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Figure 1: Three representations of the explored program space during a synthesis iteration with different levels of fidelity

ABSTRACT
Program synthesis, which generates programs based on user-provided
specifications, can be obscure and brittle: users have few ways to
understand and recover from synthesis failures. We propose in-
terpretable program synthesis, a novel approach that unveils the
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synthesis process and enables users to monitor and guide a synthe-
sizer. We designed three representations that explain the underlying
synthesis process with different levels of fidelity. We implemented
an interpretable synthesizer for regular expressions and conducted
a within-subjects study with eighteen participants on three chal-
lenging regex tasks. With interpretable synthesis, participants were
able to reason about synthesis failures and provide strategic feed-
back, achieving a significantly higher success rate compared with a
state-of-the-art synthesizer. In particular, participants with a high
engagement tendency (as measured by NCS-6) preferred a deduc-
tive representation that shows the synthesis process in a search
tree, while participants with a relatively low engagement tendency
preferred an inductive representation that renders representative
samples of programs enumerated during synthesis.
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1 INTRODUCTION
Program synthesis aims to automatically generate programs that
match the user’s intent as expressed in high-level specifications,
e.g., input-output examples, demonstrations. It has the promise of
significantly reducing programming effort and dismantling pro-
gramming barriers for novices and computer end-users. So far,
program synthesis has been investigated in many domains, includ-
ing data extraction and filtering [38, 72], visualization [70], string
transformations [24], and databases [19]. Despite the great progress
in recent years such as FlashFill [24], a lot of work still needs to be
done to adopt program synthesis in real-world applications.

A major barrier to the adoption of program synthesis is the brit-
tleness and opaqueness of the synthesis process [27, 36, 39, 73].
It is well known that program synthesis may generate plausible
programs that are completely wrong due to ambiguity in user spec-
ifications. More severely, program synthesis may even get stuck
and fail to generate anything if a user provides a specification with
conflicts or a specification that is too complex. Unfortunately, most
synthesizers follow a black-box design—they provide no means
for users to reason about synthesis failures, leaving users to guess
about productive ways to change the specification they provided
or just start over. Though this black-box design avoids overloading
users with the underlying synthesis details, in practice, it can cause
unfavorable outcomes: users’ patience and faith in program syn-
thesis are quickly exhausted by recurring synthesis failures and a
lack of means to reason and recover from them.

In contrast to traditional black-box program synthesis, we pro-
pose interpretable program synthesis. We hypothesize that, by un-
veiling the synthesis process, users can build more accurate mental
models about how and why a synthesizer fails and thus provide
strategic feedback to help it overcome synthesis failures. A key
challenge of interpretable program synthesis is that existing syn-
thesis systems are complex. These systems are often equipped with
sophisticated search methods and inductive biases in various forms,
e.g., hand-crafted heuristics [24, 25], distance-based objective func-
tions [16], and prior distributions [17, 60]. Figuring out how exactly
these synthesizers solve a task may even perplex the synthesis
designers themselves. However, program synthesis is essentially
a search process over a hypothetical program space defined by
a domain-specific language (DSL). Thus, instead of explaining to
users how exactly a synthesizer works, i.e., its search algorithm and
inductive biases, we choose to explain what programs have been
tried during synthesis, i.e., the explored program space.

The program space defined by a DSL is enormous; even a small
region of it may contain thousands of programs. For instance, our
regular expression synthesizer can explore more than 20K programs
within 20 seconds. To visualize such a large program space, we
designed three representations with different levels of fidelity and
potential cognitive demand on users. First, a live-updated line chart
renders how many programs have been tried by the synthesizer
over time and how many user-provided examples each of them
satisfies. Since the programs are represented as points in a line
chart, this representation requires low intellectual engagement.
It communicates the number of explored programs, the speed at
which new programs are being tried, and any trends in how many
of the specification components, e.g., user-provided input-output
examples, are being satisfied. Second, program samples that vary
both syntactically and semantically are drawn from the explored
program space and shown to users. Compared with the line chart,
program samples are a more concrete representation of the explored
program space, which is sound, but not complete [35]. Since it
requires users to read programs, it is more cognitively demanding
to engage with. Third, a search tree organizes and visualizes all
explored programs based on how they are derived from the DSL
grammar, i.e., their derivation paths. It provides a holistic view
of the synthesis process while still showing concrete programs
and partial programs in the tree. It also requires high intellectual
engagement as users need to navigate the tree structure and reason
about programs in various states of completeness.

