
NL2Viz: Natural Language to Visualization via Constrained
Syntax-Guided Synthesis

Zhengkai Wu
University of Illinois at
Urbana-Champaign

USA

Vu Le
Microsoft

USA

Ashish Tiwari
Microsoft

USA

Sumit Gulwani
Microsoft

USA

Arjun Radhakrishna
Microsoft

USA

Ivan Radiček
Microsoft

USA

Gustavo Soares
Microsoft

USA

Xinyu Wang
University of Michigan, Ann Arbor

USA

Zhenwen Li
Peking University

China

Tao Xie
Peking University

China

ABSTRACT

Recent development in NL2Code (Natural Language to Code) re-
search allows end-users, especially novice programmers to create a
concrete implementation of their ideas such as data visualization by
providing natural language (NL) instructions. An NL2Code system
often fails to achieve its goal due to three major challenges: the
user’s words have contextual semantics, the user may not include
all details needed for code generation, and the system results are
imperfect and require further refinement. To address the aforemen-
tioned three challenges for NL to Visualization, we propose a new
approach and its supporting tool named NL2Viz with three salient
features: (1) leveraging not only the user’s NL input but also the data
and program context that the NL query is upon, (2) using hard/soft
constraints to reflect different confidence levels in the constraints
retrieved from the user input and data/program context, and (3)
providing support for result refinement and reuse. We implement
NL2Viz in the Jupyter Notebook environment and evaluate NL2Viz
on a real-world visualization benchmark and a public dataset to
show the effectiveness of NL2Viz. We also conduct a user study in-
volving 6 data scientist professionals to demonstrate the usability of
NL2Viz, the readability of the generated code, and NL2Viz’s effec-
tiveness in helping users generate desired visualizations effectively
and efficiently.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9413-0/22/11. . . $15.00
https://doi.org/10.1145/3540250.3549140

CCS CONCEPTS

• Software and its engineering→ Visual languages; Automatic

programming.

KEYWORDS

program synthesis, natural language to code, constraint

ACM Reference Format:

Zhengkai Wu, Vu Le, Ashish Tiwari, Sumit Gulwani, Arjun Radhakrishna,
Ivan Radiček, Gustavo Soares, Xinyu Wang, Zhenwen Li, and Tao Xie. 2022.
NL2Viz: Natural Language to Visualization via Constrained Syntax-Guided
Synthesis. In Proceedings of the 30th ACM Joint European Software Engineer-

ing Conference and Symposium on the Foundations of Software Engineering

(ESEC/FSE ’22), November 14–18, 2022, Singapore, Singapore. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3540250.3549140

1 INTRODUCTION

Recent development in Natural Language to Code (NL2Code) re-
search allows the end-user, especially novice programmers to cre-
ate a concrete implementation of their ideas by providing natural
language (NL) instructions. While code generation for general-
purpose languages such as Python is still challenging [36], NL2Code
for a domain-specific language (DSL) such as SQL [16, 37, 39] or
NL2Code in a specific application domain such as competitive
programming [18] has witnessed major advances. Given that data
science has seen tremendous growth in recent years, data visual-
ization has become a great application domain of NL2Code. The
main reason is that data scientists need to frequently produce vi-
sualization to help them perform exploratory data analysis (EDA)
to discover useful information from data and draw insights to sup-
port decision making. Yet it is quite a burden on data scientists as
they have to memorize names of data visualization APIs and their
many parameters [10]. Indeed, in our user study (Section 4.4), data
scientists confirm that they could not memorize all the API options
and have to look into API documentation frequently.

972

https://doi.org/10.1145/3540250.3549140
https://doi.org/10.1145/3540250.3549140

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Wu, Le, Tiwari, Gulwani, Radhakrishna, Radiček, Soares, Wang, Li and Xie

It is difficult for an NL2Code tool to achieve its goal due to
three major challenges. First, in the stated NL instruction, the user
may use words whose semantics can be determined only in the
context. For example, different NL2Sql approaches include different
strategies to handle schema encoding to create a mapping from
the user input to the entities in the database, while few approaches
have achieved good adaptability [16]. In visualization, an NL2Code
task gets more complicated as the user may already write some
code to process the data and then use the Natural Language to
Visualization (NL2Visualization) tool. So the tool also needs to
understand the program context. Second, the user may not include
all details (needed for code generation) in the NL instruction. For
example, when trying to produce a line plot, the user may not
specify the name of the data column used for the x-axis especially
when there is a data column with index or time value. Third, the
results of NL2Code are often imperfect and thus require the user’s
further interaction or update to fix issues in the results. Especially
in data analysis, data scientists often need to make quick changes to
visualization as data analysis is a data-driven process. The first two
challenges on the user inputmaymake the user’s further interaction
even more necessary.

To address the aforementioned three challenges, in this paper, we
propose a new approach and its supporting tool named NL2Viz in
the domain of NL2Visualization with three salient features. First,
we leverage not only the user’s NL input but also the contextual
input, i.e., data and program context that the underlying query is
upon. The data context includes the data tables that the user is
working on and also the intermediate data vectors that the user
has produced. The program context includes the previous code and
existing plots that the user has produced (including the previous
instruction-plot pairs produced by our NL2Viz tool for the user).
For example, when the user creates her own filtering function and
refers to the function name in her instruction, we would be able to
understand and use the function in the generated plotting code by
leveraging the program context. Second, to better fill the missing
or ambiguous details in the NL input, we differentiate between
hard constraints and soft constraints retrieved from the NL input
and contextual input. The hard constraints are the ones that we
have high confidence in and could be explicitly specified by the
user. For example, the user states that she wants a scatterplot, and
then the plot type to be scatterplot would be a hard constraint.
Meanwhile the soft constraints are the ones that we do not have
high confidence in and could be inferred from the context. For
example, the user does not mention the data column for the x-
axis but the column with time information would be the likely
x-axis data. Third, we provide the user interface to allow iterative
refinement for the user to further fix or change the results. We
allow the user to give additional NL instructions to make changes
to the visualization. Moreover, we are not only having the plot as
the output but also the working code snippet that produces the plot.
The user can also directly make changes on the code snippet; data
scientists find making code changes convenient as shown in our
user study (Section 4.4).

We implement our approach as a tool named NL2Viz in the
Jupyter Notebook environment [13]. NL2Viz is directly embedded
into the user’s daily workflow without the burden to switch be-
tween different environments. At a high level, NL2Viz first parses

the NL instruction (given by the user) using semantic parsing [4, 5]
into symbolic constraints that the target visualization program needs
to satisfy. NL2Viz also generates such constraints after retrieving
the data, program, and existing plot context in the current note-
book. Next, NL2Viz uses a novel syntax-guided program synthesis
algorithm to generate a complete visualization program from these
hard/soft constraints. During this process, NL2Viz keeps multiple
candidates at each synthesis state and assigns a heuristic fitness
score to help prioritize the most likely structure. Finally, NL2Viz
can take a further refinement NL instruction to change the gener-
ated visualization program or the user can choose to directly use
or apply changes to the generated program.

We assess NL2Viz using four evaluations. First, we assess the syn-
thesis accuracy in a one-shot scenario. Our benchmark contains 295
NL instructions collected from data scientists and online homework
assignments. Overall, NL2Viz is able to achieve an overall accuracy
of 74.6%. Second, we assess NL2Viz’s accuracy in interactive scenar-
ios. Given an initial plot and an instruction for describing a small
change, NL2Viz achieves 62.5% accuracy in 40 scenarios. Third, we
also assess NL2Viz in a public dataset [20]. NL2Viz outperforms a
state-of-the-art approach [20] in easy to medium categories while
achieving comparable overall accuracy of 55.0%. Fourth, we assess
the usability of NL2Viz via a user study, where we ask 6 data scien-
tist professionals to use NL2Viz to complete 5 visualization tasks.
The participants are able to successfully complete 4.17 out of the 5
tasks on average. Most participants like NL2Viz and are willing to
use it before writing actual visualization code.

This paper makes the following main contributions:

• We propose a novel NL2Code approach that aims to ad-
dress challenges on the user input and interactions in the
application domain of NL2Visualization by leveraging the
data/program context, retrieving hard/soft constraints, and
providing interactive refinement support.
• We present NL2Viz, an end-to-end synthesis tool imple-
mented in the Jupyter Notebook environment for helping
data scientists visualize their data using an NL interface.
NL2Viz shows both the plot and the readable code snippet
for generating that plot, allowing the user to modify, extend,
and reuse the code snippet.
• We evaluate NL2Viz on a real-world visualization benchmark
and a public dataset to show its applicability.We also conduct
a user study with data scientist professionals on real world
scenarios, finding that NL2Viz is easy to use and helpful for
generating not only plots, but also readable code that could
be extended and reused.

In the rest of the paper, Section 2 illustrates our overall approach
using a motivating example. Section 3 discusses the implementation
of NL2Viz. Section 4 presents our evaluation results. Section 5
discusses related work and Section 6 concludes.

