
EXPLORER : Query- and Demand-Driven Exploration
of Interprocedural Control Flow Properties

Yu Feng Xinyu Wang Isil Dillig Calvin Lin
University of Texas at Austin, USA

{ yufeng, xwang, isil, lin }@cs.utexas.edu

Abstract
This paper describes a general framework—and its imple-
mentation in a tool called EXPLORER–for statically answer-
ing a class of interprocedural control flow queries about
Java programs. EXPLORER allows users to formulate queries
about feasible callstack configurations using regular expres-
sions, and it employs a precise, demand-driven algorithm for
answering such queries. Specifically, EXPLORER constructs
an automatonA that is iteratively refined until either the lan-
guage accepted by A is empty (meaning that the query has
been refuted) or until no further refinement is possible based
on a precise, context-sensitive abstraction of the program.
We evaluate EXPLORER by applying it to three different pro-
gram analysis tasks, namely, (1) analysis of the observer de-
sign pattern in Java, (2) identification of a class of perfor-
mance bugs, and (3) analysis of inter-component commu-
nication in Android applications. Our evaluation shows that
EXPLORER is both efficient and precise.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language constructs and features—Frameworks

General Terms Algorithms, Languages, Program analysis

Keywords Demand-driven analysis, points-to analysis, query
language, control flow properties

1. Introduction
Many problems in program analysis and software engineer-
ing require answers to queries about a program’s interproce-
dural control flow properties. For instance, consider the fol-
lowing questions that commonly arise in software analysis
and understanding tasks:

• Is method m reachable from main? This question is use-
ful for identifying interprocedurally unreachable code.
• Does an application call any method that is deemed to be

a potential security risk? Many malware detectors need
to answer questions of this sort [16, 18, 41].
• Can methodm be called—either directly or transitively—

from some other method m′? This question arises as a
common program analysis subtask, for example, in auto-
mated testing and analysis of Android applications [16,
28, 39]. Furthermore, programmers often ask such ques-
tions to assist them in various debugging, refactoring, or
code understanding tasks.

To answer such questions, users need to construct a static
callgraph of the program and then perform some kind of
analysis on it (e.g., reachability). Unfortunately, there is
a steep tradeoff between the precision of a callgraph and
the cost of constructing it. For example, callgraphs that are
constructed using Class Hierarchy Analysis (CHA) [13] or
Rapid Type Analysis (RTA) [4] tend to grossly overapprox-
imate the targets of virtual method calls. On the other hand,
more precise callgraphs obtained using context-sensitive
pointer analysis can take hours to construct. Even in cases
where a sufficiently precise static callgraph can be efficiently
constructed, it is useful to have some mechanism for speci-
fying queries on the callgraph. Currently, client analyses that
rely on callgraph information must implement their own ad-
hoc analysis to answer application-specific queries about the
callgraph.

In this paper, we address both of the above problems by
presenting a new algorithm—and its implementation in a
tool called EXPLORER—for automatically and precisely an-
swering interprocedural control-flow queries about Java pro-
grams. EXPLORER allows programmers to formulate their
queries about interprocedural control flow properties in the
form of regular expressions. In particular, a query π for pro-
gram P is true iff regular expression π can match a callstack
prefix of P ’s possible executions. For instance, the expres-
sion main→ .∗ → foo states that method foo is transitively
reachable from main; such a query allows a user to deter-
mine whether foo is interprocedurally unreachable code.
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Figure 1. Overview of the EXPLORER algorithm for answering interprocedural control flow queries

Given a regular expression describing a set of possi-
ble callstack configurations, EXPLORER performs precise,
query-driven static analysis and returns a yes/no answer
indicating whether the specified callstack configuration is
feasible. Towards this end, there are three important goals
underlying the design of the EXPLORER tool:

1. Soundness: EXPLORER should return “no” only if the
query describing a possible callstack configuration is in-
feasible for any possible program execution.

2. Precision: Since our algorithms are based on static analy-
sis, EXPLORER may answer “yes” even though the prop-
erty specified by the user is actually infeasible. However,
our goal is to be as precise as possible, so EXPLORER
should try to minimize the number false positives. To
achieve this goal, EXPLORER constructs a precise call-
graph by employing context-sensitive pointer analysis.

3. Efficiency: Since our techniques are meant to be used in
an interactive setting—for instance, in the context of an
IDE—EXPLORER should be sufficiently fast to be used in
real time. Hence, rather than constructing a precise call-
graph eagerly, EXPLORER refines only those callgraph
edges that are relevant for answering a given query. Fur-
thermore, EXPLORER is refutation-based and identifies
the minimum number of callgraph edges that need to be
refined to refute a query.

This paper presents the EXPLORER tool and describes
its underlying ideas and algorithms. To demonstrate the ap-
plicability and practicality of our ideas, we evaluate EX-
PLORER by applying it to three different program analy-
sis tasks, namely, (1) analysis of the observer design pat-
tern in Java programs, (2) identification of performance bugs
caused by GUI lagging, and (3) analysis of inter-component
communication (ICC) in Android.

Contributions. In summary, this paper makes the following
contributions:

• We present a simple but general query language for de-
scribing an important class of interprocedural control
flow properties of object-oriented programs.

• We describe a practical algorithm for giving sound and
precise answers to queries expressible in our framework.
Our algorithm constructs an automaton that allows a
given query to be checked against the application’s call-
graph. It then iteratively refines this automaton by using
a demand-driven, context-sensitive pointer analysis, and
it refutes only those callgraph edges that are relevant for
answering the user’s query.
• We evaluate the applicability and practicality of EX-

PLORER in the context of three different applications and
show that it achieves a good tradeoff between precision
and running time.

Organization. The rest of the paper is organized as follows.
Section 2 gives a high-level overview of EXPLORER. We de-
scribe the syntax and semantics of our query language in
Section 3 and present our algorithm in Sections 4, 5, and 6.
The subsequent two sections then describe our implementa-
tion and evaluation. Finally, we discuss related work in Sec-
tion 9 and conclude in Section 10.

2. Overview
Figure 1 shows an overview of the EXPLORER approach for
answering interprocedural control flow queries about Java
programs. EXPLORER takes two inputs: (1) the source or
byte code of some Java application, and (2) a user-provided
interprocedural control-flow query in the form of a regular
expression. Given these two inputs, EXPLORER constructs a
so-called query automaton as well as a callgraph automaton.
The query automaton is simply an NFA representation of the
user-specified regular expression, and the callgraph automa-
ton is initially obtained from an imprecise callgraph of the
application.

Next, EXPLORER constructs the product of the query and
callgraph automata. However, since the resulting product
automaton is typically huge, EXPLORER only constructs a
partial product automaton A by pruning away many states
that are guaranteed not to lead to an accepting state. If the
language accepted byA is empty, we have refuted the query,
meaning that the callstack configuration specified by the user
is not feasible.
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Query Meaning
main→ foo Is foo called directly from main?

main→ .∗ → foo Is foo called directly or transitively from main?
.∗ → foo→ bar Is foo a direct caller of bar?

.∗ → foo→ .∗ → bar Can foo (directly or transitively) call bar?
.∗ → foo→ .∗ → (bar + baz) Can foo (directly or transitively) call bar or baz?

.∗ → (!foo)→ bar Is there a direct caller of bar other than foo?
.∗ → (!(foo+baz))→ bar Is there a direct caller of bar other than foo or baz?

((!foo)∗ → bar) Is it possible that bar is called in a context that does not involve foo?