Compared with black-box synthesis, exposing the inner work-
ings of a synthesizer also enables users to provide richer feedback to
guide the synthesis. In case of synthesis failures, users can inspect
partially correct programs explored during synthesis and indicate
which regex operator should never be tried or which subexpression
looks promising. Furthermore, in the search tree, users now can
directly prune the search space by prioritizing or eliminating a
search path, so the synthesizer will not waste time on unproductive
search paths in the next iteration. We implemented these three
representations and adapted an existing interactive synthesizer to
support interpretable synthesis [73].

Information comes at the price of attention. Though unveiling
the synthesis process would help users gain more insights, the
abundance of information presented in interpretable synthesis also
requires more attention to process. This may in turn disincentivize
users from using interpretable synthesis and affect their perfor-
mance in programming tasks.We conducted a within-subjects study
with eighteen students to investigate how users may respond to
interpretable synthesis. When solving challenging programming
tasks, participants using interpretable synthesis achieved a statisti-
cally significant higher success rate comparedwith using traditional
synthesis. When using interpretable synthesis, participants with
either higher engagement tendency (as measured by NCS-6 [44]) or
less expertise expressed a stronger preference towards the highest-
fidelity representation, i.e, the search tree. Yet participants’ engage-
ment tendency had little impact on the task completion rate.

This paper makes the following contributions:

• A novel interpretable program synthesis approach that un-
veils the underlying synthesis process and visualizes the
explored program space with different levels of fidelity
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• An implementation of an interpretable synthesizer for regu-
lar expressions

• A within-subjects study that shows the usefulness and us-
ability of interpretable synthesis

• An in-depth analysis of how users with different levels of
expertise and engagement tendency, as measured by NCS-
6 [44], responded to interpretable synthesis

2 RELATEDWORK
Program synthesis is not a new idea. Back in the 1960s, Waldinger
and Lee presented a program synthesizer called PROW that auto-
matically generated LISP programs based on user-provided specifi-
cations in the form of a predicate calculus [68]. PROW, and many
synthesis techniques that followed [23, 45], require users to provide
a complete, formal specification, which is shown to be as compli-
cated as writing the program itself [27]. Later, programming-by-
example (PBE) or programming-by-demonstration (PBD) systems
were introduced to allow users to demonstrate desired program
behavior in the form of input-output examples or a sequence of
actions [13, 49, 50, 53, 54], as summarized in [14] and [43]. Com-
pared with formal specifications, examples or demonstrations are
much easier for users to provide, significantly reducing the barrier
of making using of synthesis in practice. Since then, progress has
been made to push program synthesis closer to real-world applica-
tions [5, 10, 21, 24, 32, 37, 41, 42, 58, 71]. For example, FlashFill [24],
a PBE system for string transformation, has been seamlessly in-
tegrated into Microsoft Excel and used by millions of Excel users.
From a few examples given by a user, FlashFill can learn a string
transformation procedure such as separating first and last names
from a single column, and then process the rest of the data in a
spreadsheet with the learned transformation procedure.

Despite great progress in recent years, user studies on program
synthesis systems have revealed several major usability issues and
challenges [26, 36, 39, 52, 73]. Myers and McDaniel point out that
one major obstacle of using PBE/PBD systems was the lack of confi-
dence and trust in synthesized programs, since users were not able to
see or understand the synthesized programs [52]. In a large-scale
online study, Lee et al. observed two common usability issues of a
PBE system—ambiguous user examples and synthesis failures [39].
In the former case, participants often failed to provide sufficient
examples that precisely described how a desired program should
behave in different scenarios, leading the synthesizer to generate
plausible programs that only satisfied the given examples but did
not generalize to unseen data as the user intended. In the latter case,
the PBE system failed to generate any programs when participants
did not provide crucial values in their examples or when they did
not properly decompose a complex task to simpler sub-tasks. Zhang
et al. made a similar observation—“even without any user mistakes,
the synthesizer may still fail to return anything to the user, if user
examples are too complicated to generalize or if a task is too hard to
solve within a given time budget” [73].