2 OVERVIEW

This section provides a high-level overview of NL2Viz via a moti-
vating example. In this example, a data scientist named Alice wants
to study the trend of COVID-19 infection in Europe. She opens
Jupyter Notebook [13], a popular platform among data scientists, to

973

NL2Viz: Natural Language to Visualization via Constrained Syntax-Guided Synthesis ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

Figure 1: The “COVID-19” dataset (sampled 10 rows).

load a COVID-19 dataset1 (Figure 1). Each row in the dataset reports
the numbers of daily confirmed cases and deaths for a country in
a certain day, along with the accumulated numbers of confirmed
cases and deaths until that date.

Alice first wants to see the trend of confirmed cases for all coun-
tries in Europe. Alice understands that she needs to restrict the
continent column to “Europe”. Because there are multiple coun-
tries in Europe, Alice also needs to group data by country before
she can iterate and plot a line chart for each country. In the plot,
the x-axis is the date sorted chronologically and the y-axis is the
confirmed cases for that date. Figure 2a shows the desired plot and
code.

The plotting code is non-trivial. Alice not only has to pick the
right functions in matplotlib (e.g., plot), but also needs to process
the data and construct the desired arguments for these functions.
In our user study (Section 4.4), data scientists usually could not
remember the usage of plotting functions and have to look up
their documentation or search for similar code in help forums.
This context switching breaks the data scientists’ workflow and
negatively affects their productivity.

In contrast, Alice can perform the same task in NL2Viz by typ-
ing “%plot line showing total confirmed cases for countries in Europe”

(%plot is our magic command to invoke NL2Viz in Jupyter Note-
book). Because our target audience is data scientists who have
sufficient coding skills, NL2Viz shows both the plot and the code
to produce it (Figure 2a). Having access to the code allows Alice to
tune the plot if she wants. For instance, she can modify the code
to change the x-axis tick labels from every 5 days to a different
number. Alice can also reuse the code. For example, Alice can easily
wrap the synthesized code inside a function that plots the total
number of confirmed cases in any given continent, and then loops
over the function to create plots for all continents.

Alice also has an option to interactively change the existing
plots using NL. For instance, she may type %plot change y label to

“Total confirmed cases” to update the y-axis label, or “%plot change
to Asia” to change the plot to countries in Asia (Figure 2b). Doing
so is feasible because NL2Viz also uses knowledge of existing plots
when synthesizing plots from text.

Our approach.We next explain how our NL2Viz approach synthe-
sizes the desired visualization program from the following three
modalities of specifications for the example from Figure 2:

1https://data.humdata.org/dataset/novel-coronavirus-2019-ncov-cases

• The data/program context, which includes the “COVID-19”
dataset, as shown in Figure 1.
• The visualization context, which includes existing plots and
their NL instructions.
• An NL instruction that describes the desired visualization
task, e.g., “%plot line showing total confirmed cases for coun-

tries in Europe” provided by Alice as the instruction.
Given these inputs, NL2Viz synthesizes the desired program in
two steps, as shown schematically in Figure 3. In the first phase
(semantic parsing), NL2Viz parses the three inputs into symbolic
constraints. Then, in the second phase (program synthesis), NL2Viz
synthesizes a complete program that satisfies these constraints.

More specifically, given an NL instruction and the current data
context and program context, NL2Viz uses semantic parsing tech-
niques [5] to generate a ranked list 𝐿 of tuples, each of which 𝑇

consists of two sets of constraints: a set R𝑚𝑢𝑠𝑡 of hard constraints
and a set R𝑚𝑎𝑦 of soft constraints (Figure 4 shows a simplified
version of our grammar for the semantic parser). The set R𝑚𝑢𝑠𝑡

includes hard constraints that must be satisfied by the desired pro-
gram 𝑃 , whereas constraints in set R𝑚𝑎𝑦 are soft, indicating that
theymay be satisfied by 𝑃 . In NL2Viz, the constraints take the form
of (a subset of) rules (of the grammar) used to generate plotting
programs. For instance, for the example from Figure 2, our seman-
tic parser generates the following tuple (R𝑚𝑢𝑠𝑡 ,R𝑚𝑎𝑦) (among
possibly others)2:

R𝑚𝑢𝑠𝑡 = { PlotType → “LinePlot”,
YAxis → “total_confirmed”,

FilterColumn → “continent”,
GroupColumn → “country”,
FilterValue → “Europe” }

R𝑚𝑎𝑦 = { XAxis → “date”,
DataFrame → “df” }

Here, the first rule PlotType → “LinePlot” in R𝑚𝑢𝑠𝑡 is a hard
constraint: when we synthesize the target plotting program using
the visualization domain-specific language’s (DSL’s) context-free
grammar (CFG), the derivation in the synthesize process should use
the rule PlotType → “LinePlot”. The hard constraints in R𝑚𝑢𝑠𝑡

are extracted from the English instruction that directly corresponds
to the user’s intent. In contrast, the first constraint XAxis→ “date”
in R𝑚𝑎𝑦 is soft, indicating that the program may use the “date”
column as the x-axis. These constraints in R𝑚𝑎𝑦 are generated
from analyzing the data/program context and existing plots. Since
these inputs provide only contextual hints that may be useful for
deriving the complete program, we treat R𝑚𝑎𝑦 as soft constraints.

Once NL2Viz finishes generating hard and soft constraints from
specifications, our second phase (program synthesis) synthesizes
a complete visualization program from these constraints. NL2Viz
synthesizes a program from the visualization CFG that uses all rules
in R𝑚𝑢𝑠𝑡 and as many rules in R𝑚𝑎𝑦 as possible. In the final step,
NL2Viz translates the program in the DSL to the target language
(Python). For instance, given the preceding tuple (R𝑚𝑢𝑠𝑡 ,R𝑚𝑎𝑦),
our synthesizer is able to generate the desired program 𝑃 in Fig-
ure 2a. Our synthesizer generates one program 𝑃𝑖 for each tuple

2Note that although the NL instruction does not mention continent, the parser is
able to include that column because the parser could derive a relationship between
“Europe" and continent from the data context.

974

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Wu, Le, Tiwari, Gulwani, Radhakrishna, Radiček, Soares, Wang, Li and Xie

(a) The user invokes NL2Viz to obtain a plot with code. (b) The user creates another plot by adapting the existing one.

Figure 2: The screenshots of NL2Viz in Jupyter Notebook while working with the motivating example.

Natural

Language
Semantic

Parser

Visualization
Synthesizer

Visualization
Encoding

Data/Program

Context

NL2Viz

Context
Encoder

Production
Rules

Existing
Charts

Figure 3: The workflow of NL2Viz.

𝑇𝑖 in 𝐿 and finally returns a program 𝑃 that has the smallest cost
among all 𝑃𝑖 ’s. (The cost of each derivation is defined later in Sec-
tion 3.4.)

Given the NL instruction in Figure 2b, the semantic parser re-
turns the hard constraint set R𝑚𝑢𝑠𝑡 = {FilterValue→ “Asia”,
FilterColumn→ “continent”}. The soft constraint set R𝑚𝑎𝑦 now
also includes the constraints of the previous plot. Given these con-
straints, NL2Viz is able to adapt the plot in Figure 2a to the plot
in Figure 2b with minimal human guidance.

We next discuss the design and the implementation of NL2Viz.

3 NL2VIZ: NATURAL LANGUAGE TO

VISUALIZATION

Figure 3 depicts our overall workflow for converting the given NL
instruction to visualization code. First, we use a semantic parser to
extract R𝑚𝑢𝑠𝑡 , the set of constraints that must be used, from the
user-provided NL instruction. We then analyze the data/program
context to extract a set of constraints that may be used (i.e., R𝑚𝑎𝑦).
Finally, our synthesis algorithm synthesizes the program in our visu-
alization domain-specific language from the extracted constraints,
and translates the program into Python.

Root ::= PlotElems

PlotElems ::= PlotElem PlotElems?
PlotElem ::= HistoElems | · · · | FilterElem | GroupElem

HistoElems ::= HistoElem HistoElems?
HistoElem ::= HistoType | Column | Bins | Stack | Log | Density

· · ·
GroupElem ::= GroupType | GroupColumns | GroupOperator

Figure 4: Simplified version of the NL grammar.

Plot ::= plt (Data, Mappings, PlotType, Legends)
Data ::= DataSet | process (Data, Processor)

Processor ::= filter (...) | groupBy (...) | orderBy (...)
Mappings ::= nil | list (Mapping, Mappings)
Mapping ::= xaxis (XAxis, Scaling?, Options?) | yaxis (...) | ...
Scaling ::= range (Float, Float) | log (Scaling) |

step (Scaling, Float) | ...
Options ::= stacking (Options) | transparent (Options) | ...)
PlotType ::= “Histogram” | “Scatter” | “Lineplot” | ...
Legends ::= legend (Title : String, Labels, ...)
Labels ::= label (XAxisLabel : String, YAxisLabel : String, ...)

Figure 5: Simplified visualization DSL.

