ [(1,2)]} is translated into the
example for the first argument τ1, which is {(2,2) 7→ [(1,1)]} ∨ {(2,2) 7→ [(1,2)]∨ {(2,2) 7→ [(2,2)]},
since we have ⋃

dir,k GetCell
−1 ((1,2),dir,k,λy.λz.True) = {(1,1), (1,2), (2,2)}. This is shown in

Fig. 17 as the three edges from the first level τ to the second level τ1, where nodes represent
the specifications. Prose does backpropagation until it reaches the terminals (x in our case), and
constructs the atomic version spaces for terminal symbols. In the next phase, it composes existing
version spaces using VSA operations, such as Join and Union. For instance, node (2,2) ⇒ (2,1) for
τ2 represents a version space that composes smaller spaces using the Union operation. As we can
see, nodes that represent examples for τ , τ1 and τ2 are duplicated, even though they are unrolled
from the same symbol τ in the original grammar.

10Prose does the unrolling implicitly in its synthesis algorithm.
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(1,1) (1,2) (2,1) (2,2)

(1,1) (1,2) (2,1) (2,2)

Fig. 18. Part of the FTA in DACE.

In contrast, our FTA technique does not require unrolling,
and thus has the potential to create fewer states and lead to
a more compact representation. Fig. 18 shows conceptually
how the FTA technique works for the same example. In
Fig. 18, nodes represent states in the FTA and edges represent
transitions. Our technique starts from the input example,
i.e., (2,2), computes the reachable values using the GetCell
construct, and creates transitions from the input value to
the output values. It does so until all possible transitions are added. As we can see, our technique
performs FTA construction in a forward manner, and hence it does not require inverse semantics.
Furthermore, it does not require unrolling and results in a more compact FTA representation in
this example.

6.3 Generalizing the Idea to Other DSLs
While the primary contribution of this paper is a synthesis algorithm for automating data completion
tasks, we briefly sketch how the FTA-based method presented in this paper could be applied to
synthesis tasks over other DSLs. Suppose that we are given a domain-specific language specified
by a context-free grammar G = (T ,N ,P ,S ), where T is a finite set of terminals (i.e., variables and
constants),N is the set of non-terminal symbols, P is a set of productions of the form e → F (e1, ··,en )
where F is a built-in DSL function (i.e., “component"), and S is the start symbol representing a
complete program. To simplify the presentation, let us assume that the components used in each
production are first-order; if they are higher-order, we can combine our proposed methodology
with enumerative search (as we did in this paper for dealing with predicates inside the Filter and
GetCell constructs).
Now, our general version space learning algorithm works as follows. For each input-output

example σ → o, where σ is a valuation and o is the output value, we construct an FTA A =
(Q ,F ,Qf ,∆) that represents exactly the set of programs that are consistent with the examples.
Here, the alphabet F of the FTA consists of the built-in components provided by the DSL.

To construct the states Q of the FTA, let us assume that every non-terminal symbol n ∈ N has a
pre-defined universe Un = {v1, ··,vk } of values that it can take. Then, we introduce a state qvin for
every n ∈ N and vi ∈ Un ; let us refer to the set of states for all non-terminals in N as QN . We also
construct a set of states QT by introducing a state qt for each terminal t ∈ T . Then, the set of states
in the FTA is given by QN ∪QT .

Next, we construct the transition rules ∆ using the productions P in the grammar. To define the
transitions, let us define a function dom(s ) that gives the domain of s for every symbol s:

dom(s ) =



s if s is constant
σ (s ) if s is a variable
Us if s is a non-terminal,andUs is its corresponding universe