Many interactive approaches have been proposed to address
lack of confidence on synthesized programs and user intent ambigu-
ity. However, all of them make one fundamental assumption—the
synthesizer must return at least one program that satisfies all user-
provided examples (satisfiable programs henceforth), so users can

inspect and provide feedback on it. These approaches do not change
the all-or-nothing nature of traditional synthesis. When synthesis
fails, users have nothing to inspect or provide feedback on. We
summarize these approaches below.
Techniques to communicate synthesized programs to users.
Two major approaches have been investigated to present programs
in a readable format to target users: translation to a more familiar
language and rendering programs graphically. The first approach
includes SmallStar [28], CoScripter [41], and FlashProg [46], which
translate arcane instructions in a synthesized program to English-
like text descriptions to help computer end-users understand the
program semantics. Wrex [15] translates programs written in a
DSL to a programming language, Python, that its target users, data
scientists, are more familiar with. The second approach includes
Topaz [51], Pursuit [48], and Rousillon [10], which show their syn-
thesized programs in a graphical representation. Specifically, Pur-
suit shows the before and after states of a synthesized program in
a comic-book style, while Rousillon shows synthesized programs
in a block-based visual format like Scratch [61].

End-user debugging techniques [3, 33, 47, 62, 67] allow users to
interactively understand and reason about the functionality of a
synthesized program and discover erroneous behaviors, i.e., bugs.
End-user debugging still requires a satisfiable program to be gener-
ated first and cannot be used to debug a synthesizer or a synthesis
process. Unlike interpretable synthesis, end-user debugging helps
users investigate programs created on their behalf, instead of help-
ing users create the program they want.
Techniques to resolve ambiguity in user-provided examples.
Most PBE and PBD systems allow users to actively provide ad-
ditional examples to disambiguate their intent, which is cogni-
tively demanding. Several approaches automate this process by
generating input examples that distinguish multiple plausible pro-
grams [32, 46, 69]. Peridot [49] used question-and-answer dialogues
to confirm the intent of users during inference. Yet this interaction
design turned out not to be effective, since users tended to simply
answer yes to every question. In a new interaction model by Peleg
et al. [58], users can directly specify which parts of a synthesized
program must be included or excluded in the next synthesis itera-
tion. Following [58], Zhang et al. proposed an alternative approach
that allows users to directly annotate their input examples instead
of synthesized programs to disambiguate user intent [73].
Techniques to handle synthesis failures. So far, little work has
been done to handle synthesis failures. The most related systems
to our approach are Chinle [11] and Bester [57]. Chinle [11] is
a PBD system that supports partial learning—if a problem is too
hard to solve in a single shot, it learns a program with holes in
it and present it users. This idea of partial learning is similar to
partial programs shown in our search tree. The difference is that
in our approach, partial programs are used to organize concrete
programs to visualize an explored search space. Bester [57] relaxes
the synthesis objective of identifying a program that satisfies all
user-provided examples to identify a program that satisfies the most
number of examples, called best-effort programs. Unlike Bester, we
propose a tree representation that visualizes the explored program
space more completely and faithfully than just rendering best-effort
program samples only.
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To our best knowledge, explaining the synthesis process to users
has not been investigated in the literature. The key of our approach
is to trace and visualize the massive amount of programs enu-
merated during synthesis, so users can directly see the explored
program space and understand what has and has not been tried
by the synthesizer. This is related to program execution tracing
and program visualization, both of which have been well studied
in domains such as time-travel debugging [33, 59], visual debug-
ging [30], and code example visualization [22]. However, none of
these techniques have been applied to interpret the synthesis pro-
cess. A main challenge is that the number of programs enumerated
during synthesis, even within a short period of time, can be enor-
mous. For instance, our regex synthesizer can explore more than
20K programs in 20 seconds. FlashProg [46] and Scout [65] have
explored how to visualize many alternative programs in a program
space, but not at the scale of thousands of programs. Furthermore,
both of them still require a synthesizer to generate programs that
satisfy a user specification in the first place. Therefore, they are
not designed to handle synthesis failures nor trace partially correct
programs that have been generated and tested during synthesis.