3.1 Parsing NL Instruction to Constraints

Figure 4 shows a partial simplified version of our attribute grammar
(NL grammar) used to parse an NL instruction to constraints. We
design this grammar by analyzing online tutorials, visualization
courses, and Jupyter Notebooks with high upvotes in the Kag-
gle competitions [14]. We attach semantic rules in the form of S-
attributes to the grammar. Each nonterminal in the NL grammar is

975

NL2Viz: Natural Language to Visualization via Constrained Syntax-Guided Synthesis ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

associated with a list of attribute-value pairs, which corresponds to
the semantics of this nonterminal. Given an NL instruction, we use
a semantic parser [5] (which uses an enhanced CYK algorithm [15])
to parse the instruction into a list of attribute-value pairs. These
pairs form our R𝑚𝑢𝑠𝑡 set.

Figure 6 shows a simplified parse structure for the example in
Section 2. We obtain the parse structure by making the following
enhancements to the CYK algorithm.
Setting attribute values for terminals. We use annotators to ini-
tialize the attribute values. For example, for the nonterminal Column,
we have an annotator ColumnValue that parses the token “europe”
into a ColumnValue nonterminal symbol. The ColumnValue anno-
tator maps one or multiple consecutive tokens to a value in some
column in the given dataset. By using annotators, the semantic
parser is able to parse tokens in a data-context-sensitive manner
(e.g., parsing “Europe” as a ColumnValue and inferring “continent”
as its ColumnName) and program-context-sensitive manner (e.g.,
parsing “foo” as a function name if a function of that name appears
in the Jupyter Notebook code cell).
Setting attribute values for rule 𝑁 ::= 𝑁1𝑁2. The attributes are
propagated from children to parent following the semantic rules.
Most semantic rules just propagate the lists of attributes from chil-
dren to parent without change. However, in some cases, the seman-
tic rules can change the attribute name in children’s list. For exam-
ple, in the FilterElem symbol, the attribute ColumnValue changes
its attribute name (e.g., ColumnValue becomes FilterValue).
Fitness score. Each nonterminal also has a fitness score in the range
of [0, 1] to represent the probability of producing that parse struc-
ture. For instance, the token “countries” does not exactly match the
column name “country” in the dataset; hence, its symbol “Column”
is given a score of 0.87 based on the edit distance of the two strings.
The score of a parent symbol is simply the product of the scores of
its children.

Note that our NL grammar is inherently ambiguous to capture
different interpretations of an NL instruction. From an NL instruc-
tion, our semantic parser produces multiple parse structures, each
of which has a R𝑚𝑢𝑠𝑡 set and a fitness score.

3.2 Using Data/Program Context to Construct

May-use Constraints

Because the instruction usually does not contain all information
necessary to synthesize the visualization (i.e., R𝑚𝑢𝑠𝑡 is not com-
plete), NL2Viz uses multiple heuristics to infer the potential omitted
information (i.e., R𝑚𝑎𝑦) from the data/program context. For exam-
ple, when plotting a scatter plot, if the mapping of data columns to
axes is not evident from the user’s NL instruction, our approach
prefers a categorical column to be on the x-axis.

Our heuristics in NL2Viz also capture popular data preprocessing
patterns. For example, if the user wants to plot a line plot, but we
find that there are multiple points on the same x-axis coordinate
in the dataset, then it is likely that there is an inherent grouping
step by the column on the x-axis before plotting. NL2Viz analyzes
each column to determine (a) the type of values in that column, (b)
whether the column is categorical, and (c) all the distinct values in
that column. We use this information to create R𝑚𝑎𝑦 . For example,
even if the instruction in Figure 2 does not mention “continent”

in the text, NL2Viz infers that AuxColumn → “continent” in the
FilterElem rule based on data insights, and adds it to R𝑚𝑎𝑦 .

3.3 Designing Visualization Domain-Specific

Language

Given the sets of R𝑚𝑢𝑠𝑡 and R𝑚𝑎𝑦 , our synthesis algorithm synthe-
sizes a visualization program in a domain-specific language (DSL).
Figure 5 shows a simplified version of this visualization DSL (non-
terminals start with uppercase letters, function symbols start with
lowercase letters, and terminals are within quotes). Programs in
this DSL are then translated to a target visualization library (such
as matplotlib or seaborn) in the final translation step.

To design this DSL, we first perform a preliminary study on the
Jupyter Notebook dataset released by Felipe et al. [25]. Based on the
stats of different plots used in the dataset and the documentation of
popular visualization libraries, such as mathplotlib, seaborn, and
ggplot2, we include the frequently used plot types and parameters
including the column to be plotted and the size/color/style of the
visualization element. Additional grammar rules in R link these
parameters with the corresponding plot type.

Based on the analysis of the plotting code fragments collected
from the Jupyter Notebook dataset, we also include rules (in R) that
perform data preprocessing operations. For example, we observe that
three commonly used typical patterns of data preprocessing are
filtering, grouping, and ordering; hence, we extend the grammar
rules R to include rules that perform these steps.

3.4 Constrained Syntax-Guided Synthesis

Having defined the NL grammar and the visualization DSL, we
next illustrate our main synthesis algorithm (Algorithm 1). The
algorithm takes a grammar G = (terminal set T ,
nonterminal set N , production rules R, start symbol Plot), and a
pair (R𝑚𝑢𝑠𝑡 ,R𝑚𝑎𝑦) of must-use and may-use constraints (used
for constraining derivations) as input; informally a derivation is ap-
plication of a grammar rule toward generating the target program.
The algorithm returns a program (generated by G), generating
which undergoes a derivation that satisfies R𝑚𝑢𝑠𝑡 and minimizes
the cost function.

In the visualization DSL, we begin with the start symbol Plot
and perform a series of derivations to further extend to a complete
program. More formally, a derivation is a sequence of terms that
start with the start symbol Plot, and each subsequent term is ob-
tained from the previous term by applying a production rule in G. If
we use 𝑃1 →𝑟1 𝑃2 to denote that 𝑃2 is derived from 𝑃1 by applying
𝑟1, then a derivation of 𝑃 , denoted by 𝑑 , can be written as

Plot→𝑟0 𝑃1 →𝑟1 𝑃2 →𝑟2 · · ·𝑃𝑘 →𝑟𝑘 𝑃

A program is incomplete if it contains a non-terminal symbol. A
complete program contains only functions and terminal symbols.

976

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Wu, Le, Tiwari, Gulwani, Radhakrishna, Radiček, Soares, Wang, Li and Xie

Root

Plot Elements

LinePlot
Elem

Column
Lineplot

Type

line total confirmed countries

Property:
PlotType: Line

Score=1.0

in

Property:
PlotType: Line
Column_To_Plot: total_confirmed
Filter_Column: continent
Filter_Value: Europe
Group_Column: country

Score=0.415

Europecases for

Property:
Column:
total_confirmed

Score=0.6

Column

LinePlot
Element

Group
Element

Column_
Value

Property:
Column: continent
Column_Value:
Europe

Score=1.0

Filter
Element

Property:
Column_To_Plot:
total_confirmed

Score=0.6

Property:
Column: country

Score=0.875

Property:
Filter_Column:
continent
Filter_Value:
Europe

Score=1.0

Property:
Group_Column:
country

Score=0.875

showing

Figure 6: The parse structure for the motivating example.

Example 1. The derivation for the first program shown in Section 2

is shown in parts below with some simplification:

Plot→ plt (Data, Mappings, PlotType, Legends)
Data→3

process (process (DataSet, Processor), Processor)
DataSet→ “df”
Processor→ filter(FilterColumn, FilterValue)
→2 [filter(“continent”, “Europe”), group(“country”)]

Processor→ group(GroupColumn) → group(“country”)
Mappings→2

list (Mapping, list (Mapping, nil))
Mapping→ xaxis(XAxis) → x(“date”)
Mapping→ yxis(YAxis) → y(“total_confirmed”)
PlotType→ “Lineplot”
Legends→ Labels→ labels(XAxisLabel, YAxisLabel)
→2 labels(“date”, “total_confirmed”)

The algorithm works by maintaining a worklist that consists
of tuples (𝑃,𝑑, 𝑐), where 𝑃 is a (potentially incomplete) program
generated by derivation 𝑑 whose cost is 𝑐 . In each iteration, the
algorithm works by picking an element (𝑃,𝑑, 𝑐) from the worklist.
If the program 𝑃 cannot be completed to a program that satisfies
R𝑚𝑢𝑠𝑡 (determined using a subroutine feas) or the current cost 𝑐
is already more than the best cost found so far, we just prune this
search branch and continue with the next iteration (Line 7). If not,
then we further process this tuple (𝑃,𝑑, 𝑐). We first check whether
𝑃 is already a complete program (Line 9), and if so, we update
the best solution found so far and continue to the next iteration
(Lines 10-12). If 𝑃 is not complete, we apply all possible single-step
rewrites to 𝑃 and add new items to our worklist (Lines 15-17).

We next describe the subroutine feas(𝑑,R𝑚𝑢𝑠𝑡) that checks
whether derivation 𝑑 satisfies the constraint R𝑚𝑢𝑠𝑡 . If 𝑑 is a com-
plete derivation (generating a complete program), then
feas(𝑑,R𝑚𝑢𝑠𝑡) returns “true” iff all rules in R𝑚𝑢𝑠𝑡 are included in
derivation 𝑑 .