Now, consider a production of the form n → F (s1, ··,sk ) in the grammar where n is a non-terminal
and each si is either a terminal or non-terminal. For every vi ∈ dom(si ), we add a transition
F (qv1

s1 , ··,q
vk
sk ) → qvn iff we have v = JF (v1, ··,vk )K. In addition, for every variable x , we add a

transition x → qx . Finally, the final state Qf is a singleton containing the state qoS , where S is the
start symbol of the grammar and o is the output in the example.
Given this general methodology for FTA construction, the learning algorithm works by con-

structing the FTA for each individual example and then intersecting them. The final FTA represents
the version space of all programs that are consistent with the examples.
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7 IMPLEMENTATION
We have implemented the synthesis algorithm proposed in this paper in a tool called DACE,
written in Java. While our implementation mostly follows our technical presentation, it performs
several additional optimizations. First, our presentation of LearnSimpProg algorithm constructs a
separate tree automaton for each example. However, observe that the tree automata for different
examples actually have the same set of cells and share a large subset of the transitions. Based on this
observation, our implementation constructs a base (incomplete) tree automaton AB that is shared
by all examples and then adds additional transitions toAB for each individual example. Second, our
implementation memoizes results of automaton intersection. Since the top-level synthesis algorithm
ends up intersecting the same pair of automata many times, this kind of memoization is useful
for improving the efficiency of our synthesis procedure. In addition to these optimizations, our
implementation also limits the number of nested GetCell constructs to be at most 4. We have found
this restriction to improve the scalability of automaton intersection without affecting expressiveness
in practice.

8 EVALUATION
In this section, we present the results of our evaluation on 84 data completion benchmarks collected
from online forums. All experiments are conducted on an Intel Xeon(R) machine with an E5-2630
CPU and 64G of memory.
Benchmarks. To evaluate the proposed synthesis technique, we collected a total of 84 data com-
pletion benchmarks from StackOverflow using the following methodology: First, we collected all
posts that contain relevant keywords such as “data imputation", “missing value", “missing data",
“spreadsheet formula", and so on. Then, we inspected each of these posts and retained exactly those
that satisfy the following criteria:
• The question in the post should involve a data completion task.
• The post should contain at least one example.
• The post should include either the desired program or its English description.

Among the 84 benchmarks collected using this methodology, 46 involve data imputation in lan-
guages such as R and Python, 32 perform spreadsheet computation in Excel and Google Sheets,
and 6 involve data completion in relational databases. 11
Recall that an input to DACE consists of (a) a small example table, (b) a sketch formula, and

(c) a mapping from each hole in the sketch to a set of examples of the form i 7→ [o1, ··,on]. As it
turns out, most posts contain exactly the type of information that DACE requires: Most questions
related to data completion already come with a small example table, a simple formula (or a short
description in English), and a few examples that show how to instantiate the formula for concrete
cells in the table.

We categorize our benchmarks in 21 groups according to their shared functionality. Specifically,
as shown in Fig. 19, benchmarks in the same category typically require the same sketch. For
instance, all benchmarks in the first category in Fig. 19 share the sketch ?1 and require filling
the missing value with the previous/next non-missing value (with or without the same key). The
column labeled “Formula sketch" shows the concrete sketch for each benchmark category. Observe
that most of these sketches are extremely simple to write. In fact, for over 50% of the benchmarks,
the user only needs to specify the sketch ?1, which is equivalent to having no sketch at all. The
next column labeled Count indicates the number of benchmarks that belong to the corresponding
category, and the column called “Avg. table size” shows the average number of cells in the tables

11All of our benchmark sources are available from http://www.cs.utexas.edu/~xwang/benchmarks/dace.pdf.
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Benchmark category description Formula sketch
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1 Fill missing value by previous/next non-missing value
with/without same keys. ?1 24 24.4 5.3

2
Fill missing value by previous (next) non-missing value
with/without same keys if one exists, otherwise use next (pre-
vious) non-missing value

?1 9 25.6 5.7

3 Replace missing value by the average of previous and next
non-missing values. AVG(?1, ?2) 3 12.7 2.3

4
Fill missing value by the average of previous and next non-
missing values, but if either one does not exist, fill by the other
one.

AVG(?1) 2 21.5 4

5 Replace missing value by the sum of previous non-missing
value (with or without the same key) and a constant. SUM(?1, c ) 3 31.3 5.7

6 Replace missing value by the average of all non-missing values
in the same row/column (with or without same keys). AVG(?1) 7 21.7 3.1

7 Replace missing value by the max/min of all non-missing val-
ues in the column with the same key. MAX(?1), MIN(?1) 2 28.0 3

8 Fill missing value by linear interpolation of previous/next non-
missing values. INTERPOLATE(?1, ?2) 2 28.0 7.5

9
Fill cells by copying values from other cells in various non-
trivial ways, such as by copying the first/last entered entry in
the same/previous/next row, and etc.