3 USAGE SCENARIO
This section illustrates interpretable synthesis based on a realistic
task from Stack Overflow [1]. Suppose Alex is a data scientist and
she wants to extract strings with comma-separated numbers from a
large text file. The text data is noisy, with some invalid values such
as “,12”, “12,”, and “ab13,14”. She needs to write a regular expression
to only match valid comma-separated numbers such as “1,23,5”.
Alex has only used regexes a couple of times before, so she decides
to use a regex synthesizer instead.

Figure 2: Alex enters some positive and negative examples

Alex enters several input examples that should be accepted or
rejected by the desired regex, as shown in Figure 2. Within a blink,
the synthesizer finds five regexes (Figure 3a) that satisfy all her
examples. However, Alex quickly realizes that none of the synthe-
sized solutions are correct. Since all the positive examples she gave
contain the two digits, 8 and 9, the synthesized solutions all try to
match one of these two digits, overfitting her examples.

Alex adds several counterexamples, i.e., positive examples that
do not contain 8 or 9, and starts synthesis again. This time, the
synthesizer seems puzzled by her counterexamples. Alex stares at

a live-updated line chart (Figure 1a), which shows the number of
regex candidates the synthesizer has tried so far and the number
of examples each regex candidate satisfies. The overall trend has
been oscillating up and down for a while. After exploring over 6612
regex candidates in 20 seconds, the synthesizer prompts Alex that
it has not found any regexes that satisfy all of her examples and
asks whether she wants it to continue to synthesize. While being
impressed that the synthesizer has tried so many candidates in
the back-end, Alex suspects the synthesizer may have wasted a
lot of time in some unproductive directions. Therefore, instead of
giving more counterexamples, she decides to find out what kinds of
programs the synthesizer has tried. Alex clicks on the sample view
(Figure 1b). The sample view shows some partially correct programs
that satisfy the most number of examples in the explored program
space. Given that the synthesizer did not return any regexes sat-
isfying all the examples this time, Alex finds it helpful to at least
see some concrete regexes that the synthesizer has tried. When
hovering her mouse on each regex, her examples are highlighted
in red or green to indicate which examples are passed or failed
respectively (Figure 5b). Alex notices that some sampled regexes
can only match numbers in her examples but not commas, while
some can match both numbers and commas but cannot reject some
corner cases she included in her examples. Though not ideal, these
samples give Alex some hints, e.g., the regex must enforce that
commas appear after some numbers but not at the end of the string.

These samples only give Alex a fragmented view of what kinds
of programs have been tried by the synthesizer. Though helpful,
Alex is eager to know more about the explored program space and
figure out why the synthesizer got stuck. So she clicks on the Search
Tree tab (Figure 1c). This tree view shows all the paths the synthe-
sizer has explored. Each tree node is labeled with a partial regex
with some question marks in it. The question mark represents a
program hole to be filled in the following search steps. For exam-
ple, or(?,?) represents regexes that starts with the operator or.
By expanding the node of or(?,?), Alex sees some regexes that
are derived from or(?,?), such as or(<,>,?), or(<num>,?), and
or(startwith(?),?). In addition, the background color of each
tree node indicates how many regex candidates have been tried
along each search path. Alex notices the synthesizer has mainly
explored in the paths of or(?,?) and not(?), which seems irrel-
evant to her task. To guide the synthesizer towards her intuition,
she marks the two search paths, or(?,?) and not(?), to be ex-
cluded from the next synthesis iteration. She also prioritizes the
search path of concat(?,?), since concat can be used to enforce
the ordering between two sub-strings. In this way, Alex prunes
two unproductive search paths in which the synthesizer spent a
lot of time in the previous synthesis iteration and also informs the
synthesizer to focus on a search path that looks promising to her.

With Alex’s guidance, the synthesizer identifies 4 regexes that
satisfy all the examples (Figure 3b). She notices that these regexes
can match numbers but fail to recognize the second part of the
pattern (i.e, a comma followed by numbers). Instead, it checks for
certain characters present in a string input. To fix this, Alex uses
the search tree to exclude the search path of concat(?,not(?)).
Alex also prioritizes concat(repeatatleast(<num>,1),?), since
the first part of this pattern matches with one or more numbers,
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and the second part should be something that repeatedly matches
comma followed by numbers.