Since we aim to satisfy all constraints in R𝑚𝑢𝑠𝑡 and as many
constraints in R𝑚𝑎𝑦 as possible, for each derivation we define its
cost to be equal to the number of the production rules (used in this
derivation) that do not belong to the set R𝑚𝑎𝑦 . In the following
definition of the cost function, we use the notation 𝑑 |𝑖 to denote the
subderivation (𝑆, 𝑟0, 𝑃1, ··, 𝑟𝑖−1, 𝑃𝑖) of the derivation 𝑑 consisting of

the first 𝑖 rule applications. If 𝑑 has 𝑘 rule applications, 𝑑 |𝑘 = 𝑑 .
Given the may-use constraint R𝑚𝑎𝑦 , the cost of a derivation 𝑑 is
defined as follows:

cost(𝑑,R𝑚𝑎𝑦) =

𝑘∑︁
𝑖=1

cost𝑒 (𝑟𝑖 | 𝑑 |𝑖 ,R𝑚𝑎𝑦) (1)

where the elementary cost function cost𝑒 is defined as

cost𝑒 (𝑟 | 𝑑,R𝑚𝑎𝑦) =

{
0 if 𝑟 ∈ R𝑚𝑎𝑦

1 otherwise (2)

The cost of a derivation is simply the number of rules (in the
derivation) that are not included in R𝑚𝑎𝑦 . Note that
cost(𝑑,R𝑚𝑎𝑦) = 0 iff every production used in 𝑑 lies in R𝑚𝑎𝑦 .

3.5 Extension to An Interactive System

We have implemented our approach with a supporting interactive
tool. After NL2Viz synthesizes the first Python program and shows
the generated plot, if the user is not satisfied with it, then the user
can give another NL instruction to refine the plot. In the subsequent
re-synthesis runs, NL2Viz uses additional information from the
program context – the production rules used to generate the previous
programs are included in the set R𝑚𝑎𝑦 (as may-use production
rules) to help the synthesizer prefer programs that are similar to
the previously generated programs.

4 EVALUATION

We implement our approach as a Python package that registers a
magic ipython command [12] plot in the popular Jupyter Notebook
environment [13]. Hence, a user can input “plot a histogram of
cylinders” to obtain an appropriate plot (see Figure 2). The Jupyter
interface for NL2Viz also supports rudimentary auto-complete,
suggesting column names, keywords, and pre-processing function
names. The data for plotting is assumed to be in the form of a
dataframe object from the widely used Pandas library [24]. We
choose Matplotlib and Seaborn as the target plotting libraries for
the generated code.

977

NL2Viz: Natural Language to Visualization via Constrained Syntax-Guided Synthesis ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

Algorithm 1: Branch-and-bound for cSyGuS.
Inputs :A CFG G := (N, T, R, 𝑆) , a pair (R𝑚𝑢𝑠𝑡 , R𝑚𝑎𝑦) of

constraints on G
Output :A program 𝑃 whose derivation 𝑑 in G satisfies R𝑚𝑢𝑠𝑡 and

has minimum cost under cost(𝑑, R𝑚𝑎𝑦)
1 𝑃∗ ← Null ; // best program found so far

2 𝑐∗ ←∞ ; // cost of the best program found so far

3 𝑄 ← {(𝑆, ⟨𝑆 ⟩, 0) } ; // worklist queue

4 while𝑄 ≠ {} do
5 (𝑃,𝑑, 𝑐) ← Remove an element from𝑄 ;
6 if feas(𝑑, R𝑚𝑢𝑠𝑡) is false or 𝑐 > 𝑐∗ then
7 continue
8 end

9 if 𝑃 has no nonterminals then

10 𝑃∗ ← 𝑃 ;
11 𝑐∗ ← 𝑐 ;
12 continue
13 end

14 𝑅 ← all rules in R applicable on 𝑃 ;
15 foreach 𝑟 ∈ 𝑅 do

16 add (𝑃 ′, ⟨𝑑, 𝑟, 𝑃 ′ ⟩, 𝑐′) to𝑄 where 𝑃 →𝑟 𝑃 ′ and
𝑐′ = 𝑐 + cost𝑒 (𝑟 |𝑑, R𝑚𝑎𝑦)

17 end

18 end

19 return 𝑃∗

Figure 7: The “Auto-MPG” dataset (sampled 10 rows).

Our evaluation aims to answer four specific research questions:
• RQ1: One-shot accuracy. How accurately can NL2Viz pro-
duce the target plot from a single NL instruction? How ef-
fectively can the data/program context help NL2Viz resolve
ambiguities in the user’s NL instruction?
• RQ2: Plot-and-change accuracy. How accurately can
NL2Viz create a new chart from an NL change instruction?
Howmuch does the user benefit fromNL2Viz in this scenario
in terms of the instruction length reduction?
• RQ3: Comparison with the state of the art. How does
NL2Viz compare with other related state-of-the-art tools for
visualization synthesis?
• RQ4: Usability. How usable and accurate is NL2Viz in a
real setting?

Benchmark. We collect 303 NL instructions for 54 plots from two
sources. Auto-MPG plot descriptions. In this source, there are
267 manually written NL instructions for 18 plots selected from

online tutorials that use the “Auto-MPG” dataset3, which contains
technical specifications of 398 cars as shown in Figure 7. These
NL instructions are provided by 15 professionals with experience
in data science. Homework and COVID-19 assignments. We
also collect 36 scenarios from homework assignments and Jupyter
Notebooks that use COVID-19 datasets in GitHub. In these scenar-
ios, we use the problem statements as the NL instructions and the
plots as the expected results. We exclude 5 instructions from these
scenarios in which the plot types are not supported by NL2Viz.

NL2VIS dataset. Luo et al. [20] publish anNL2Visualization dataset
named NL2VIS. The NL2VIS dataset is generated by applying a
neural-network-based NL2SQL-to-NL2VIS model on a popular
NL2SQL dataset named Spider [38]. Although the NL2VIS dataset
has an impressive number of 25,750 (NL, VIS) pairs, we find that
the dataset mainly focuses on the data preprocessing steps as most
visualizations in the dataset are a direct presentation of the output
by a SQL query from the Spider dataset without the plot options
such as formats and legends. So we evaluate NL2Viz on the NL2VIS
dataset in only RQ3 to compare with the results reported in Luo et
al.’s paper [20].

4.1 RQ1 Results: One-Shot Accuracy

Correctness. We classify the output plots of NL2Viz into four
separate types based on how well they match the ground truth:
• Exact Match. In this case, the output of NL2Viz exactly
matches the ground truth.
• Functionally Equivalent. In this case, the output plot is
functionally equivalent to the ground truth plot, but dif-
fers in a minor, often visual, detail. For example, when the
instruction does not specify that a histogram should have
normalized frequency on the y-axis, the ground truth does
use frequencies, while NL2Viz produces a histogram using
counts instead of frequencies. However, the two plots are
functionally equivalent for most purposes. Therefore, we
also consider this type to be correct.
• Functionally Different. In this case, the output plot differs
from the ground truth in significant details. For example, the
output plot has an axis plotted using a linear scale, while the
ground truth uses a logarithmic scale.
• No match. Here, the produced plot is completely different
from the ground truth. We differentiate “functionally differ-
ent” from “no match” because in a “no match” case, often
the time the semantic parser is not able to capture the in-
tention from the NL instruction, while in a “functionally
different” case, usually the synthesizer is not able to synthe-
size a reasonable program indicating that we should extract
more may-use constraints with higher accuracy.

When measuring the accuracy, we consider the exact match and
functionally equivalent types to be correct, and functionally differ-
ent and no match to be incorrect.

Results. The results of the evaluation are summarized in Table 1.
Overall, NL2Viz is able to produce the correct output in 74.5%
of the cases (with 58.6% being an exact match, and 15.9% being

3https://www.kaggle.com/uciml/autompg-dataset

978

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Wu, Le, Tiwari, Gulwani, Radhakrishna, Radiček, Soares, Wang, Li and Xie

Table 1: Accuracy of NL2Viz. The columns em, fe, fd, and nm

denote exact match, functionally equivalent, functionally

different, and no match, respectively.

Category # Correct Incorrect
em fe Tot. fd nm Tot.

Total 295 173 47 220 37 38 75
Homework 31 19 2 21 5 5 10
Auto-MPG Total 264 154 45 199 32 33 65
Auto-MPG - Easy 119 86 16 102 15 2 17
Auto-MPG - Hard 145 68 29 97 17 31 48

Table 2: Accuracy of the baseline approach (NL2Viz without

context and data understanding).

Category # Correct Incorrect
em fe Tot. fd nm Tot.

Total 295 84 21 105 50 140 190
Homework 31 7 2 9 12 10 22
Auto-MPG Total 264 77 19 96 38 130 168
Auto-MPG - Easy 119 77 16 93 21 5 26
Auto-MPG - Hard 145 0 3 3 17 125 142

functionally equivalent). Of the remaining, 12.5% of the cases are
functionally different.