Figure 2. Some example queries along with their meanings in English

On the other hand, if the language ofA is non-empty, then
there are two possibilities: Either the control-flow property
queried by the user is indeed feasible, or the current call-
graph is not precise enough to refute the query. Thus, EX-
PLORER proceeds to refine the product automaton by com-
puting a minimum cut separating the initial states of the prod-
uct automaton from the final states. If the cost of such a min-
imum cut is∞, then no possible refinement of the callgraph
can disprove the user’s query, so EXPLORER has validated1

the query and therefore produces an affirmative answer.
Conversely, if EXPLORER can find a finite-cost minimum

cut separating the initial states from the accepting states,
it then attempts to refute some of the existing transitions
in the current product automaton. In particular, since the
edges in the minimum cut correspond to potentially spurious
targets of virtual method calls, EXPLORER extracts a set
Q of relevant context-sensitive points-to queries. If it can
refute each query q ∈ Q using a demand-driven pointer
analysis [33], then the language of the product automaton
must be empty and the query has been refuted. On the other
hand, even if all points-to queries in Q are validated, the
answer to the user’s query may still be “no”, because there
may be other cuts separating the initial states from the final
states of the product automaton.

EXPLORER uses the answer to each points-to query to
refine the product automaton. In particular, any query that is
refuted by the pointer analysis is used to remove an existing
transition from the latest product automaton, and any query
q that is validated by the pointer analysis is used to update
the weight of the transition associated with q. Since we set
the weight of any validated transition to ∞, EXPLORER is
guaranteed to never issue the same points-to query more than
once. This strategy also ensures that the cost of the minimum
cut becomes∞ if no further refinement of the callgraph can
allow the refutation of the user’s query.

3. Query Language
We now explain the EXPLORER tool from a user’s perspec-
tive and describe the syntax and semantics of its query

1 Since EXPLORER is based on static analysis, validating a query means
failing to refute it using a certain abstraction of the program obtained
through pointer analysis.

language. Interprocedural control-flow properties in EX-
PLORER are specified using regular expressions in Grep-like
syntax. For a given Java program P , EXPLORER accepts
specifications written in the following query language:

Query Q := f ∈ methods(P )
| . | Q1 → Q2 | !Q
| Q1 +Q2 | Q∗ | Q+ | (Q)

The building blocks of queries are method names in
program P , denoted methods(P ). The dot character (“.”)
matches any method name, and the → operator indicates a
call from one method to another. The exclamation mark op-
erator (“!”) is used to negate queries and the “+” operator is
used for taking the disjunction of two queries. As usual, the
“∗” operator stands for Kleene closure, and Q+ is syntactic
sugar for Q→ Q∗.

More formally, to define the semantics of our query lan-
guage, we first define a denotation function JQK that maps
queries to sets of strings:

JfK = {f}
J.K = methods(P )

J(Q)K = JQK
J!QK = {f | f 6∈ JQK ∧ f ∈ methods(P )}

JQ+K =
⋃∞

i=1JQiK where
Q1 = Q,
Qi = Q→ Qi−1

JQ∗K = {ε} ∪ JQ+K
JQ1 +Q2K = {s | s ∈ JQ1K ∨ s ∈ JQ2K}
JQ1 → Q2K = {s1 · s2 | s1 ∈ JQ1K ∧ s2 ∈ JQ2K}

In the last line, s1 · s2 represents the concatenation of
strings s1 and s2. Also, note that !Q matches any function
name f such that f 6∈ JQK.

Example 1. To give the reader some intuition about our
query language, Figure 2 shows some example queries along
with their informal meanings in English. Observe that the
query .∗ → foo → bar is different from foo → bar: The
latter query also states that foo is the entry method.

In what follows, we define a callstack σ to be a string of
the form f1 · . . . · fn where each fi corresponds to the name
of the ith method currently pushed on the stack. We can now
define the semantics of queries as follows:
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void main(...) {

A x; A y;

if(...) x = new A(); y = new B();

else x = new B(); y = new C();

x.foo(); y.woo();

}

public A {

void foo() {this.woo(); this.zoo(); this.bar();};

void woo() {this.bar();};

void bar() {System.out.println("In A:bar");};

void zoo() {System.out.println("In A:zoo"};

}

public B extends A {

void foo() {this.woo(); }

void bar() {System.out.println("In B:bar");};

}

public C extends A {

void bar() {System.out.println("In C:bar");};

}

Figure 3. Code example to illustrate our approach

Definition 1. (Query semantics) Let Q be a query for
program P . We say that Q evaluates to true if and only if
there exists some q ∈ JQK such that q is a prefix of a callstack
σ that arises during some execution of P .

Example 2. Consider the code snippet shown in Figure 3,
and the query (.∗ → A : foo → .∗ → C : bar), where the
notation X : f denotes the f method in class X . The truth
value of this query is false because the bar method of C can
never be invoked from the foo method of A for the program
shown in Figure 3.

Since determining the truth value of an interprocedural
control-flow query Q is undecidable, we require EXPLORER
to over-approximate the answer to a query. That is, if EX-
PLORER returns false for a given query Q, then Q must in-
deed be false (i.e., soundness). However, the converse of this
statement does not hold (i.e., incompleteness).

4. Callgraph and Query Automata
To answer a given query Q, EXPLORER first constructs the
so-called query automaton (QA) and the callgraph automa-
ton (CGA). Here, the query automaton is simply an NFA-
representation of the regular expression specified by the user.
Since the problem of converting regular expressions to finite
state machines is well-studied, we do not explain the QA
construction in detail here.

Example 3. Figure 4 shows the query automaton for the
query from Example 2.

To construct the callgraph automaton, EXPLORER first
builds a sound but imprecise callgraph. Specifically, the

1 2 3
A:foo C:bar

Figure 4. Automaton for query from Example 2

CGA for a given application P with respect to a callgraph C
is a finite state machine (S,Σ, δ, q0, F ):

• The states S include all methods of P as well as a special
state which we denote as χ. For a given method m, we
denote the state representing m as qm.
• The alphabet Σ consists of all methods of P .
• The transition function δ : S × Σ → S is obtained

using callgraph C. In particular, for each entry method m
(without incoming edges) in C, there exists a transition
from state χ to qm labeled with m. If C contains an edge
from method m to method m′, then the CGA contains a
transition from qm to q′m labeled with m′.
• The initial state q0 is the special state χ.
• The accepting states F include all states S.

Observe that the CGA accepts a given input word w if
w corresponds to a valid callstack prefix according to the
abstraction of the program given by callgraph C.

Example 4. Figure 5 shows the callgraph automaton for
the code from Figure 3 with respect to a callgraph obtained
using class hierarchy analysis. Due to lack of space, a state
labeled qxy denotes the method whose name starts with y in
class X . For instance, qaf denotes the state associated with
the foo method of class A.

Since the initial CGA is constructed using an imprecise
callgraph, it will need to be refined later on by removing cer-
tain spurious transitions. Since EXPLORER employs pointer
analysis to refine the CGA, it is important to know which
transitions are induced by which method calls in the pro-
gram. For this purpose, we assume a function Vars which
maps each transition τ ∈ δ to a set of pairs of the form
(v, T ). Here, v is a variable name and T is a type. Specifi-
cally, (v, T ) ∈ Vars(τ) if transition τ is induced by the as-
sumption that variable v has dynamic type T .