Given these additional search path annotations, the synthesizer
returns 5 new regexes (Figure 3c). The first 4 regexes check for a not
condition after the comma, which is incorrect. Alex confirms this
hypothesis by clicking the “ShowMe Familiar Examples” button and
observing how these regexes accept or reject some addition exam-
ples, as presented in our previous work [73]. However, the last regex,
concat(repeatatleast(<num>,1),star(<,>,repeatatleast(
<num>,1))) looks promising. Alex clicks the “Show Me Corner
Cases” button and verifies this solution on some corner cases. Fi-
nally, she decides this is the right solution.

□ endwith(or(<8>,<9>))

□ endwith(or(<9>,<8>))

□ contain(or(<0>,<9>))

□ contain(or(<8>,<9>))

□ contain(or(<9>,<0>))

(a) Synthesis results in the first iteration

□ concat(repeatatleast(<num>,1),not(endwith(<2>)))

□ concat(repeatatleast(<num>,1),not(contain(<low>)))

□ concat(repeatatleast(<num>,1),not(contain(<let>)))

□ concat(repeatatleast(<num>,1),not(contain(<a>)))

(b) Synthesis results after prioritizing the search path of
concat(?,?) and excluding or(?,?) and not(?)

□ concat(repeatatleast(<num>,1),star(concat(<,>,not(<a>))))

□ concat(repeatatleast(<num>,1),star(concat(<,>,not(<d>))))

□ concat(repeatatleast(<num>,1),star(concat(<,>,not(<f>))))

□ concat(repeatatleast(<num>,1),star(concat(<,>,not(<+>))))

□ concat(repeatatleast(<num>,1),star(concat(<,>,

repeatatleast(<num>, 1))))

(c) Synthesis results after prioritizing the search path of concat(
repeatatleast(<num>,1),?) and excluding concat(?,not(?))

Figure 3: Synthesis results over iterations

4 APPROACH
This section describes how to adapt a black-box synthesizer to sup-
port interpretable synthesis. We use an interactive synthesizer for
regular expressions as an example and elaborate on our implemen-
tation details. In this work, we choose the domain of regular expres-
sions (regexes) since regexes are widely used and also known to be
hard to understand and construct, even for experienced program-
mers [8, 9, 64]. Furthermore, regexes are known to be challenging
to synthesize [56]. Hence, users may run into synthesis failures
more frequently compared with other domains, providing a fertile
ground for experimenting with interpretable synthesis.

4.1 A Standard Regular Expression Synthesizer
We adopt a standard regex synthesizer from existing work [12, 73].
It generates regular expressions in a predefined domain-specific
language (DSL), as shown in Figure 4. This DSL includes character
classes as basic building blocks. For instance, <num> is a character
class that matches any digits from 0 to 9. Similarly, <let> is a char-
acter class that matches any English letters. We also have <low>,
<cap>, <any> that match lower-case letters, upper-case letters, and
any characters, respectively. In addition to these general charac-
ter classes, this DSL also includes specific character classes that
match only one character, e.g., <a> only matches letter a. Using
these character classes, the DSL allows us to create more complex
regular expressions. For example, contain(<let>) recognizes any
strings that contain an English letter, and star(<num>) matches a
sequence of digits of arbitrary length. This DSL provides high-level
abstractions that are essentially wrappers of standard regex. This
makes DSL programs more amenable to program synthesis as well
as readable to users. Note that this DSL has the same expressiveness
power compared to standard regular languages.

𝑒 := <num> | <let> | <low> | <cap> | <any> | . . . | <a> | <b> | . . .
| startwith(𝑒) | endwith(𝑒) | contain(𝑒) | concat(𝑒1, 𝑒2)
| not(𝑒) | or(𝑒1, 𝑒2) | and(𝑒1, 𝑒2)
| optional(𝑒) | star(𝑒)
| repeat(𝑒, 𝑘) | repeatatleast(𝑒, 𝑘) | repeatrange(𝑒, 𝑘1, 𝑘2)

Figure 4: The DSL for regular expressions.