To further analyze the results, we separate the Auto-MPG in-
stances into two categories, hard and easy, based on whether the
plot requires or not additional data preprocessing steps and ad-
ditional parameters not in the input or dataframe. The idea to
differentiate hard and easy plots is due to the observation that in an
easy scenario, the synthesizer should be able to generate a correct
program using only or mostly must-use constraints; while in a hard
scenario, some information of the plot is often missing or vague
in the NL instruction such that the synthesizer requires enough
may-use constraints to generate a correct program. Among the 18
plots, 8 are categorized as easy and 10 as hard. As shown in Table 1,
the system achieves an accuracy of 85.7% and 70% in the easy and
hard cases, respectively. We discuss the failure cases below.

Analysis of Failure Cases. For the Homework category, the main
reason for failures is missing context – the homework assignments
often contain relevant data in previous discussions or problems. In
the two “no match” cases in the “Auto-MPG - Easy” category, the
semantic parser interprets the parameter representing point sizes
as a group by column. For example, for the input “scatter plot of mpg

and acceleration with point size by cylinder”, the semantic parser
interprets cylinder as a group by column instead of a parameter
for the point size. Most “functionally different” cases in both the
“Auto-MPG - Easy” and “Auto-MPG - Hard” categories involve
bin sizes in histograms. For example, for the input “plot a bar graph
that shows me the number of rows with MPG in range 5 to 10, 10 to

15, and so on", NL2Viz is unable to identify the bin sizes due to the
limitations of its DSL grammar.

For the “Auto-MPG - Hard” category, the limitation of NL2Viz
is in the parsing of the filtering or group by clauses. For exam-
ple, the input fragment yearly or annual represents the “group by

model_year” clause in the “Auto-MPG” dataset. However, NL2Viz
is unable to do these translations in a fraction of the cases. As
mentioned in Section 3.1, we choose to use a context free gram-
mar to represent the NL instruction because the grammar would
cover most cases. However, for words such as yearly or annual
that are functionally equivalent to the column name model_year,
we are unable to enumerate and cover all equivalent words in the
grammar. Recent developments in the field of detecting equiva-
lence via extrapolation [21] present a potential solution, and we
believe that these scenarios can be correctly handled with better
NL understanding.

Effect of Context and Data Understanding. We also run a baseline
synthesizer whose results are shown in Table 2. The baseline uses
only NL information (extracted using the semantic parser described
in Section 3.1), and does not use the data/program context. As
expected, the code generated by the baseline approach in certain
cases is incomplete. For example, in the instruction “plot scatter

average mpg by cylinder”, there is an inherent group operator since
it is required to calculate the aggregation function average for the
“mpg” column. However, the “cylinder” column cannot function
as both the column for the x-axis and group column, resulting in
a missing group operation. Tables 1 and 2 show that using the
data/program context substantially improves the results, especially
in the “Auto-MPG - Hard” category. In particular, no cases of the
“Auto-MPG - Hard” category can get exact match results because
all the plots in this category require information from the data
context.

Performance. We measure the performance of NL2Viz by the
execution time. It turns out that NL2Viz is quite efficient, and we
set a timeout bound to be 30 seconds. The average execution time
for an instruction is around 3 seconds, and 95% of the instructions
finish within 5 seconds. There are 3 instructions causing timeout,
all of which are in the “Auto-MPG - Hard” category. They all have
a length of more than 150 characters with the longest one being 340
characters, resulting in timeout in the phase of semantic parsing.

4.2 RQ2 Results: Plot-and-Change Accuracy

This section shows the evaluation results of NL2Viz with respect to
RQ2, i.e., in the setting where NL2Viz is provided with an already
existing plot and a change instruction. For example, the initial plot
could have been generated given the instruction “scatter plot of mpg

and acceleration grouped by cylinders” and the change instruction
can be “change to average mpg and accleration”. For the initial in-
struction, an initial plot is generated such that each car is a single
point colored based on the number of cylinders. For the change
instruction, a plot should be generated such that each point corre-
sponds to a group of cars with the same number of cylinders, with
the coordinates given by average mpg and average acceleration.

Table 3 shows the information about the 40 tests. We separate the
plots into the “Easy” and “Hard” types based on whether contextual
information is needed to generate a plot. Further, we group the
change instructions into the Replace and Add categories: Replace
change instructions replace the value of some plot aspect with
another, while Add change instructions add a new aspect to a plot.

979

NL2Viz: Natural Language to Visualization via Constrained Syntax-Guided Synthesis ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

Table 3: Results of change experiments. The columns Avg. InitLen., Avg. ChgLen., Avg. FinLen., and Avg. Red. stand for Average

Initial Instruction Length, Average Change Instruction Length, Average Final Instruction Length, and Average Instruction

Length Reduction in Correct cases, respectively. Instruction length is in the number of characters.

Plot Type Change Category Total Correct Avg. InitLen. Avg. ChgLen. Avg. FinLen. Avg. Red.

Easy Add 5 5 37.2 13.6 46.4 68%
Replace 5 3 36.4 16.4 38.2 57%

Hard
Add 10 8 55.6 22.5 73.0 64%

Replace 10 5 54.3 29.1 61.7 54%
Add+Replace 10 4 57.2 37.0 69.9 49%

We do not consider the Delete category: in most practical scenarios,
users start with a simple plot and add more complexity over time.

Accuracy Results. Table 3 shows the accuracy results of NL2Viz
on the change experiments. We find that NL2Viz performs well
in general, achieving 67.5% accuracy (25 correct out of 40 total).
NL2Viz is more effective in processing Add instructions than Re-

place instructions. Replace instructions change an existing, correct
aspect in the plot. Hence, NL2Viz needs to both locate the aspect
to be replaced and parse the new aspect correctly. While in an Add

instruction, because the new aspect usually does not interfere with
existing rules, NL2Viz just needs to add the new aspect.

Instruction Length Results. We also evaluate how much instruc-
tion length is saved by the change instruction. For each initial
instruction and change instruction pair, we also generate a com-

bined instruction from which NL2Viz can produce the intended
plot in one attempt. In terms of absolute numbers, we can see that
the average length of a Replace instruction is higher than that of an
Add instruction, due to the need of specifying both the component
to replace and the replacement. On the other hand, the average
length of a combined instruction is higher than that of an Add in-
struction, due to the additional information added by the combined

instruction.
We also measure the average instruction-length reduction, given

by 1 − 𝐿𝑒𝑛𝑔𝑡ℎ (𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛)
𝐿𝑒𝑛𝑔𝑡ℎ (𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛) . We evaluate the setting where

the user has already used the initial instruction to create a plot, and
later wants to update it, either by using the change instruction or
directly using the combined instruction. We find that in general
we achieve 58% instruction-length reduction via the interaction
enabled by the change instructions. We achieve higher reduction in
the Add change category since the combined instruction text has to
specify both the old and new aspects, while the change instruction
has to specify only the new aspects.

Analysis of Failure Cases. We note that the Add change category
has a higher accuracy than the Replace change category because the
aspect that the user wants to replace is often implicit in the change
instruction. In the example in Section 2, the change instruction
is “change to Asia”. In this instruction, by the help of data context,
it is easy to infer that the aspect needs to be replaced is “Europe”.
However, in some cases, it is unclear whether the instruction is
to change an existing aspect or to add a new aspect. For example,
when the initial instruction is “plot scatter of mpg versus model

year”, which would cause to produce a scatter plot with each point
representing a car and its mpg (y-axis) versus model year (x-axis).
The change instruction is “change to average mpg for all cylinders”.

Table 4: Comparison with the state of the art.

DeepEye NL4DV SEQ2VIS NL2VIZ
Easy 9.5% 11.5% 67.4% 83.9%

Medium 15.4% 22.5% 69.6% 74.2%
Hard 1.4% 7.6% 60.5% 41.5%

Extra Hard 6.1% 4.1% 61.8% 13.3%
Overall 9.1% 13.7% 65.7% 58.8%

The idea of this change is to produce a final instruction that is “plot
scatter of average mpg for all cylinders". The final plot is a scatter
plot where x-axis represents cylinder number and y-axis represents
average mpg. In this case, the “for all cylinders” in the instruction
text represents a Replace change. However, it can also be the case
that the final instruction is “plot scatter of average mpg versus model

year group by cylinders”. In this case, the final plot is a scatter plot
where x-axis represents model year and y-axis represents average
mpg with different cylinders, having points with different colors
on the plot.

4.3 RQ3 Results: Comparison with the State of

the Art

Luo et al. [20] report the accuracy of their neural-translation-model-
based tool SEQ2VIS along with two other rule-based and semantic-
parser-based tools DeepEye [19] and NL4DV [23] on a test set
containing 3990 (NL, VIS) pairs from their NL2VIS dataset.

Due to the different target libraries of NL2Viz and the NL2VIS
dataset (Matplotlib vs. Vega-Lite), although it is possible to translate
one to another, we find it not reasonable to directly compare the
visualization programs as different programs may lead to the same,
or the essentially same plots. We also notice that in Luo et al.’s
paper [20], they measure the “tree matching accuracy” to compare
their SEQ2VIS tool with other tools. The “tree matching accuracy”
measures whether the flow of data transformation for each data
column and its corresponding data shown on the axis are correct.
Therefore, for each test case, we need to manually examine whether
our synthesized visualization program is equivalent to their pro-
gram, which is the labeled output. We are able to manually verify
the 500 (NL, VIS) pairs sampled from their 3990-pairs test set. We
treat our output to be correct if it is an Exact Match or Functionally
Equivalent as defined in Section 4.1.