Example 5. Consider the CGA from Figure 5 and the code
from Figure 3. Let τ be the transition from state qm to
qaf . Because of the method call x.foo() in main, main
calls A:foo if x can have dynamic type A or C. Hence, we
have Vars(τ) = {(x,A), (x,C)}. On the other hand, let
τ ′ be the transition from state qaf to qaz . Here, we have
Vars(τ ′) = {(this, A), (this, B), (this, C)}.

5. The Product Automaton
Having constructed the query and callgraph automata, the
next step is to determine whether the intersection of the lan-
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Figure 5. CGA for code from Figure 3

guages defined by the QA and the CGA is empty. Towards
this purpose, we need to construct the product automaton
(PA) for L(QA) ∩ L(CGA), where L(A) denotes the lan-
guage accepted by automaton A. However, since the call-
graph automaton is typically very large for realistic Java
software, explicitly constructing the entire product automa-
ton may not feasible within a small time budget. Therefore,
EXPLORER performs an optimized product construction that
prunes irrelevant states of the PA on-the-fly.

The key idea underlying our algorithm is to exploit the
fact that we are only interested in deciding the emptiness of
the language defined by the product automaton. Specifically,
recall that the language defined by the PA is empty if we
cannot reach an accepting state from the initial state. Hence,
if a certain state of the PA is not backwards-reachable from
an accepting state, it can safely be pruned without changing
the answer to a given query. Furthermore, since many meth-
ods in the callgraph are typically not relevant for answering
a particular query, it is possible to quickly identify and prune
away many irrelevant states of the product automaton.

To identify such irrelevant states in the product automa-
ton, our algorithm starts by computing a set of necessary
inputs for each state of the query automaton:

Definition 2. (Necessary input) Given a finite state ma-
chine (S,Σ, δ, q0, F ), we say that a symbol x ∈ Σ is a nec-
essary input at some state q? ∈ S if any word w that is ac-
cepted by the automaton (S,Σ, δ, q?, F ) contains symbol x.

In other words, a symbol x is a necessary input for state
q? if we must see symbol x in the remainder of the input
before we can reach an accepting state. In the context of the
query automaton, the necessary inputs for a state are all the
methods that must be called to match the user’s query.

Example 6. Consider the query automaton from Figure 4.
For the state labeled 1, A:foo and C:bar are both necessary
inputs. On the other hand, for the state labeled 2, only C:bar
is a necessary input.

q0 = Init(CGA)
q′0 = Init(QA)

(q0, q′0) ∈ States(PA), Init(PA) = (q0, q′0)

(q, q′) ∈ States(PA)
(q, x, q1) ∈ δ(CGA), (q′, x, q2) ∈ δ(QA)

E(q1) ∩N (q2) = ∅
(q1, q2) ∈ States(PA), ((q, q′), x, (q1, q2)) ∈ δ(PA)

(q, q′) ∈ States(PA)
q ∈ Final(CGA), q′ ∈ Final(QA)

(q, q′) ∈ Final(PA)

Figure 6. Partial PA construction algorithm. N (q) and E(q) in-
dicate the necessary and error inputs for state q respectively. Also,
δ(A) indicates the transition function for automaton A.

To construct the optimized product automaton, we also
define so-called error inputs:

Definition 3. (Error input) Given a finite state machine
(S,Σ, δ, q0, F ), we say that a symbol x ∈ Σ is an error input
for some state q? ∈ S if any word w containing symbol x is
rejected by the automaton (S,Σ, δ, q?, F ).

Example 7. Consider the CGA from Figure 5. For the states
labeled qaf , qbf , qaw, A:foo is an error input but C:bar is
not. For the states labeled qaz, qab, qbb, qcb, both A:foo and
C:bar are error inputs.

To see why these concepts are useful, consider a state
(q, q′) in the product automaton such that q ∈ States(CGA)
and q′ ∈ States(QA). Now, let N = {x1, . . . , xn} be the
necessary inputs for state q′ in the query automaton such that
some xi ∈ N is an error input for state q in the callgraph au-
tomaton. Since symbol xi is necessary for acceptance in the
query automaton but sufficient for rejection in the callgraph
automaton, this means that state (q, q′) can never lead to an
accepting state in the product automaton. Hence, as soon as
we encounter such a state (q, q′) during the construction of
the product automaton, we can prune it and avoid consider-
ing any states reachable from (q, q′).

Figure 6 summarizes our optimized product automaton
construction algorithm using inference rules. Here, N (q)
denotes the necessary inputs for a state q and E(q) represents
q’s error inputs. For an automaton A, Init(A) and Final(A)
are A’s initial and final states respectively, and States(A)
represents all states of A. According to the second rule
of Figure 6, we do not add a state (q1, q2) to the product
automaton if an error input for state q1 in the CGA is a
necessary input for a state q2 in the QA.

Theorem 1. Let A be the standard synchronous product
of QA and CGA, and let A′ the partial product automaton
constructed according to Figure 6. Then, L(A) = L(A′).
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main A:foo A:woo C:bar

C:bar

(a) (b) (c) (d)

(e)

Figure 7. Partial PA constructed by EXPLORER

Proof. First, observe that every word that is accepted by A′
is also accepted by A because every transition τ ∈ δ(A′) is
also in δ(A). Now, suppose there exists some word w that is
accepted by A but rejected by A′. Let (q0, q

′
0), . . . , (qn, q

′
n)

be a run $ of A on input word w such that there is no
corresponding run in A′. This implies E(qi) ∩ N (q′i) 6= ∅
for some (qi, q

′
i) ∈ $. Now, let x be a symbol such that

x ∈ E(qi) ∩ N (q′i). By definition of necessary input, the
j’th symbol of w must be x for some j > i. Let CGA =
(S,Σ, δ, q0, F ) and let w′ be the suffix of w starting at
position i. Since x ∈ E(qi), by definition of error input,
qi, . . . , qn cannot be a run of (S,Σ, δ, qi, F ) on w′. Hence,
(q0, q

′
0), . . . , (qi, q

′
i), . . . (qn, q

′
n) cannot be a run of A on

input w (i.e., a contradiction).

Example 8. Figure 7 shows the partial product automaton
constructed by EXPLORER for the QA and CGA from Fig-
ures 4 and 5. Note that many states that would appear in the
full (standard) product automaton do not appear in the par-
tial product automaton constructed by EXPLORER because
they are pruned away due to the premiseN (q1)∩E(q2) = ∅
in the second rule of Figure 6.

We now briefly describe how to compute necessary and
error inputs. To compute error inputs for a state q in the
CGA, we obtain all edge labels that are transitively reach-
able from q. If a given method m is not in this set, then m
corresponds to an error input for state q. Similarly, we com-
pute necessary inputs for a state q in the QA by collecting
the set of symbols that appear in all acyclic paths from q to
a final state.

6. Refinement Algorithm
We are now ready to describe our refinement-based query
resolution algorithm, whose pseudo-code is shown in Algo-
rithm 1. The query resolution algorithm takes as input the
product automaton PA as well as the callgraph and query au-
tomata (CGA and QA) and returns a true/false answer to the
user’s query. As described in Section 2, our algorithm itera-
tively refines the product automaton until either the query is
refuted or until no further refinement is possible.