Given this DSL, our synthesizer generates regexes in this DSL
that match the user-provided examples. The synthesis algorithm
is shown in Algorithm 1. At a high-level, it performs enumerative
search over the space of regexes defined by the DSL grammar and
returns the first regex that matches all examples. The algorithm
maintains a worklist of symbolic regexes. Here, a symbolic regex
is a partial regular expression that has at least one symbol that is
not resolved to a DSL operator or a character class. The worklist is
initialized with a symbolic regex with only one symbol, denoting
an empty program (line 1). During each iteration, the algorithm
removes a symbolic regex 𝑝 from the worklist (line 3). It checks
whether 𝑝 is fully resolved, i.e., containing no more symbols, and
whether 𝑝 is consistent with all examples 𝐸 (line 4). If so, it considers
𝑝 as a satisfying program and returns it to the user. Otherwise, the
algorithm chooses an unresolved symbol 𝑠 in 𝑝 (line 7) and resolves
𝑠 to either a DSL operator or a character class (line 8). It then adds all
resulting symbolic regexes into the worklist (lines 9-12). Note that
the algorithm performs pruning at line 10 whenever we determine
that a symbolic regex cannot lead to a regex that is consistent with
𝐸. We skip the detail of how the resolve function at line 8 and the
pruning at line 10 work but refer interested readers to [12].

4.2 Interpretable Regular Expression Synthesis
The standard regex synthesizer in Section 4.1 follows a black-box
design. That is, it does not communicate with users until a satisfying
program is found. If no satisfying program is found within a time
bound, the synthesizer will inform users that it failed. Since no
program is returned, users cannot do much other than allocating
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Algorithm 1: Enumeration-based synthesis algorithm
Input :a set of string examples E
Output :a regular expression that matches E

1 worklist := {e };
2 while worklist is not empty do
3 p := worklist .dequeue();
4 if p is fully resolved then
5 if 𝑝 matches E then return p;
6 else
7 s := chooseSymbol (p);
8 worklist’ := resolve (p, s);
9 for p’ in worklist’ do
10 if p’ is infeasible then continue;
11 else worklist .add(p’);
12 end
13 end
14 end

more synthesis time or changing their own examples by guesswork.
In interpretable synthesis, we introduce three representations that
explain the synthesis process with different levels of fidelity, in order
to help users understand the explored search space and diagnose
where the synthesizer is stuck.

A Live-Updated Line Chart. During synthesis, the line chart
(Figure 1a) gives users a live update about the synthesis progress.
The x-axis of the line chart shows the number of program candidates
that have been tried by the synthesizer so far. The y-axis shows
the number of examples each program satisfies. Users can inspect
the concrete program at each point by hovering the mouse over it.
This view allows users to monitor the synthesis progress over time
and make quick decisions about whether to interrupt the synthesis
process. For example, if the line chart suddenly plunges or has been
zig-zaging for a while, it may hint to the user that the search could
use additional guidance to help it make progress.

As individual programs are each rendered as a point on the line
chart whose composition is only revealed by hovering, the line
chart is most suited for showing any overall synthesis trends in
satisfying the user’s specification, but does not give a holistic view
of the space of programs tried so far. It is simple to comprehend,
requiring little intellectual engagement.

A Sample of Representative Programs.As it is too overwhelm-
ing to unroll all candidate programs during synthesis, the sample
view shows a subset of representative ones instead. Our interface
draws three kinds of programs from the explored program space—a
syntactically diverse sample, a semantically diverse sample, and a
best-effort sample. The syntactically diverse sample includes a set
of programs that cover all regex operators a synthesizer has tried.
The semantically diverse sample includes a set of programs, each of
which satisfies a subset of user-provided examples but together sat-
isfy all examples. The best-effort sample includes a set of programs
that satisfy the most number of user-provided examples.

Compared with the all-or-nothing design in traditional synthesis,
the sample view shows users some partially correct program candi-
dates in case of synthesis failures. To help users better troubleshoot,
our interface highlights which input examples a sampled program
passes (green color) and fails (red color), as shown in Figure 5b, as

(a) How often each of my examples is satisfied?

(b) Which example does this program candidate pass or fail on?