?1 13 44.5 10.2

10 Fill value by the sum of a range of cells in various ways, such
as by summing all values to the left with the same keys. SUM(?1) 4 47.8 10.3

11 Fill cells with the count of non-empty cells in a range. COUNT(?1) 1 32.0 3
12 Fill cells in a column by the sum of values from two other cells. SUM(?1, ?2) 2 38.3 6.5

13 Fill each value in a column by the difference of values in two
other cells in different columns found in various ways. MINUS(?1, ?2) 4 39.0 3.5

14 Replace missing value by the average of two non-missing val-
ues to the left. AVG(?1, ?2) 1 32.0 5

15 Complete a column so that each value is the difference of the
sum of a range of cells and another fixed cell. MINUS(SUM(?1), ?2) 1 27.0 8

16 Fill each value in a column by the difference of a cell and sum
of a range of cells. MINUS(?1, SUM(?2)) 1 10.0 3

17 Create column where each value is the max of previous five
cells in sibling column. MAX(?1) 1 60.0 15

18 Fill blank cell in a column by concatenating two values to its
right. CONCAT(?1, ?2) 1 12.0 2

19

Fill missing value by the linear extrapolation of the next two
non-missing values to the right, but if there is only one or zero
such entries, fill by the linear extrapolation of the previous
two non-missing values to the left.

EXTRAPOLATE(?1) 1 121.0 16

20 Replace missing values by applying an equation (provided by
the user) to the previous and next non-missing values. SUM(?1,

MINUS(?1,?2 )
ROW(?2 )−ROW(?1 )

) 1 60.0 9

21
Fill missing value using the highest value or linear interpola-
tion of two values before and after it, based on two different
criteria.

— 1 60.0 10

Summary 84 32.0 6.3

Fig. 19. Benchmark statistics.
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for each category. Finally, the last column labeled “Avg. # examples per hole” shows the average
number of examples that the user provides in the original StackOverflow post. Observe that this is
not the number of examples that DACE actually requires to successfully perform synthesis, but
rather the number of all available examples in the forum post.
Experimental Setup. Since DACE is meant to be used in an interactive mode where the user
iteratively provides more examples, we simulated a realistic usage scenario in the following way:
First, for each benchmark, we collected the set S of all examples provided by the user in the
original StackOverflow post. We then randomly picked a single example e from S and used DACE
to synthesize a program P satisfying e . If P failed any of the examples in S, we then randomly
sampled a failing test case e ′ from S and used DACE to synthesize a program that satisfies both
e and e ′. We repeated this process of randomly sampling examples from S until either (a) the
synthesized program P satisfies all examples in S, or (b) we exhaust all examples in S, or (c) we
reach a time-out of 30 seconds per synthesis task. At the end of this process, we manually inspected
the program P synthesized by DACE and checked whether P conforms to the description provided
by the user.
Results. We present the main results of our evaluation of DACE in Fig. 20. The column “# Solved”
shows the number of benchmarks that can be successfully solved by DACE for each benchmark
category. Overall, DACE can successfully solve over 92% of the benchmarks. Among the six
benchmarks that cannot be solved by DACE, one benchmark (Category 21) cannot be expressed
using our specification language. For the remaining 5 benchmarks, DACE fails to synthesize the
correct program due to limitations of our DSL, mainly caused by the restricted vocabulary of
predicates. For instance, two benchmarks require capturing the concept “nearest", which is not
expressible by our current predicate language.

Next, let us consider the running time of DACE, which is shown in the column labeled “Running
time per benchmark". We see that DACE is quite fast in general and takes an average of 0.7 seconds
to solve a benchmark. The median time to solve these benchmarks is 0.19 seconds. In cases where
the sketch contains multiple holes, the reported running times include the time to synthesize all
holes in the sketch. In more detail, DACE can synthesize 75% of the benchmarks in under one
second and 87% of the benchmarks in under three seconds. There is one benchmark (Category 19)
where DACE’s running time exceeds 10 seconds. This is because (a) the size of the example table
provided by the user is large in comparison to other example tables, and (b) the table contains over
100 irrelevant strings that form the universe of constants used in predicates. These irrelevant entries
cause DACE to consider over 30,000 predicates to be used in the GetCell and Filter programs.