Table 4 shows NL2Viz’s accuracy against other state-of-the-art
tools on the NL2VIS dataset. Out of the 500 sampled pairs, there are
32 visualizations that are currently not supported by NL2Viz. First,

980

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Wu, Le, Tiwari, Gulwani, Radhakrishna, Radiček, Soares, Wang, Li and Xie

2 2.5 3 3.5 4 4.5 5

Question 4

Question 3

Question 2

Question 1

Tasks succeeded

Figure 8: The distribution of succeeded tasks and scores

among 6 participants.

we can see that NL2Viz outperforms the other two rule-based tools
by a large margin in all difficulty groups. The reason is that our tool
supports the synthesis of data preprocessing steps while the other
two tools do not have support or have only very limited support.
When compared to SEQ2VIS (a neural-translation-model-based ap-
proach), we find that in the “Easy” and “Medium” categories, our
NL2Viz tool outperforms SEQ2VIS. A possible reason is that the
“Easy” cases here are similar to the “Easy” cases in Section 4.1, and
the “Medium” cases here are similar to the “Hard” cases, and for
both categories we see similar accuracy as that in Section 4.1, being
83.9% vs. 85.1% and 74.2% vs. 70%. In these two categories, our NL
grammar and Visualization DSL can cover the target visualization
program. Therefore, we are able to achieve higher accuracy than a
learning-based approach by using constrained syntax-guided syn-
thesis. However, in the “Hard” and “Extra Hard” cases, the accuracy
of NL2Viz declines drastically. The reason is that the NL instruc-
tions in these two categories are usually generated from nested
SQL queries, especially for the “Extra Hard” category. Our grammar
or DSL does not cover such data processing steps; therefore, it is
impossible for NL2Viz to produce correct visualization.

Overall, NL2Viz achieves lower but comparable accuracy com-
pared with the SEQ2VIS tool, while being able to achieve higher
accuracy in “Easy” to “Medium” cases without the need for training
data. NL2Viz also outperforms existing rule-based approaches by a
large margin by leveraging the data/program context.

4.4 RQ4 Results: Usability and Interaction

To evaluate the usability of NL2Viz, we ask volunteers who have
an average of 7.4 years of experience in data science to complete 5
plotting tasks using NL2Viz. Among the 5 plots in the tasks, there
are 2 histogram/bar charts, 1 scatter plot, and 2 line plots. Each
participant is first asked to answer multiple background questions,
and is then given an explanation of the “Auto-MPG” dataset. Next,
we ask the participants to complete the 5 tasks in order until they are
satisfied or are not willing to try NL2Viz any more. Each participant
is given 20 minutes to finish all 5 tasks. Then, the participants are
asked to rate NL2Viz on a scale of 1 (least positive) to 5 (most
positive) on the following aspects:

• Question 1. Do you find NL2Viz easy to use?
• Question 2. Do you find it easy to interpret the code gener-
ated by NL2Viz and change for future usage?

• Question 3. Do you want to use NL2Viz before you do
visualization in future?
• Question 4. Is NL2Viz able to understand your input?

On average, the participants successfully complete 4.13 out of 5
tasks. Figure 8 shows that the participants are generally in favor
of NL2Viz, with an average of 4 out of 5 for all questions. The
high variance for question 3 is due to that participants with high
expertise who are very familiar with writing visualization code
strongly do not prefer to use NL2Viz.

Suggestions from the participants highlight two major issues.
Three participants (S2, S4, and S6) suggest that NL2Viz should have
a built-in feature of “highlighting” to show which part of their natu-
ral language corresponds to which part of the generated code. This
feature would help users change their input when NL2Viz misin-
terprets their intention. Another suggestion is to modify NL2Viz
to produce multiple candidate plots for the same input (S1, S2, and
S3). It is fairly straightforward to modify our semantic parser and
synthesizer to produce multiple candidates, and we intend to make
this modification. Other suggestions include allowing for click se-
lecting columns as an input modality (S3), displaying a confidence
score for the generated plot (S6), and a separate cleaning step before
visualization (S5).

5 RELATEDWORK

Natural Language to Visualization. The idea of using natural lan-
guage (NL) as a query interface for visualization is getting popular
with the development in NL2Code.

Tong et al. [9] present DataTone, a mixed-initiative approach
to address the ambiguity problem in NL interfaces for visualiza-
tion. Unfortunately, because DataTone is not publicly available,
we could not perform a direct comparison between DataTone and
NL2Viz. Zhang et al. [7] propose Text-to-Viz, whose usage sce-
nario is quite different from ours. Text-to-Viz is a visualization
recommendation tool that focuses on data exploration. It does not
support precise NL instructions to a specific visualization. Instead,
the user’s input works as a guide to explore charting options on
certain columns or combination of columns. We find it not fair to
compare Text-to-Viz’s accuracy on our dataset as it is not designed
to produce visualization with the NL instruction provided. Similarly,
Sun et al. [32] propose Articulate, a two-step process to generate
visualization from the given NL instruction. First, it parses the NL
instruction into commands using supervised learning. It then gener-
ates visualizations for the commands using heuristics. Articulate
also focuses on data exploration instead of synthesizing precise
visualization according to the given NL instruction.

Narechania et al. [23] propose NL4DV, which has similar func-
tionalities as NL2Viz. It is also integrated into the Jupyter Note-
book environment while producing the results in the Vega-Lite
format [28]. However, NL4DV relies on only the NL instruction to
generate the visualization. It checks the data only to identify the
database entities in the NL instruction without leveraging other
contextual information from the data/program context. Similarly,
it also lacks the ability to create the necessary data preprocessing
steps. Luo et al. [20] publish a public dataset named NL2VIS consist-
ing of 25,750 (NL, VIS) pairs. They propose a NL2SQL-to-NL2VIS
model to translate the (NL, SQL) pairs in the popular Spider [38]

981

NL2Viz: Natural Language to Visualization via Constrained Syntax-Guided Synthesis ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

dataset to the (NL, VIS) pairs. Luo et al. [20] also propose a learning-
based approach named SEQ2VIS based on the SEQ2SEQ model [33]
used in NL2SQL tasks. They evaluate their approach on the dataset
by comparing it with two other approaches namely NL4DV [23]
and DeepEye [19], which is a keyword-based approach previously
proposed by them too. They find their approach largely outper-
forms the other two approaches. However, since the Spider dataset
is an NL2SQL dataset. Their approach focuses only on how the
output is calculated using the data transformations defined in the
SQL query. The NL instructions in the NL2VIS dataset completely
ignore important options of visualizations such as formats and leg-
ends. Despite this dataset’s limitations, we also evaluate NL2Viz
on this dataset in Section 4.3.

It is worth noting that unlike NL2Viz, the preceding related
approaches do not support further refinement on the result, limiting
the ability of users to further modify or reuse the results later in
other tasks.

Rong et al. [27] propose CodeMend, which uses neural net-
work to infer the correspondence between the given NL query and
functions/parameters in the target visualization program. Similarly,
Setlur et al. [29] propose Evizas, which allows users to refine ex-
isting visualizations by asking questions or direct manipulation.
However, both approaches lack the ability to generate complete
visualization code and also cannot generate the necessary data pre-
processing steps. These approaches can be seen as complementary
with NL2Viz: these approaches can be combined with the interac-
tive technique in NL2Viz to provide better user experience after
the first-shot query.
Visualization Recommendation. Visualization recommendation
focuses on producing the recommended visualization encoding
based on design domain knowledge [35].

Dominik et al. [22] present Draco, which represents a visualiza-
tion as a set of logical facts and thus converts visualization design
patterns into a set of constraints. It then uses constraint solving to
recommend the best visualization scheme based on the collection
of domain knowledge. Ding et al. [8] present QuickInsights to
discover interesting patterns from multi-dimensional datasets by
formalizing the notion of interesting patterns (insights) and present
them as visualizations. Siddiqui et al. [30, 31] propose an interactive
visual analytic platform named Zenvisage to find desired visual
patterns from large datasets. It extends Vispedia proposed by Chan
et al. [6], which performs only a keyword query of collected graphs.

While the output of NL2Viz is also a visualization, the focus is
different. Visualization recommendation tries to follow visualiza-
tion design patterns. NL2Viz focuses on eliminating the ambiguity
in NL instructions by bringing insights from data. NL2Viz is also
extensible and can be integrated with existing visualization recom-
mendation approaches.
Syntax Guided Synthesis. The constrained syntax-guided synthe-
sis problem is an extension of the syntax-guided synthesis (SyGuS)
problem first introduced by Alur el al. [1]. Our constrained Sy-
GuS problem asks for a program that is not only generated by the
given grammar, but also uses specific rules and non-terminals of
the grammar. Successful solution strategies for SyGuS are based on
bottom-up enumeration [2, 3, 34], model-based quantifier instan-
tiation [26], and top-down search over the grammar [17]. Hu et
al. [11] consider QSyGuS, a variant of the SyGuS problem where

a cost model given by a weighted tree automaton assigns costs to
programs, and the task is to generate the minimal cost program
that satisfies the semantic constraint. The solution used by Hu et
al. is however infeasible in our setting due to the the presence of
derivation constraints.