The query resolution algorithm starts by associating a
cost with each transition in the product automaton (lines 4-
6). Intuitively, the cost associated with a transition estimates
the difficulty of refuting a transition in the PA. In particular, a
cost of∞ indicates that a transition cannot be refuted, while
a finite non-zero cost indicates that it may be possible to re-
fute a certain caller-callee relation. Hence, Algorithm 1 calls
a function called REFINABLE to check whether it may be

possible to refute a transition. Specifically, REFINABLE(τ )
returns false if and only if either the method call associated
with τ is non-virtual (e.g., a static call) or if it already has
a single target according to the initial imprecise callgraph.
Hence, we assign a cost of ∞ to each transition that is not
refinable and unit cost to all other transitions.2

Lines 7-24 of Algorithm 1 correspond to the main refine-
ment loop. In each iteration, we first check the emptiness of
the language defined by the product automaton (line 8). In
graph-theoretic terms, this corresponds to checking the non-
reachability of every final state from the initial state of the
product automaton. If no final state is reachable, this means
that the query can be refuted using our current abstraction of
the callgraph; hence the algorithm returns false at line 9.

If the query cannot be refuted using the current product
automaton, we try to refine it if possible. In particular, since
our goal is to minimize the amount of work performed in
each iteration, we would like to identify a minimum number
of transitions that, if refuted, would be sufficient to refute
the user’s query. For this purpose, we compute a minimum
cut of the product automaton. Specifically, at line 10 of
the algorithm, we find a set of transitions C in the product
automaton such that:

1. If C is removed from PA, every final state f ∈ F would
become unreachable from the initial state q0.

2. The total cost of C is no greater than some other set of
transitions C′ satisfying condition 1.

Now, let C be such a minimum cut of the product automa-
ton. If C is empty (i.e., the cost of the minimum cut is ∞),
this indicates that no further refinement of the product au-
tomaton is possible. This happens, for example, when the
pointer analysis fails to refute some of the points-to queries
that are necessary for disproving a given control-flow query.
In this case, the algorithm returns true at line 12, meaning
that the answer to the user’s query is “yes”.

If there exists a finite-cost minimum cut C, the algo-
rithm then tries to refute each transition in C (lines 13-24).
Note that, to prove the emptiness of L(PA), we must re-
fute all transitions in C. For this purpose, for each transi-
tion ((q1, q

′
1),m, (q2, q

′
2)) ∈ C, we issue a set of points-to

queries. In particular, to refute such a transition, we must
prove the non-existence of a call from q1 to q2 under some
calling context induced by q′1, which corresponds to some
prefix of the user’s regular expression.

For this purpose, we first call the GETVARS function at
line 15 to retrieve the set of pairs (v, T ) such that q1 calls
q2 if v has type T for some (v, T ) ∈ Vars(q1,m, q2) in the
callgraph automaton.3 Furthermore, since we are looking at

2 While it may be possible to use more sophisticated heuristics for cost
initialization, we have found this simple design choice to be sufficiently
satisfactory in practice.
3 Recall from Section 4 that Vars maps each transition in the CGA to a set
of (v, T ) pairs under which the corresponding call relationship is induced.
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Algorithm 1 Refinement-Based Query Resolution

1: procedure RESOLVEQUERY(PA, CGA, QA)

2: Input: Product, callgraph, and query automata
3: Output: true/false answer to query

4: for all τ ∈ δ(PA)) do . Init costs
5: if REFINABLE(τ ) then cost(τ ) := 1
6: else cost(τ ) :=∞

7: while true do
8: if EMPTY(L(PA)) then
9: return false; . Query refuted

10: Set C := MINCUT(PA, {q0}, F );
11: if C = ∅ then
12: return true; . Query validated

13: for all ((q1, q
′
1),m, (q2, q

′
2)) ∈ C do

14: Bool s := true;
15: Set vt := GETVARS(CGA, (q1,m, q2));
16: Context ctx := GETCTX(QA, q′1);
17: for all (v, T ) ∈ vt do
18: Bool r := PTSQUERY(v, T, ctx)
19: if r then
20: cost((q1, q′1),m, (q2, q

′
2)) :=∞;

21: s := false;
22: break;
23: if s then
24: REMOVEEDGE((q1, q′1),m, (q2, q

′
2));

25: else break;

a transition originating from state (q1, q
′
1) in the product au-

tomaton, we want to know whether q1 can call q2 in a calling
context satisfying state q′1. Hence, we call the GETCTX func-
tion at line 16 to obtain the context associated with state q′1
in the query automaton. Specifically, if the query automa-
ton is defined by (S,Σ, δ, q0, F ), then contexts satisfying
q′1 are precisely those that are accepted by the automaton
(S,Σ, δ, q0, {q′1}).

Now, given variable v, type T , and relevant context ctx,
our algorithm issues a points-to query to check whether vari-
able v can have type T in context ctx (line 18). If this is
indeed possible, this means that the transition under consid-
eration is not spurious, and, hence, the query cannot be re-
futed using the current minimum cut C. Thus, the algorithm
updates the cost of the current transition to∞ (line 20) and
sets the boolean variable s indicating the spuriousness of the
transition to false (line 21). Note that the effect of the two
break statements at lines 22 and 24 is that the algorithm pro-
ceeds to find a new candidate refutation in the form of a new
minimum cut.

On the other hand, if the pointer analysis can refute every
points-to query associated with the current transition τ =
((q1, q

′
1),m, (q2, q

′
2)), this means that τ is indeed spurious

and we therefore remove it from the product automaton

using the REMOVEEDGE procedure at line 23. If we are able
to refute every transition τ ∈ C, the emptiness check at line
6 of the algorithm succeeds in the next iteration.

Example 9. Consider the product automaton from Figure 7
and the code from Figure 3. Initially, the transitions labeled
(a) and (c) in Figure 7 are assigned a cost of ∞, while all
other edges have unit cost. Note that the edge labeled (c) is
not “refinable” because there is already a single target of
the call to woo according to the CHA-based callgraph.

In the first iteration of the loop from Algorithm 1, the
emptiness check at line 8 fails because the final state is
reachable from the initial state. We therefore compute a min-
imum cut, which in this case yields a singleton containing
edge (b). The variables associated with this transition are
(x, A), (x, C) and the context guard is empty. For the points-
to query for (x, A), the answer is true, so we assign infinite
cost to edge (b) and proceed to find a new refutation.

In the next iteration, the emptiness check at line 8 fails
again, so we find a new minimum cut, which now contains
edges (e) and (d). The variable associated with edge (d)
is (this, C) in method woo. Furthermore, the context guard
ctx includes A:foo; hence, we query whether this can have
type C when woo is called from A:foo. This points-to query
can be refuted using a context-sensitive pointer analysis, and
we remove edge (d) from the automaton.

In the next iteration of the inner loop (lines 13-24), we
now try to refute edge (e). In this case, the variable of
interest is this in A:foo; hence we query whether this

can have type C in foo. Since the result of this query is also
negative, we also remove edge (e) from the automaton. In
the next iteration, the emptiness check at line 8 succeeds,
and the algorithm returns false as an answer to the query.

Theorem 2. (Soundness). If EXPLORER returns false for a
query Q about program P , then Q must indeed evaluate to
false on P .

Proof. Suppose EXPLORER returns false, but there exists a
callstack configuration m1, . . . ,mn that arises in some ex-
ecution of P and that matches Q. By soundness of the ini-
tial callgraph, m1, . . . ,mn must be accepted by the CGA.
Since CGA × QA accepts L(CGA) ∩ L(QA), Theorem 1
implies that the initial product automaton A0 passed as in-
put to RESOLVEQUERY must accept the word m1, . . . ,mn.
Hence, RESOLVEQUERY must have removed a transition
τ = ((qmi−1 , q

′
i−1),mi, (qmi , q

′
i)) from the PA such thatA0

takes transition τ on the i’th input symbol of m1, . . . ,mn.
Since τ was removed by RESOLVEQUERY, the pointer anal-
ysis must state that mi−1 cannot call mi in a context satis-
fying state q′i−1 of QA = (S,Σ, δ, q′0, F ). Since the pointer
analysis is sound, this means that (S,Σ, δ, q′0, {q′i−1}) does
not accept m1, . . . ,mi−1. However, this implies that τ can-
not be the i’th transition taken by A0 on the input word
m1, . . . ,mn (i.e., a contradiction).