Finally, let us look at the number of examples used by DACE, as shown in the column labeled “#
Examples used per hole”. As we can see, the number of examples used by DACE is much smaller
than the total number of examples provided in the benchmark (as shown in Fig. 19). Specifically,
while StackOverflow users provide about 6 examples on average, DACE requires only about 2
examples to synthesize the correct program. This statistic highlights that DACE can effectively
learn general programs from very few input-output examples.
Comparison with Prose. Since our FTA-based synthesis technique can be viewed as a new version
space learning algorithm, we also empirically compare our approach against Prose [Polozov and
Gulwani 2015], which is the state-of-the-art version space learning framework that has been
deployed in Microsoft products. As mentioned in Section 6.2, Prose propagates example-based
constraints on subexpressions using the inverse semantics of DSL operators and then represents all
programs that are consistent with the examples using the VSA data structure [Lau et al. 2003].
To allow a fair comparison between Prose and DACE, we use the same algorithm presented in

Section 6 to learn the Seq construct (i.e., branches), but we encode simple programs in the DSL using
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Avg. Med. Avg. Med. Avg. Med. Avg. Med.
1 24 24 0.41 0.04 1.1 1.0 24 1.32 0.73 1.1 1.0
2 9 9 0.50 0.13 2.7 3.0 7 4.88 1.13 2.4 2.0
3 3 3 0.05 0.04 1.0 1.0 3 5.16 5.89 1.0 1.0
4 2 2 0.19 0.19 2.0 2.0 1 2.11 2.11 2.0 2.0
5 3 3 0.18 0.14 1.3 1.0 3 0.90 0.99 1.7 1.0
6 7 6 0.09 0.07 1.8 2.0 5 15.86 8.31 1.8 2.0
7 2 2 0.66 0.66 2.0 2.0 1 296.17 296.17 3.0 3.0
8 2 2 0.15 0.15 1.0 1.0 1 19.72 19.72 1.0 1.0
9 13 10 1.55 0.31 2.8 2.0 5 6.02 1.52 1.4 1.0
10 4 3 0.42 0.30 1.7 2.0 1 2.27 2.27 2.0 2.0
11 1 1 0.59 0.59 1.0 1.0 0 — — — —
12 2 2 0.51 0.51 1.0 1.0 1 66.95 66.95 2.0 2.0
13 4 4 0.51 0.46 2.0 2.0 2 1.52 1.52 2.0 2.0
14 1 1 0.16 0.16 3.0 3.0 0 — — — —
15 1 1 0.11 0.11 2.0 2.0 1 148.95 148.95 3.0 3.0
16 1 1 0.03 0.03 2.0 2.0 0 — — — —
17 1 1 1.96 1.96 4.0 4.0 1 183.19 183.19 2.0 2.0
18 1 1 0.01 0.01 1.0 1.0 1 1.44 1.44 1.0 1.0
19 1 1 13.66 13.66 5.0 5.0 0 — — — —
20 1 1 1.92 1.92 1.0 1.0 0 — — — —
21 1 0 — — — — 0 — — — —
All 84 78 0.70 0.19 1.8 2.0 57 16.09 1.18 1.5 1.0

Fig. 20. Evaluation results of DACE, as well as Prose as baseline. The time-out for DACE is set to be 30
seconds, whereas the time-out for Prose is set to be 10 minutes.

the Prose format. 12 Since Prose’s learning algorithm requires so-called witness functions, which
describe the inverse semantics of each DSL construct, we also manually wrote precise witness
functions for all constructs in our DSL. Finally, we use the same scoring function θ (described in
the appendix) to rank different programs in the version space.