6 CONCLUSION

In this paper, we have presented a novel NL2Visualization ap-
proach and its supporting tool named NL2Viz for automatically
synthesizing visualization programs from a user’s NL instruction.
The key idea underlying our approach is to leverage not only the NL
instruction, but also the other contextual information (namely data
context and program context) and then convert the different kinds
of specifications provided by the user into symbolic constraints,
which can be used to generate the desired visualization programs
using syntax-guided program synthesis. Moreover, NL2Viz includes
an interactive interface for allowing the user to further refine and
reuse the resulting visualization. We evaluate NL2Viz on a real-
world visualization benchmark and a public dataset to show the
effectiveness of NL2Viz. We also perform a user study involving 6
data scientist professionals to demonstrate the usability of NL2Viz,
the readability of the generated code, and NL2Viz’s effectiveness
in helping users generate desired visualizations effectively and
efficiently.

ACKNOWLEDGMENTS

Tao Xie is also affiliated with Key Laboratory of High Confidence
Software Technologies (Peking University), Ministry of Education,
China, and is the corresponding author. This work was partially
supported by National Natural Science Foundation of China under
Grant No. 62161146003.

REFERENCES

[1] Rajeev Alur, Rastislav Bodík, Eric Dallal, Dana Fisman, Pranav Garg, Garvit
Juniwal, Hadas Kress-Gazit, P. Madhusudan, Milo M. K. Martin, Mukund
Raghothaman, Shambwaditya Saha, Sanjit A. Seshia, Rishabh Singh, Armando
Solar-Lezama, Emina Torlak, and Abhishek Udupa. 2015. Syntax-guided synthesis.
https://doi.org/10.3233/978-1-61499-495-4-1

[2] Rajeev Alur, Pavol Cerný, and Arjun Radhakrishna. 2015. Synthesis through
unification. In Proceedings the 27th International Conference on Computer Aided

Verification (San Francisco, CA, USA) (CAV ’15). Springer, 163–179. https://doi.
org/10.1007/978-3-319-21668-3_10

[3] Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. 2017. Scaling enu-
merative program synthesis via divide and conquer. In Proceedings of the 23rd

International Conference on Tools and Algorithms for the Construction and Analysis

of Systems (Uppsala, Sweden) (TACAS ’17). 319–336. https://doi.org/10.1007/978-
3-662-54577-5_18

[4] Yoav Artzi. 2016. Cornell SPF: Cornell semantic parsing framework. https:
//doi.org/10.48550/arXiv.1311.3011 arXiv:arXiv:1311.3011

[5] Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. 2013. Semantic
parsing on Freebase from question-answer pairs. In Proceedings of the 2013 Con-

ference on Empirical Methods in Natural Language Processing (Seattle, WA, USA)
(EMNLP ’13). ACL, 1533–1544. https://aclanthology.org/D13-1160

[6] Bryan Chan, Justin Talbot, Leslie Wu, Nathan Sakunkoo, Mike Cammarano, and
Pat Hanrahan. 2009. Vispedia: On-demand data integration for interactive visu-
alization and exploration. In Proceedings of the 2009 ACM SIGMOD International

Conference on Management of Data (Providence, Rhode Island, USA) (SIGMOD

’09). ACM, 1139–1142. https://doi.org/10.1145/1559845.1560003
[7] Weiwei Cui, Xiaoyu Zhang, Yun Wang, He Huang, Bei Chen, Lei Fang, Haidong

Zhang, Jian-Guan Lou, and Dongmei Zhang. 2019. Text-to-Viz: Automatic gen-
eration of infographics from proportion-related natural language statements.
IEEE Transactions on Visualization and Computer Graphics 26, 1 (2019), 906–916.
https://doi.org/10.1109/tvcg.2019.2934785

[8] Rui Ding, Shi Han, Yong Xu, Haidong Zhang, and Dongmei Zhang. 2019. Quick-
Insights: Quick and automatic discovery of insights from multi-dimensional

982

https://doi.org/10.3233/978-1-61499-495-4-1
https://doi.org/10.1007/978-3-319-21668-3_10
https://doi.org/10.1007/978-3-319-21668-3_10
https://doi.org/10.1007/978-3-662-54577-5_18
https://doi.org/10.1007/978-3-662-54577-5_18
https://doi.org/10.48550/arXiv.1311.3011
https://doi.org/10.48550/arXiv.1311.3011
https://arxiv.org/abs/arXiv:1311.3011
https://aclanthology.org/D13-1160
https://doi.org/10.1145/1559845.1560003
https://doi.org/10.1109/tvcg.2019.2934785

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Wu, Le, Tiwari, Gulwani, Radhakrishna, Radiček, Soares, Wang, Li and Xie

data. In Proceedings of the 2019 ACM SIGMOD International Conference on

Management of Data (Amsterdam, Netherlands) (SIGMOD ’19). ACM, 317–332.
https://doi.org/10.1145/3299869.3314037

[9] Tong Gao, Mira Dontcheva, Eytan Adar, Zhicheng Liu, and Karrie G. Karahalios.
2015. DataTone: Managing ambiguity in natural language interfaces for data
visualization. In Proceedings of the 28th Annual ACM Symposium on User Interface

Software & Technology (Charlotte, NC, USA) (UIST ’15). ACM, 489–500. https:
//doi.org/10.1145/2807442.2807478

[10] Lars Grammel, Melanie Tory, and Margaret-Anne Storey. 2010. How information
visualization novices construct visualizations. IEEE Transactions on Visualization

and Computer Graphics 16, 6 (2010), 943–952. https://doi.org/10.1109/TVCG.2010.
164

[11] Qinheping Hu and Loris D’Antoni. 2018. Syntax-guided synthesis with quan-
titative syntactic objectives. In Proceedings the 30th International Conference

on Computer Aided Verification (Oxford, UK) (CAV ’15). Springer, 386–403.
https://doi.org/10.1007/978-3-319-96145-3_21

[12] IPython. 2020. IPython magic commands. https://ipython.readthedocs.io/en/
stable/interactive/magics.html. Accessed: 2020-05-15.

[13] Jupyter. 2020. Project Jupyter. https://jupyter.org/. Accessed: 2020-05-15.
[14] Kaggle. 2020. Kaggle competitions. https://www.kaggle.com/competitions. Ac-

cessed: 2020-05-15.
[15] Tadao Kasami. 1966. An efficient recognition and syntax-analysis algorithm for

context-free languages. Coordinated Science Laboratory Report no. R-257 (1966).
[16] Hyeonji Kim, Byeong-Hoon So, Wook-Shin Han, and Hongrae Lee. 2020. Natural

language to SQL: Where are we today? Proceedings of the Very Large Data

Base Endowment. 13, 10 (jun 2020), 1737–1750. https://doi.org/10.14778/3401960.
3401970

[17] Woosuk Lee, Kihong Heo, Rajeev Alur, and Mayur Naik. 2018. Accelerating
search-based program synthesis using learned probabilistic models. In Proceedings
of the 39th ACM SIGPLAN Conference on Programming Language Design and

Implementation (Philadelphia, PA, USA) (PLDI ’18). ACM, 436–449. https://doi.
org/10.1145/3192366.3192410

[18] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser,
Rémi Leblond, Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago,
et al. 2022. Competition-level code generation with alphacode. arXiv preprint
arXiv:2203.07814 (2022). https://doi.org/10.48550/arXiv.2203.07814

[19] Yuyu Luo, Xuedi Qin, Nan Tang, Guoliang Li, and Xinran Wang. 2018. DeepEye:
Creating good data visualizations by keyword search. In Proceedings of the 2018

ACM SIGMOD International Conference on Management of Data (Houston, TX,
USA) (SIGMOD ’18). ACM, 1733–1736. https://doi.org/10.1145/3183713.3193545

[20] Yuyu Luo, Nan Tang, Guoliang Li, Chengliang Chai, Wenbo Li, and Xuedi Qin.
2021. Synthesizing natural language to visualization (NL2VIS) benchmarks from
NL2SQL benchmarks. In Proceedings of the 2021 ACM SIGMOD International

Conference on Management of Data (Virtual Event, China) (SIGMOD ’21). ACM,
1235–1247. https://doi.org/10.1145/3448016.3457261

[21] Jeff Mitchell, Pontus Stenetorp, Pasquale Minervini, and Sebastian Riedel. 2018.
Extrapolation in NLP. In Proceedings of the Workshop on Generalization in the

Age of Deep Learning (New Orleans, LA, USA). ACL, 28–33. https://doi.org/10.
18653/v1/W18-1005

[22] Dominik Moritz, Chenglong Wang, Greg L Nelson, Halden Lin, Adam M Smith,
Bill Howe, and Jeffrey Heer. 2018. Formalizing visualization design knowledge
as constraints: Actionable and extensible models in Draco. IEEE Transactions on

Visualization and Computer Graphics 25, 1 (2018), 438–448. https://doi.org/10.
1109/TVCG.2018.2865240

[23] Arpit Narechania, Arjun Srinivasan, and John Stasko. 2020. NL4DV: A toolkit for
generating analytic specifications for data visualization from natural language
queries. IEEE Transactions on Visualization and Computer Graphics 27, 2 (2020),
369–379. https://doi.org/10.1109/tvcg.2020.3030378

[24] Pandas. 2019. Pandas: Python data analysis library. https://pandas.pydata.org/.
Accessed: 2019-11-20.