526



7. Implementation
We implement our ideas in a new tool called EXPLORER4

which consists of approximately 8,000 lines of Java code.
EXPLORER is built on top of the Soot framework [23, 37]
and accepts Java source code as well as Java and Dalvik
byte code as input. To build the initial callgraph automaton
for an application A, we first construct a harness that has a
single entry method called m and which explicitly invokes
every original entry method inA. We then run a scalable, but
context-insensitive pointer analysis provided by Soot [23]
to construct a callgraph, which is then used to generate the
initial CGA. We convert user-provided regular expressions
to query automata using JSA [9], which is a general tool
for performing string analysis of Java programs. Since we
introduce a new method called m during harness construc-
tion, EXPLORER also instruments each user-provided query
Q and rewrites it as m→ Q.

To implement the refinement procedure of Algorithm 1,
we use the Ford-Fulkerson algorithm [17] for finding mini-
mum cuts. We also use the context-sensitive demand-driven
pointer analysis of Sridharan and Bodı́k for answering
points-to queries issued by RESOLVEQUERY [33]. Although
Sridharan and Bodı́k’s original tool is capable of answering
points-to queries under different contexts, they do not ex-
pose the corresponding interface in their Soot implementa-
tion (i.e., their implementation always passes an empty con-
text). Since our RESOLVEQUERY procedure needs to answer
points-to queries under a context guard, we added a new in-
terface to Sridharan and Bodı́k’s implementation that also
takes the calling context as a parameter. In our queries, we
limit the length of context to be one. Finally, Sridharan and
Bodı́k’s tool requires the user to specify a time budget for
each points-to query, and we use the default setting, which
refines at most 75,000 nodes of the pointer assignment graph
per query. Queries that need to traverse more than 75,000
nodes terminate and return a conservative result.

In addition to giving yes/no answers to queries, EX-
PLORER can also provide so-called witnesses. A witness is
a callstack prefix that (1) matches the user-provided regu-
lar expression, and (2) is feasible according to the refined
callgraph. While we do not utilize these witnesses in our ex-
perimental evaluation, we believe they are useful in various
software engineering and program analysis tasks.

8. Evaluation
To evaluate the usefulness and practicality of EXPLORER,
we apply it to three different analysis tasks:

1. Analysis of the observer design pattern in Java programs

2. Identification of performance bugs caused by GUI lag-
ging in Android applications

3. Analysis of inter-component communication in Android

4 Please see http://fredfeng.github.io/explorer/

Benchmark # queries CHA CI KOBJ EXPLORER

batik 101 1 1 11 13
fop 261 97 111 137 165
sunflow 76 50 52 54 54
weka 165 21 21 52 90
jmeter 300 116 140 N/A 210

Table 1. Number of refutations for resolving queries related
to the observer design pattern (higher is better).

D

Subject

Observers

notify upon change R1

R2

R3

notify upon change

notify upon change

(observable)

Figure 8. Schematic illustration of the observer pattern

In addition to showing that EXPLORER can be useful
in these different scenarios, we also answer the following
research questions:

• How useful is the refinement-based algorithm compared
to its eager versions using different callgraph construc-
tion schemes?
• What is the benefit of the optimized product automaton

construction described in Section 5 compared to the stan-
dard product automaton construction?
• Is it useful to employ minimum cuts to refine the PA?

In all experiments, we analyzed JDK1.6.0 45 as well as
other third-party libraries that are used by our benchmarks.
All experiments were conducted on an Intel Xeon(R) com-
puter with an E5-2630 CPU and 64G of memory running on
the Ubuntu 14.04 operating system.

8.1 Analysis of the Observer Design Pattern
In our first experiment, we use EXPLORER to analyze the
observer design pattern in Java programs [12]. The observer
paradigm is a common Java design pattern that allows a
given object o to notify its dependents about modifications
to o (see Figure 8). Because of the ubiquity of this design
pattern, the Java SDK provides an Observer interface that
allows different classes to specify what action to perform
upon changes to the observed object.

A common question that arises in many automated test-
ing, program understanding, and analysis tasks is whether
instances of a given class A can be observers of objects
of type B [8, 36, 39]. Precise answers to this question are
particularly important for understanding event-driven appli-
cations and GUI code. Fortunately, such queries are easy
to formulate in the EXPLORER framework. For instance,
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Benchmark CHA CI KOBJ EXPLORER EXPLORER(NoCut) EXPLORER(Naive PA)
batik 28+94 64+19 6812+15 64+72 T/O 64+6255
fop 26+260 59+33 6710+31 59+139 T/O T/O
sunflow 20+73 51+10 3821+12 51+54 T/O 51+1011
weka 31+200 45+26 3891+22 45+325 T/O 45+3392
jmeter 32+365 78+81 T/O 78+1188 T/O T/O

Table 2. Running time for answering queries related to the observer design pattern. Times are indicated in the format x+ y, where x is the
time in seconds to construct the initial call graph and y denotes the time (s) for answering queries. “T/O” denotes time-out after 2 hours.

consider an application that uses the Observer interface
provided by the Java SDK such that class A inherits from
the Observable base class, and class B implements the
Observer interface. Now, to determine whether class B is
an observer for class A, we can issue the following query:

.∗ → A : notifyObservers→ .∗ → B : update

In other words, we check whether the notifyObservers

method of class A can transitively call B’s update method.
Thus, to perform our first experiment, we manually iden-

tify the observable and observer interfaces provided by
the libraries used in our experimental benchmarks. For ex-
ample, in the Java Swing library, an observer interface is
ActionListener which requires an actionPerformed

method. Hence, to determine whether XListener is an ob-
server of a specific Swing component called YButton, we
issue a query of the form:

.∗ → YButton : fireActionPerformed→

.∗ → XListener : actionPerformed

In what follows, we discuss the precision and perfor-
mance of EXPLORER when answering queries of this form
on the five benchmarks shown in the first column of Table 1.
Three of these programs (namely batik, fop, sunflow) are
from DaCapo [7]; weka is a well-known tool for data mining
and machine learning, and jmeter is a widely-used tool for
functional and performance testing of Java programs.5

Refinement based vs. eager algorithm. Recall that one of the
design choices underlying EXPLORER is to refine the call-
graph on demand rather than to construct it eagerly. To in-
vestigate this design choice, we compare EXPLORER against
a version of itself (let’s call it EXPLORER’) that does not
use a refinement-based approach. Instead, EXPLORER’ con-
structs the product automaton A using the initial callgraph,
and it returns false if and only if the language of A is
empty. We write EXPLORER’(C) to denote the eager ver-
sion of EXPLORER using callgraph construction scheme C.
For example, EXPLORER’(CI) and EXPLORER’(KOBJ) de-
note the eager versions of EXPLORER where the callgraph is
constructed using context-insensitive and k-object-sensitive
pointer analysis [26] respectively.