The results of our evaluation are presented under the Prose column in Fig. 20. Overall, Prose can
successfully solve 68% of the benchmarks in an average of 15 seconds, whereas DACE can solve
92% of the benchmarks in an average of 0.7 seconds. These results indicate that DACE is superior
to Prose, both in terms of its running time and the number of benchmarks that it can solve. Upon
further inspection of the Prose results, we found that the tasks that can be automated using Prose
tend to be relatively simple ones, where the input table size is very small or the desired program
is relatively simple. For benchmarks that have larger tables or involve more complex synthesis
tasks (e.g., require the use of Filter operator), Prose does not scale well – i.e., it might take much
longer time than DACE, time out in 10 minutes, or run out of memory. As we have explained in
Section 6.2, DACE achieves better performance than Prose because the FTA representation used in
DACE is more compact than the VSA data structure used in Prose. In particular, in our experiments,

12 Prose performs significantly worse (i.e., terminates on only three benchmarks) if we use Prose’s built-in technique for
learning Seq.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 62. Publication date: October 2017.



Synthesis of Data Completion Scripts using Finite Tree Automata 62:21

Be
nc
hm

ar
k
ca
te
go

ry

Co
un

t

DACE Sketch

#
So
lv
ed

Ru
nn

in
g
tim

e
pe
r b

en
ch
m
ar
k

(se
c)

#
Ex

am
pl
es

us
ed

pe
r h

ol
e

#
So
lv
ed

(2
ex
s)

Ru
nn

in
g
tim

e
pe
r b

en
ch
m
ar
k

(se
c)

#
So
lv
ed

(3
ex
s)

Ru
nn

in
g
tim

e
pe
r b

en
ch
m
ar
k

(se
c)

Avg. Med. Avg. Med. Avg. Med. Avg. Med.
1 24 24 0.41 0.04 1.1 1.0 6 230 224 6 314 281
2 9 9 0.50 0.13 2.7 3.0 2 182 182 0 — —
3 3 3 0.05 0.04 1.0 1.0 0 — — 0 — —
4 2 2 0.19 0.19 2.0 2.0 0 — — 0 — —
5 3 3 0.18 0.14 1.3 1.0 0 — — 0 — —
6 7 6 0.09 0.07 1.8 2.0 5 353 352 4 399 400
7 2 2 0.66 0.66 2.0 2.0 0 — — 0 — —
8 2 2 0.15 0.15 1.0 1.0 1 501 501 0 — —
9 13 10 1.55 0.31 2.8 2.0 2 507 507 0 — —
10 4 3 0.42 0.30 1.7 2.0 0 — — 0 — —
11 1 1 0.59 0.59 1.0 1.0 3 223 182 3 353 298
12 2 2 0.51 0.51 1.0 1.0 0 — — 0 — —
13 4 4 0.51 0.46 2.0 2.0 0 — — 0 — —
14 1 1 0.16 0.16 3.0 3.0 0 — — 0 — —
15 1 1 0.11 0.11 2.0 2.0 0 — — 0 — —
16 1 1 0.03 0.03 2.0 2.0 0 — — 0 — —
17 1 1 1.96 1.96 4.0 4.0 1 78 78 1 81 81
18 1 1 0.01 0.01 1.0 1.0 0 — — 0 — —
19 1 1 13.66 13.66 5.0 5.0 0 — — 0 — —
20 1 1 1.92 1.92 1.0 1.0 0 — — 0 — —
21 1 0 — — — — 0 — — 0 — —
All 84 78 0.70 0.19 1.8 2.0 20 289 226 14 330 314

Fig. 21. Evaluation results of DACE, as well as Sketch as baseline. The time-out for DACE is set to be 30
seconds, whereas the time-out for Sketch is set to be 10 minutes.

the average FTA size is 2k, whereas the average VSA volume is 70k. For all the benchmarks that
both techniques can solve, the reduction ratio of the data structure size ranges from 2x to 100x.