[25] João Felipe Pimentel, Leonardo Murta, Vanessa Braganholo, and Juliana Freire.
2019. A large-scale study about quality and reproducibility of Jupyter Notebooks.
In Proceedings of the 16th International Conference on Mining Software Repositories

(MSR ’19). IEEE Press, 507–517. https://doi.org/10.1109/MSR.2019.00077

[26] Andrew Reynolds, Morgan Deters, Viktor Kuncak, Cesare Tinelli, and Clark W.
Barrett. 2015. Counterexample-guided quantifier instantiation for synthesis
in SMT. In Proceedings the 27th International Conference on Computer Aided

Verification (San Francisco, CA, USA) (CAV ’15). Springer, 198–216. https://doi.
org/10.1007/978-3-319-21668-3_12

[27] Xin Rong, Shiyan Yan, Stephen Oney, Mira Dontcheva, and Eytan Adar. 2016.
CodeMend: Assisting interactive programming with bimodal embedding. In
Proceedings of the 29th Annual Symposium on User Interface Software and Technol-

ogy (Tokyo, Japan) (UIST ’16). ACM, 247–258. https://doi.org/10.1145/2984511.
2984544

[28] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jeffrey
Heer. 2016. Vega-lite: A grammar of interactive graphics. IEEE Transac-

tions on Visualization and Computer Graphics 23, 1 (2016), 341–350. https:
//doi.org/10.1109/tvcg.2016.2599030

[29] Vidya Setlur, Sarah E. Battersby, Melanie Tory, Rich Gossweiler, and Angel X.
Chang. 2016. Eviza: A natural language interface for visual analysis. In Proceedings
of the 29th Annual Symposium on User Interface Software and Technology (Tokyo,
Japan) (UIST ’16). ACM, 365–377. https://doi.org/10.1145/2984511.2984588

[30] Tarique Siddiqui, Albert Kim, John Lee, Karrie Karahalios, and Aditya
Parameswaran. 2016. Effortless data exploration with Zenvisage: An expressive
and interactive visual analytics system. Proceedings of the Very Large Data Base

Endowment. 10, 4 (nov 2016), 457–468. https://doi.org/10.14778/3025111.3025126
[31] Tarique Siddiqui, John Lee, Albert Kim, Edward Xue, Xiaofo Yu, Sean Zou,

Lijin Guo, Changfeng Liu, Chaoran Wang, Karrie Karahalios, and Aditya G.
Parameswaran. 2017. Fast-forwarding to desired visualizations with Zenvis-
age. In Online Proceedings of the 8th Biennial Conference on Innovative Data

Systems Research, 2017 (Chaminade, CA, USA) (CIDR ’17). www.cidrdb.org.
http://cidrdb.org/cidr2017/papers/p43-siddiqui-cidr17.pdf

[32] Yiwen Sun, Jason Leigh, Andrew Johnson, and Sangyoon Lee. 2010. Articulate:
A semi-automated model for translating natural language queries into meaning-
ful visualizations. In Proceedings of the 10th International Conference on Smart

Graphics (ICSG ’10). Springer-Verlag, 184–195. https://doi.org/10.1007/978-3-
642-13544-6_18

[33] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to sequence learning
with neural networks. In Proceedings of the 27th International Conference on Neural
Information Processing Systems - Volume 2 (Montreal, Canada) (NIPS ’14). MIT
Press, 3104–3112. https://doi.org/10.5555/2969033.2969173

[34] Abhishek Udupa, Arun Raghavan, Jyotirmoy V. Deshmukh, Sela Mador-Haim,
Milo M.K. Martin, and Rajeev Alur. 2013. TRANSIT: Specifying protocols with
concolic snippets. In Proceedings of the 34th ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation (Seattle, Washington, USA) (PLDI
’13). ACM, 287–296. https://doi.org/10.1145/2491956.2462174

[35] Kanit Wongsuphasawat, Dominik Moritz, Anushka Anand, Jock Mackinlay, Bill
Howe, and Jeffrey Heer. 2016. Towards a general-purpose query language for
visualization recommendation. In Proceedings of the Workshop on Human-In-the-

Loop Data Analytics (San Francisco, California) (HILDA ’16). ACM, Article 4,
6 pages. https://doi.org/10.1145/2939502.2939506

[36] Frank F. Xu, Zhengbao Jiang, Pengcheng Yin, Bogdan Vasilescu, and Graham
Neubig. 2020. Incorporating external knowledge through pre-training for natural
language to code generation. In Proceedings of the 58th Annual Meeting of the

Association for Computational Linguistics (Virtual Event) (ACL ’20). ACL, 6045–
6052. https://doi.org/10.18653/v1/2020.acl-main.538

[37] Navid Yaghmazadeh, YuepengWang, Isil Dillig, and Thomas Dillig. 2017. SQLizer:
Query synthesis from natural language. Proceedings of the ACM Programming

Language 1, OOPSLA, Article 63 (oct 2017), 26 pages. https://doi.org/10.1145/
3133887

[38] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James
Ma, Irene Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir Radev.
2018. Spider: A large-scale human-labeled dataset for complex and cross-domain
semantic parsing and text-to-SQL task. In Proceedings of the 2018 Conference on

Empirical Methods in Natural Language Processing (Brussels, Belgium) (EMNLP

’18). ACL, 3911–3921. https://doi.org/10.18653/v1/d18-1425
[39] Victor Zhong, Caiming Xiong, and Richard Socher. 2017. Seq2SQL: Generating

structured queries from natural language using reinforcement learning. arXiv
preprint arXiv:1709.00103 (2017). https://doi.org/10.48550/arXiv.1709.00103

983

https://doi.org/10.1145/3299869.3314037
https://doi.org/10.1145/2807442.2807478
https://doi.org/10.1145/2807442.2807478
https://doi.org/10.1109/TVCG.2010.164
https://doi.org/10.1109/TVCG.2010.164
https://doi.org/10.1007/978-3-319-96145-3_21
https://ipython.readthedocs.io/en/stable/interactive/magics.html
https://ipython.readthedocs.io/en/stable/interactive/magics.html
https://jupyter.org/
https://www.kaggle.com/competitions
https://doi.org/10.14778/3401960.3401970
https://doi.org/10.14778/3401960.3401970
https://doi.org/10.1145/3192366.3192410
https://doi.org/10.1145/3192366.3192410
https://doi.org/10.48550/arXiv.2203.07814
https://doi.org/10.1145/3183713.3193545
https://doi.org/10.1145/3448016.3457261
https://doi.org/10.18653/v1/W18-1005
https://doi.org/10.18653/v1/W18-1005
https://doi.org/10.1109/TVCG.2018.2865240
https://doi.org/10.1109/TVCG.2018.2865240
https://doi.org/10.1109/tvcg.2020.3030378
https://pandas.pydata.org/
https://doi.org/10.1109/MSR.2019.00077
https://doi.org/10.1007/978-3-319-21668-3_12
https://doi.org/10.1007/978-3-319-21668-3_12
https://doi.org/10.1145/2984511.2984544
https://doi.org/10.1145/2984511.2984544
https://doi.org/10.1109/tvcg.2016.2599030
https://doi.org/10.1109/tvcg.2016.2599030
https://doi.org/10.1145/2984511.2984588
https://doi.org/10.14778/3025111.3025126
http://cidrdb.org/cidr2017/papers/p43-siddiqui-cidr17.pdf
https://doi.org/10.1007/978-3-642-13544-6_18
https://doi.org/10.1007/978-3-642-13544-6_18
https://doi.org/10.5555/2969033.2969173
https://doi.org/10.1145/2491956.2462174
https://doi.org/10.1145/2939502.2939506
https://doi.org/10.18653/v1/2020.acl-main.538
https://doi.org/10.1145/3133887
https://doi.org/10.1145/3133887
https://doi.org/10.18653/v1/d18-1425
https://doi.org/10.48550/arXiv.1709.00103

	Abstract
	1 Introduction
	2 Overview
	3 NL2Viz: Natural Language to Visualization
	3.1 Parsing NL Instruction to Constraints
	3.2 Using Data/Program Context to Construct May-use Constraints
	3.3 Designing Visualization Domain-Specific Language
	3.4 Constrained Syntax-Guided Synthesis
	3.5 Extension to An Interactive System

	4 Evaluation
	4.1 RQ1 Results: One-Shot Accuracy
	4.2 RQ2 Results: Plot-and-Change Accuracy
	4.3 RQ3 Results: Comparison with the State of the Art
	4.4 RQ4 Results: Usability and Interaction

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