5 We do not use all DaCapo benchmarks since many of them do not heavily
use the observer pattern.

Table 2 shows the running times of EXPLORER and EX-
PLORER’(C) for different callgraph construction schemes
when answering queries of the form “Is class A an observer
of class B?”. All running times are in seconds and are writ-
ten using the format x+y, where x denotes the time to build
the initial callgraph, and y is the time to answer queries. In
the case of EXPLORER, the time to answer queries (i.e., y)
includes refinement, points-to queries, construction of min-
imum cuts, construction of the product automaton, and the
tests for emptiness. In the case of EXPLORER’(C), the time
to answer queries only includes the time to construct the
product automaton and test its emptiness. In Table 1, we
compare the precision of EXPLORER with EXPLORER’(C)
in terms of the number of queries refuted. Thus, higher num-
bers in Table 1 indicate better precision.

First, we compare EXPLORER against EXPLORER’(CHA)
and EXPLORER’(CI), where CI is the context-insensitive
subset-based pointer analysis implemented in Soot [23].
Since EXPLORER uses the same context-insensitive pointer
analysis to construct the initial callgraph, EXPLORER’(CI)
corresponds exactly to EXPLORER without any refinement.
As expected, we see that EXPLORER’(CI) is faster but
also significantly less precise than EXPLORER: On aver-
age, EXPLORER can refute 63.7% more queries than EX-
PLORER’(CI). Observe that EXPLORER’(CHA) is also gen-
erally faster compared to EXPLORER but even less precise.

Let us now compare EXPLORER with EXPLORER’(KOBJ)
for k = 1 (i.e., 1-object-sensitive pointer analysis). From
Tables 1 and 2, we see that EXPLORER is superior to EX-
PLORER’(KOBJ) in terms of both precision and running
time. In particular, since eager callgraph construction us-
ing context-sensitive pointer analysis is much more expen-
sive than EXPLORER’s initial context-insensitive analysis
and subsequent refinement, EXPLORER has significant ad-
vantage over EXPLORER’(KOBJ) in terms of running time
when answering all observer-related queries. We do not
compare EXPLORER with EXPLORER’(KCFA) because EX-
PLORER’(KCFA) is both less precise and slower than EX-
PLORER’(KOBJ) on these benchmarks.6

Impact of optimized product construction and min cuts.

6 EXPLORER’(KCFA) denotes an eager version of EXPLORER where the
initial callgraph is obtained using a k-CFA pointer analysis [31].
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In Table 2, the column labeled “EXPLORER(NoCut)”
shows the performance of EXPLORER when it refines all
edges in the product automaton instead of computing a min-
imum cut C and refining only those edges in C. (This ver-
sion still uses the optimized product construction.) We see
that without the use of minimum cuts, the tool does not
compute an answer for any benchmark within our two hour
time limit. The last column of Figure 2, which is labeled
“EXPLORER(NaivePA),” shows the running time of EX-
PLORER when it performs the standard product automaton
construction instead of the optimized construction described
in Section 5. Here, we see that our optimized product au-
tomaton construction has a significant positive impact on
EXPLORER’s performance.

8.2 Detection of Performance Bugs
In our second experiment, we use EXPLORER to automat-
ically detect performance bugs caused by GUI lagging in
Android applications. As described in the PerfChecker pa-
per [24], many of the performance bugs in Android appli-
cations occur when some lengthy operation is performed di-
rectly in the main thread. To detect performance bugs in An-
droid, the developers of the PerfChecker tool have identified
a set of API methods, such as openConnection, query,
and openFileInput, that perform potentially lengthy op-
erations. Now, let L be a regular expression that describes
the disjunction of these operations (i.e., openConnection
+ query + ... ). Similarly, let M be a regular expression
that describes possible lifecycle methods7 (e.g., onStart,
onCreate, etc.) of Android activities.

A GUI lagging performance bug arises if any method in
M can call any method l ∈ L without starting an asyn-
chronous task that performs l in the background. Assum-
ing A is a regular expression describing methods that start
asynchronous tasks (e.g, AsyncTask::doInBackground,
Thread::run etc.), the following regular expression char-
acterizes the condition under which a GUI lagging perfor-
mance bug will occur:

.∗ →M → (!A)∗ → L

In other words, some m ∈ M transitively calls some l ∈
L without spawning a new thread or asynchronous task.
Given this regular expression, we can now use EXPLORER
to automatically detect GUI lagging performance bugs in
Android applications!

Precision. We now consider the precision of EXPLORER on
all 18 benchmarks from the PerfChecker paper [24]. These
results are summarized in Table 3, where a 3 indicates that
the tool reported a performance bug, and a 7 indicates that it
did not. According to the PerfChecker paper, the first twelve

7 A lifecycle method of a component is invoked by the Android SDK
when the application transitions between different states of its lifecycle. For
example, they are called for starting, pausing, or resuming an activity.

Benchmark CHA CI KOBJ EXP PerfC
Ushahidi 3 3 3 3 3

c:geo 3 3 3 3 3

Omnidroid 3 3 3 3 3

Geohash Droid 3 3 3 3 3

Android Wifi Tether 3 3 3 3 3

Osmand 3 3 T/O 3 3

WebSMS 3 3 3 3 3

ConnectBot 3 3 3 3 3

Firefox 3 3 3 3 7

APG 3 3 3 3 3

FBReaderJ 3 3 3 3 3

Bitcoin Wallet 3 3 3 3 7

Open GPS Tracker 7 7 7 7 7

My Tracks 3 3 T/O 7 7

XBMC Remote 3 7 7 7 7

AnySoftKeyboard 7 7 7 7 7

OI File Manager 3 3 7 7 7

IMSDroid 7 7 7 7 7

Table 3. GUI lagging bug detection results. 3denotes that the app
has at least one performance bug. EXP denotes EXPLORER, and
PerfC stands for PerfChecker.

.

applications in Table 3 contain GUI lagging problems, while
the last six do not. EXPLORER identifies the bugs in all
twelve buggy applications and does not report false alarms
for any of the remaining six. We manually confirmed that
the warnings generated by EXPLORER but not Perfchecker
represent true positives. In particular, the performance bugs
in Firefox and Bitcoin Wallet arise in library code, which
PerfChecker does not analyze.

In comparing the precision of the eager versions EX-
PLORER’(C) for different choices of callgraph construction
algorithms C, we see that for the six non-buggy benchmarks,
both EXPLORER’(CHA) and EXPLORER’(CI) have > 30%
false positive rate. On the other hand, EXPLORER’(KOBJ)
does not report any false positives but times out for two of
the 18 benchmarks (and performs quite poorly in terms of
running time for some of the other benchmarks; see Table 5).

Table 4 presents a more detailed view of the same experi-
ment. In particular, as a proxy for the number of performance
bugs reported by each version of the tool, we now issue
|M |×|L| different queries of the form .∗ → m→ (!A)∗ → l
where m ∈ M and l ∈ L. In other words, each such
query checks whether a given life cycle method can call
some particular lengthy operation. According to the data
in Table 4, EXPLORER reports fewer bugs than each eager
version EXPLORER’(C). Furthermore, in a few cases (e.g.,
Ushahidi), EXPLORER reports many fewer bugs than EX-
PLORER’(KOBJ), which suggests that the context-sensitive
points-to queries issued by EXPLORER’s refinement algo-
rithm are critical in some cases. (Recall from Section 6 that
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Benchmark CHA CI KOBJ EXPLORER EXPLORER(NoCut) EXPLORER(Naive PA)
Ushahidi 5 + 23 13+10 234+10 13+10 13+16 13+29
c:geo 4 + 47 39+18 1824+14 39+18 39+29 39+301
Omnidroid 1+9 3+5 61+5 3+7 3+10 3+21
Geohash Droid 1+3 3+2 11+2 3+2 3+2 3+7
Android Wifi Tether 1+1 4+1 5+1 4+1 4+1 4+5
Osmand 8+163 41+14 T/O 41+15 41+97 41+189
WebSMS 2+13 10+3 171+3 10+4 10+5 10+12
ConnectBot 1+4 4+2 14+2 4+2 4+2 4+12
Firefox 11+68 55+17 3705+15 55+18 55+19 55+38
APG 7+108 41+12 119+12 41+12 41+18 41+29
FBReaderJ 5+23 26+10 372+10 26+11 26+123 26+36
Bitcoin Wallet 10+71 52+14 3607+13 52+15 52+18 52+28
Open GPS Tracker 5 + 19 17+8 307+9 17+9 17+12 17+10
My Tracks 12+362 61+16 T/O 61+17 61+20 61+29
XBMC Remote 3+11 12+5 173+4 12+6 12+6 12+17
AnySoftKeyboard 1+5 2+3 10+3 2+3 2+4 2+14
OI File Manager 1+3 2+3 8+2 2+3 2+3 2+16
IMSDroid 3+18 12+9 91+10 12+10 12+14 12+28