The careful reader may have observed in Fig. 20 that Prose requires fewer examples on average
than DACE (1.5 vs. 1.8). However, this number is quite misleading, as the benchmarks that can be
solved using Prose are relatively simple and therefore require fewer examples on average.
Comparison with Sketch. Since our synthesis methodology involves a sketching component in
addition to examples, we also compare DACE against Sketch, which is the state-of-the-art tool
for program sketching, and the results are shown in Fig. 21. To compare DACE against Sketch,
we define the DSL operators using nested and recursive structures in Sketch. For each struct, we
define two corresponding functions, namely RunOp and LearnOp. The RunOp function defines the
semantics of the operator whereas LearnOp encodes a Sketch generator that defines the bounded
space of all possible expressions in the DSL. The specification is encoded as a sequence of assert
statements of the form assert RunExtractor(LearnExtractor(), ik ) == Lk , where (ik ,Lk ) denotes the
input-output examples. To optimize the sketch encoding further, we use the input-output examples
inside the LearnOp functions, and we also manually unroll and limit the recursion in predicates
and cell programs to 3 and 4 respectively.
When we use the complete DSL encoding, Sketch was able to solve only 1 benchmark out of

84 within a time limit of 10 minutes per benchmark. We then simplified the Sketch encoding by
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removing the Seq operator, which allows us to synthesize only conditional-free programs. As shown
in Fig. 20, Sketch terminated on 20 benchmarks within 10 minutes using 2 input-output examples.
The average time to solve each benchmark was 289 seconds. However, on manual inspection, we
found that most of the synthesized programs were not the desired ones. When we increase the
number of input-output examples to 3, 14 benchmarks terminated with an average of 330 seconds,
but only 5 of these 14 programs were the desired ones. We believe that Sketch performs poorly
due to two reasons: First, the constraint-based encoding in Sketch does not scale for complex
synthesis tasks that arise in the data completion domain. Second, since it is difficult to encode
our domain-specific ranking heuristics using primitive cost operations supported by Sketch, it
often generates undesired programs. In summary, this experiment confirms that a general-purpose
program sketching tool is not adequate for automating the kinds of data completion tasks that
arise in practice.

9 RELATEDWORK
In this section, we compare and contrast our approach with prior work on program synthesis.

Programming-by-example. In recent years, there has been significant interest in programming
by example (PBE) [Bornholt et al. 2016; Feng et al. 2017; Feser et al. 2015; Gulwani 2011; Osera
and Zdancewic 2015; Polikarpova et al. 2016; Polozov and Gulwani 2015; Smith and Albarghouthi
2016; Udupa et al. 2013; Wang et al. 2016; Yaghmazadeh et al. 2016]. Existing PBE techniques can
be roughly categorized into two classes, namely enumerative search techniques [Feser et al. 2015;
Osera and Zdancewic 2015; Udupa et al. 2013], and those based on version space learning [Gulwani
2011; Polozov and Gulwani 2015; Singh and Gulwani 2012].

The enumerative techniques search a space of programs to find a single program that is consistent
with the examples. Specifically, they enumerate all programs in the language in a certain order and
terminate when they find a program that satisfies all examples. Recent techniques in this category
employ various pruning methods and heuristics, for instance by using type information [Osera
and Zdancewic 2015; Polikarpova et al. 2016], checking partial program equivalence [Albarghouthi
et al. 2013; Udupa et al. 2013], employing deduction [Feser et al. 2015], or performing stochastic
search [Schkufza et al. 2013].

In contrast, PBE techniques based on version space learning construct a compact data structure
representing all possible programs that are consistent with the examples. The notion of version space
was originally introduced by Mitchell [Mitchell 1982] as a general search technique for learning
boolean functions from samples. Lau et al. later extended this concept to version space algebra for
learning more complex functions [Lau et al. 2003]. The basic idea is to build up a complex version
space by composing together version spaces containing simpler functions, thereby representing
hypotheses hierarchically [Pardowitz et al. 2007].
The synthesis algorithm proposed in this paper is another technique for performing version