Table 5. Running time for detecting performance bugs. Times are indicated in seconds and using the format x+ y, where x is the time to
construct the initial call graph and y is the time for answering queries. “T/O” denotes time-out with a time limit of 2 hours.

Benchmark CHA CI KOBJ EXPLORER

Ushahidi 91 15 15 9
c:geo 179 51 51 42
Omnidroid 27 27 27 27
Geohash Droid 13 3 3 3
Android Wifi Tether 4 4 1 1
Osmand 258 51 N/A 51
WebSMS 1 1 1 1
ConnectBot 14 10 10 9
Firefox 85 4 4 4
APG 60 50 45 39
FBReaderJ 41 11 11 11
Bitcoin Wallet 71 1 1 1
Open GPS Tracker 0 0 0 0
My Tracks 321 3 N/A 0
XBMC Remote 17 0 0 0
AnySoftKeyboard 0 0 0 0
OI File Manager 2 2 0 0
IMSDroid 0 0 0 0

Table 4. Number of performance bugs (lower is better).

EXPLORER’s refinement algorithm extracts the relevant con-
text associated with a given automaton state.)

Refinement-based vs. eager. To evaluate the benefits of the
refinement-based approach, Table 5 compares the running
times of EXPLORER with those of EXPLORER’(C) for dif-
ferent callgraph construction algorithms. We see that EX-
PLORER’(CHA) is often faster than EXPLORER, even though
there are some cases (e.g., My Tracks, Osmand, APG) where
EXPLORER performs better than EXPLORER’(CHA). As in

Section 8.1, we see that EXPLORER’(CI) is faster than EX-
PLORER, but at the cost of decreased precision (see Tables 3
and 4). On the other hand, EXPLORER’(KOBJ) often has
poor performance because of the cost of performing eager
whole-program context-sensitive pointer analysis.

Impact of min cuts and optimized PA construction. The
column labeled “EXPLORER(No Cut)” in Table 5 shows the
running time of EXPLORER when it refines all edges in the
product automaton instead of computing a minimum cut.
Here, the impact of using minimum cuts is not as dramatic as
it was in Section 8.1. In fact, for two benchmarks (Ushahidi
and IMSDroid), the version of EXPLORER that does not
use minimum cuts performs slightly better because these
benchmarks require all edges to be refined, so the minimum
cut computation only adds overhead. For other benchmarks,
such as Osmand, MyTracks, and FBReaderJ, the use of
minimum cuts has a substantial positive impact.

The column labeled “EXPLORER(Naive PA)” in Table 5
shows the running time of EXPLORER when it uses the
standard product construction algorithm (i.e., without the
technique of Section 5). For many applications, we see that
our optimized product automaton construction significantly
improves performance.

8.3 Android Inter-Component Communication
In our third experiment, we use EXPLORER to reason about
inter-component communication (ICC) in Android applica-
tions. In particular, Android applications are composed of
different kinds of components that can asynchronously in-
voke each other. For instance, a GUI component A might
start a service componentB when the user clicks on a certain
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1. Activity A {

2. onCreate(...) { foo(); }

3. foo(){

4. Intent n = new Intent();

5. n.setClass(B.class); //ICC site

6. startActivity(n);

7. }

8. }

Figure 9. An ICC example.

button on the screen. ICC analysis determines which compo-
nents in an Android application can start which other com-
ponents. Such an analysis has many applications in test case
generation, bug finding, and malware detection [3, 16, 28]:
For example, the malware detection tool described in [16]
uses inter-component calls as part of its malware signature
and performs static ICC analysis to determine whether an
Android application belongs to a malware family. As another
example, the A3E tool described in [3] performs static ICC
analysis to construct a so-called activity transition graph,
which is used to increase coverage and efficiency for auto-
mated testing of Android applications.

Figure 9 gives a simple example demonstrating Android
ICC. Here, a component called A starts another component
called B by invoking the Android SDK’s startActivity

method. In general, precise reasoning about ICC requires
two different analyses:

• Control-flow analysis: Determine if an ICC site (e.g.,
call to startActivity) is transitively reachable from a
component’s life-cycle methods (e.g., onCreate).
• Data-flow analysis: Identify the values of the fields of

the Intent object that are provided as an argument to an
ICC method (e.g., startActivity).

Going back to our example from Figure 9, component A can
start component B because (1) the onCreate method of A
can transitively call startActivity, thereby satisfying the
control-flow requirement, and (2) the field of the intent ob-
ject associated with this ICC site refers to B (hence satisfying
the data-flow requirement).

The control-flow analysis required for ICC resolution
can be naturally formulated in the EXPLORER framework.8

Specifically, let m1, . . . ,mn be the life-cycle methods (e.g.,
onCreate) of a component and let m′ be a method that
contains an ICC site. Then, the control flow aspect of ICC
resolution answers the following query:

.∗ → (m1 + . . .+mn)→ .∗ → m′

To evaluate the precision and performance of EXPLORER
in this context, we generate many ICC-related control-flow
queries for several popular Android applications that are
available through Google Play. Most of these applications

8 We do not address the data-flow component of ICC, as it mainly requires
string analysis, which is orthogonal to this paper.

Benchmark CHA CI KOBJ EXPLORER

com.twitter 244 600 N/A 678
com.yelp 0 354 N/A 354
com.snapchat 8 140 N/A 168
com.whatsapp 39 290 N/A 290
com.netflix 112 275 N/A 380
com.pandora 0 180 N/A 180
com.instagram 121 541 N/A 567
com.expedia 63 471 N/A 553
com.pinterest 83 322 N/A 346
com.yahoo.mail 196 400 N/A 439
com.abcnews 171 318 N/A 350
com.walmart 163 273 N/A 301

Table 6. Number of refutations among 1000 ICC-related queries.
Higher numbers indicate better precision.

are notoriously complicated and pose scalability problems
for static analysis techniques.

Precision and performance. Tables 6 and 7 compare the
precision of and running time of EXPLORER against those
of EXPLORER’(C) for different callgraph construction algo-
rithms. First, comparing EXPLORER and EXPLORER’(CHA),
we see that EXPLORER is not only much more precise but
sometimes even faster compared to EXPLORER’(CHA) (e.g.,
netflix, pinterest). As expected, EXPLORER’(CI) is always
faster than EXPLORER, but it is less precise for most of the
benchmarks. In particular, the context-insensitive analysis
refutes 347 (out of 1000) queries on average, while EX-
PLORER refutes 384 queries. Finally, observe that the run-
ning time of EXPLORER is quite moderate; the average time
to answer one ICC-related query is 0.24s.

Impact of min cut and optimized PA construction. As we
see from the last two columns of Table 7, the use of min-
imum cuts and the optimized product automaton construc-
tion are both crucial in this application domain. In particu-
lar, if we refine all edges of the product automaton instead
of only those in the minimum cut, the tool fails to termi-
nate within the two hour time-limit. Similarly, if we use the
standard product automaton construction, the modified EX-
PLORER fails to terminate within two hours. These statistics
indicate that the optimized PA construction and the use of
minimum cuts are both critical to the scalability and practi-
cality of EXPLORER.

9. Related Work
EXPLORER provides the first general framework for an-

swering a broad class of interprocedural control flow queries
about feasible callstack configurations. However, EXPLORER
bears similarities to other program analysis techniques that
are query- or demand-driven.

Analysis generators from high-level specifications. At a
high-level, EXPLORER can be viewed as a tool for auto-
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Benchmark CHA CI KOBJ EXPLORER EXPLORER(NoCut) EXPLORER(Naive PA)
com.twitter 7 + 119 15 + 32 T/O 15 + 159 T/O T/O
com.yelp 12+155 30+47 T/O 30+343 T/O T/O
com.snapchat 2 + 55 21 + 4 T/O 21 + 11 T/O T/O
com.whatsapp 11+198 55+45 T/O 55+767 T/O T/O
com.netflix 6 + 111 18 + 14 T/O 18 + 55 T/O T/O
com.pandora 8 + 174 51 + 43 T/O 51 + 365 T/O T/O
com.instagram 10 + 294 45 + 51 T/O 45 + 96 T/O T/O
com.expedia 7+154 12+35 T/O 12+116 T/O T/O
com.pinterest 10+443 40 + 15 T/O 40 + 54 T/O T/O
com.yahoo.mail 4+138 25+55 T/O 25+333 T/O T/O
com.abcnews 8+206 43+31 T/O 43+142 T/O T/O
com.walmart 8+147 62+28 T/O 62+65 T/O T/O

Table 7. Running time for answering 1000 ICC-related queries. Running times are indicated in the format x + y, where x is the time in
seconds to construct the initial call graph and y denotes the time for answering queries. T/O indicates time-out with a time limit of 2 hours.

matically generating analyses from user-specified queries. In
this regard, EXPLORER is similar to other systems, such as
SLIC [6], Metal [15], PQL [25], Rhodium [22] etc. Among
these systems, SLIC and Metal provide declarative event-
based specification languages for building system-specific
static checkers [6, 15]. The PQL system [25] allows users
to specify code patterns and generates a dynamic analysis
that detects matches at run-time and performs remedial ac-
tions. PQL also utilizes static analysis to reduce run-time
overhead. The Rhodium system [22] provides a language for
specifying dataflow analyses that can then be automatically
proven sound. In contrast to all of these systems, EXPLORER
allows users to specify control-flow queries about possible
callstack configurations and employs demand-driven tech-
niques for answering these queries.

Automata-based techniques and model checkers. Regular
expressions and automata have a long history of use as
specifications in program analysis and verification [6, 15,
29, 32]. However, unlike previous techniques which use
automata to specify typestate properties [35] (or variations
thereof), we use regular expressions to describe feasible
callstack configurations of programs.

Finite-state and Büchi automata also have numerous ap-
plications in model checking finite and infinite-state sys-
tems [5, 11]. Specifically, many automata-theoretic model
checking techniques describe both the design and specifi-
cation of a system as Büchi automata and compose them
using the product construction. EXPLORER bears similari-
ties to model checking techniques in that it composes the
query automaton with the callgraph automaton and checks
the emptiness of the resulting product automaton.

Counterexample Guided Abstraction Refinement. EX-
PLORER’s method of iteratively refining the callgraph bears
some similarity to the notion of counterexample guided
abstraction refinement (CEGAR) used in model check-
ing [10, 21]. Both CEGAR and EXPLORER start with im-

precise abstractions of the program—a predicate abstraction
for CEGAR and a callgraph for EXPLORER—and both itera-
tively and selectively refine these abstractions to prune infea-
sible paths from the abstraction. Conceptually, the two ap-
proaches differ in that CEGAR uses under-approximations
to refine the abstraction, while EXPLORER uses (more pre-
cise) over-approximations to refine the callgraph.

Demand-driven program analysis. Demand-driven program
analysis techniques differ from eager (exhaustive) analyses
in that they only analyze parts of the program that are rele-
vant for answering a given query. The idea of demand-driven
program analysis originates from the work of Duesterwald et
al. for interprocedural dataflow analysis [14] and has found
numerous applications in pointer analysis [19, 20, 33, 34, 38,
40]. The algorithm employed in EXPLORER is also demand-
driven and utilizes the context-sensitive pointer analysis pro-
posed by Sridharan and Bodı́k [33].

Callgraph construction. EXPLORER answers interprocedu-
ral control-flow queries with respect to a callgraph abstrac-
tion of the program. There are many different techniques for
constructing the callgraph of Java programs. One of the sim-
plest techniques is class hierarchy analysis (CHA), which
examines the inheritance relationship between classes to
overapproximate targets of virtual method calls [13]. Rapid
type analysis (RTA) refines CHA by pruning methods whose
enclosing classes have not been instantiated as possible re-
ceiver types [4]. More precise callgraph construction algo-
rithms utilize pointer analysis by querying possible dynamic
types of the receiver. While EXPLORER obtains an initial
callgraph using context-insensitive pointer analysis, it per-
forms refinement using context-sensitive techniques.

Agrawal et al. [1] present a demand-driven callgraph con-
struction algorithm that identifies the possible targets of
a polymorphic callsite. However, unlike EXPLORER, their
technique does not allow users to specify queries about in-
terprocedural control flow properties.
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Ali et al. describe a precise callgraph construction algo-
rithm [2], but because their approach is eager, it does not
scale as well as EXPLORER. Thus, for example, they do not
attempt to analyze library code.

Control flow analysis and applications. Interprocedural
control flow analysis determines the set of functions that
can be referred to by a given expression and is useful for
both functional and object-oriented programs [27, 30]. EX-
PLORER allows answering a class of interprocedural control
flow queries of object-oriented programs that are expressible
as regular expressions. As demonstrated in Section 8, a gen-
eral framework for answering interprocedural control-flow
queries has many applications in program understanding and
analysis. In addition to being useful in various program anal-
ysis tasks such as analysis of Android ICC [28], performance
bug identification [24], and malware detection [16], we also
envision EXPLORER being very useful to end users in the
context of IDEs such as Eclipse and Visual Studio.

10. Conclusion
We have described a general framework for statically an-
swering a class of interprocedural control flow queries spec-
ified as regular expressions. We have implemented this idea
in a tool called EXPLORER and demonstrated that it is useful
for a variety of program analysis and understanding tasks.
Our experimental evaluation demonstrates that EXPLORER
is both precise and practical. Our results also highlight the
advantages of performing refinement-based analysis as well
as the importance of our partial product automaton construc-
tion and the use of minimum cuts.

In future work, we plan to explore the applicability of
EXPLORER for other clients and implement an Eclipse plug-
in that allows programmers to use EXPLORER for software
understanding tasks while programming. We also plan to
extend the ideas proposed in this paper and design an even
more general framework for answering a combination of
interprocedural control-flow and dataflow queries.
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