space learning – i.e., we build a data structure (namely, finite tree automaton) that represents all
consistent hypotheses. However, our approach differs from previous work using version space
learning in several key aspects: First, unlike VSA-based techniques that decompose the version space
of complex programs into smaller version spaces of simpler programs, we directly construct a tree
automaton whose language accepts all consistent programs. Second, our FTA construction is done
in a forward manner, rather than by back-propagation as in previous work [Polozov and Gulwani
2015]. Consequently, we believe that our technique results in a more compact representation and
enables better automation.
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Program sketching. In sketch-based synthesis [Lezama 2008; Solar-Lezama et al. 2007, 2005,
2006], the programmer provides a skeleton of the program with missing expressions (holes). Our
approach is similar to program sketching in that we require the user to provide a formula sketch,
such as SUM(?1,?2). However, holes in our formula sketches are programs rather than constants.
Furthermore, while Sketch uses a constraint-based counter-example guided inductive synthesis
algorithm, DACE uses a combination of finite tree automata and enumerative search. As we show
in our experimental evaluation, DACE is significantly more efficient at learning data completion
programs compared to Sketch.

Tree automata. Tree automata were introduced in the late sixties as a generalization of finite
word automata [Thatcher and Wright 1968]. Originally, ranked tree automata were used to prove
the existence of a decision procedure for weak monadic second-order logic with multiple succes-
sors [Thatcher and Wright 1968]. In the early 2000s, unranked tree automata have also gained
popularity as a tool for analyzing XML documents where the number of children of a node are not
known a priori [Cristau et al. 2005; Martens and Niehren 2005]. More recently, tree automata have
found numerous applications in the context of software verification [Abdulla et al. 2008; Kafle and
Gallagher 2015], analysis of XML documents [Cristau et al. 2005; Hosoya and Pierce 2003; Martens
and Niehren 2005], and natural language processing [Knight and May 2009; May and Knight 2008].
Most related to our technique is the work of Parthasarathy in which they advocate the use of tree
automata as a theoretical basis for synthesizing reactive programs [Madhusudan 2011]. In that work,
the user provides a regular ω-specification describing the desired reactive system, and the proposed
synthesis methodology constructs a non-deterministic tree automaton representing programs (over
a simple imperative language) that meet the user-provided specification. The technique first con-
structs an automaton that accepts reactive programs corresponding to the negation of the regular
ω-specification, and then complements it to obtain the automaton for representing the desired set of
programs. In contrast to the purely theoretical work of Parthasarathy in the context of synthesizing
reactive programs from regular ω-specifications, we show how finite tree automata can be used in
the context of program synthesis from examples. Moreover, we combine this FTA-based approach
with enumerative search to automatically synthesize programs for real-world data completion
tasks in a functional DSL with higher-order combinators.

10 CONCLUSIONS AND FUTUREWORK
In this paper, we presented a new approach for automating data completion tasks using a combi-
nation of program sketching and programming-by-example. Given a formula sketch where holes
represent programs and a set of input-output examples for each hole, our technique generates
a script that can be used to automate the target data completion task. To solve this problem, we
introduced a new domain-specific language that combines relational and spatial reasoning for
tabular data and a new synthesis algorithm for generating programs over this DSL. Our synthesis
procedure combines enumerative search (for learning conditionals) with a new version-space
learning algorithm that uses finite tree automata. We also showed the generality of our FTA-based
learning algorithm by explaining how it can be used to synthesize programs over any arbitrary
DSL specified using a context-free grammar.
We evaluated our proposed synthesis algorithm on 84 data completion tasks collected from

StackOverflow and compared our approach with two existing state-of-the-art synthesis tools,
namely Prose and Sketch. Our experiments demonstrate that DACE is practical enough to automate
a large class of data completion tasks and that it significantly outperforms both Prose and Sketch
in terms of both running time and the number of benchmarks that can be solved.
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We are interested in two main directions for future work. First, as discussed in Section 8, there
are a few benchmarks for which DACE’s DSL (specifically, predicate language) is not sufficiently
expressive. While such benchmarks seem to be relatively rare, we would like to investigate how to
enrich the DSL so that all of these tasks can be automated. Second, we would like to apply our new
version-learning algorithm using FTAs to other domains beyond data completion. We believe that
our new VS-learning algorithm can be quite effective in other domains, such as automating table
transformation tasks.

A HEURISTIC SCORING FUNCTION
Recall that our synthesis algorithm uses a scoring function θ to choose between multiple programs
that satisfy the input-output examples. The design of the scoring fuction follows the Occam’s razor
principle and tries to favor simpler, more general programs over complex ones.
In more detail, our scoring function assign scores to constants, cell mappers, and predicates in

our DSL in a way that satisfies the following properties:
• A predicate with mapper λc .c has a higher score than the same predicate with other mappers.
• For predicates containing the same mapper χ , we require that the scoring function satisfies
the following constraint:

θ (True) > θ (Val(χ (z)) = ?) > θ (Val(χ (y)) = Val(χ (z))) > θ (Val(χ (z)) = s ) = θ (Val(χ (z)) , s )

• θ (ϕ1, ··,ϕn ) takes into account both the scores of each conjunct as well as the number of
conjuncts. That is, θ assigns a higher score to predicates that have conjuncts with higher
scores, and assigns lower scores to predicates with more conjuncts. One design choice
satisfying this criterion is to take the average of scores of all the terms in the conjunct.
• For scores of integer k we have θ (1) > θ (2) > θ (−1) > θ (3) > θ (−2) > θ (−3).

Using the scores assigned to predicates, mappers, and constants, we then assign scores to more
complex programs in the DSL in the following way. The score of a GetCell program is defined
by taking into account both the scores of its arguments and the recursion depth (number of
nested GetCell constructs). One possible way to assign scores to GetCell programs is therefore the
following:

θ (GetCell(x ,dir,k,λyλz.ϕ)) := θ (k ) · θ (ϕ)

θ (GetCell(τ ,dir,k,λyλz.ϕ)) := θ (τ ) + θ (k ) · θ (ϕ)

depth(τ )
depth(x ) := 0

depth(GetCell(τ ,dir,k,λyλz.ϕ)) := depth(τ ) + 1
The score of a simple program, i.e., List(τ1, ··,τn ) or Filter(τ1,τ2,τ3,λyλz.ϕ), takes into account of

the scores of its arguments and the number of the arguments. Specifically, it assigns scores in the
following way:

θ (List(τ1, ··,τn )) :=
θ (τ1) + · · +θ (τn )

n

θ (Filter(τ1,τ2,τ3,λyλz.ϕ)) :=
θ (τ1) + θ (τ2) + θ (τ3)

3

B PROOFS OF THEOREMS
Theorem 5.3 (Soundness and Completeness) Let A be the finite tree automaton constructed
by our technique for example i 7→ L and table T. Then, A accepts the tree that represents a simple
program ρ iff JρKT,i = L.
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Proof. We first prove soundness – i.e., if A accepts the tree t that represents a simple program
ρ, then we have JρKT,i = L. We show this by inductively proving (call it P ) that for any program p
whose program tree is a sub-tree t ′ of t and whose height is at most h, we have

JpKT,i =



L if Root(t ′) = q⋆

o if Root(t ′) = qo

The base case for h = 1 trivially holds, since we have p = x , t = qi , t ′ = qi , and JpKT,i = i . For
the inductive case, we want to prove that P holds for any sub-tree t ′ of height h + 1. Suppose
t ′ = fω⃗ (t

′
1, ··,t

′
m ) and consider t ′’sm children-trees t ′1, ··,t ′m . Because a children-tree t ′j is of height

at most h, P holds for t ′j according to the inductive hypothesis. Furthermore, we have

Jf (o1, ··,om ,ω⃗)K =



L if Root(t ′) = q⋆

o if Root(t ′) = qo
according to the rules in Fig. 11. Therefore, P also holds for any sub-tree t ′ of height h + 1, and for
any sub-tree of height at most h + 1 as well due to the inductive hypothesis.
Now we turn to the proof of completeness – i.e., if there is a simple program ρ that JρKT,i = L,

then A accepts ρ’s program tree t . Consider the evaluation of ρ given input cell i . In each step in
which it evaluates a function of the form f (o1, ··,om ,ω⃗) where we have oj ∈ Cells(T) ∪ {⊥}, there
exists a transition in A that goes from states qo1 , ··,qom to a state that represents the evaluation
result with anm-ary function fω⃗ (according to the rules in Fig. 11). Therefore, there exists a tree
that is accepted by A (according to our construction) and represents simple program ρ. □
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