Figure 5: A user troubleshoots his own examples and some
program tried by the synthesizer.

they hover the mouse over it. By default, the interface shows how
many program candidates in the explored program space satisfy
each of the user-provided examples in a histogram-like view (Fig-
ure 5a). By showing the distribution of how frequently an example
is satisfied, users can make a better guess about which example
may be causing the synthesizer to get stuck and then make more
well-informed changes to their examples. For example, if an ex-
ample is rarely satisfied, it indicates that the example may be too
complex to be handled by the synthesizer or have some conflict
with other examples. Therefore, the user may want to modify it
first. Compared with the line chart, these samples form a more
concrete view of the explored program space and thus has a higher
fidelity. But it also requires higher intellectual engagement, since
users need to inspect individual samples to understand them.

A Search Tree. The search tree (Figure 1c) provides a faithful
representation of the program space that has been explored so
far during the synthesis process. The search tree organizes pro-
gram candidates based on how they are derived from the regex
DSL (Figure 4). Internal nodes are labeled with programs that are
partially derived, i.e., partial programs, while leaf nodes are labeled
with programs that are fully derived, i.e., concrete programs. Par-
tial programs have one or more question marks (?), which denote
placeholders that need to be resolved during synthesis. The root
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of the search tree is always set as ?, indicating an empty program.
The children of this root node are partial programs derived from ?,
e.g., startwith(?), endwith(?), or(?,?), etc. Users can continue
to expand an internal node such as or(?, ?) to find out what
programs are further derived from it, e.g., or(concat(?,?),?).

Essentially, each internal tree node represents a sub-region of the
explored program space in a hierarchical way. For example, or(?,?)
represents all explored programs that starts with or. As the number
of explored programs increases exponentially over depth, we limit
the tree view to render at most 20 nodes in each hierarchical level
to avoid overwhelming users. The background opacity of each tree
node indicates how many concrete programs have been derived
from the corresponding partial program of the node. Hence, users
can immediately tell which search path the synthesizer spends
most time on. If a user believes that the synthesizer is searching
in a wrong direction, she can right click the corresponding tree
node and select the “Never try this synthesis path again” option
(Figure 1c). On the other hand, if she finds a search path promising,
she can right click and select “Try this synthesis path first” to
prioritize it for the next synthesis iteration. This allows users to
prune the search space and directly pinpoint search directions for
the synthesizer based on their own hypotheses. Interacting with
this view has the highest cognitive load, since it not only requires
users to understand abstract concepts such as a search tree and
a program space, but also requires users to navigate the tree and
assess partial programs.

4.3 Open the Box: From Black-box Synthesis to
Interpretable Synthesis

The previous two sections describe how a standard black-box regex
synthesizer and our interpretable synthesizer work respectively.
Now, let us describe how to adapt a black-box synthesizer to make
it interpretable. Figure 6 shows the pipeline.

Logging Program Candidates Enumerated During Synthe-
sis. To open the box, a key step of our approach is to instrument
the black-box synthesizer to log program candidates that have been
considered by the synthesizer. In particular, we instrument line 5
of Algorithm 1 to record each concrete, fully resolved regex during
each synthesis iteration and count the number of examples that it

satisfies. Below we describe how we parse the logged programs to
generate the three representations that are described in Section 4.2.

Rendering Logged Programs in a Line Chart. The logged pro-
grams are parsed into a sequence of data points (𝑥,𝑦), where 𝑥
means the 𝑥-th program in the log file and 𝑦 is the number of user-
provided examples the 𝑥-th program satisfies. Then, the sequence
of dots is plotted in the line chart. Since the log file is constantly
updated with new programs enumerated by a synthesizer, the line
chart is updated accordingly every one second to reflect the syn-
thesis progress.

Drawing Samples from Logged Programs. We have imple-
mented three sampling methods for users to choose from. Though
sampling more programs can more completely represent the ex-
plored program space, it also induces more cognitive demand. For
the syntactically diverse sample, our objective is to sample a min-
imal set of logged programs that cover all regex operators and
constants tried by the synthesizer. Similarly, for the semantically
diverse sample, our objective is to sample a minimal set of logged
programs that satisfy all user-provided examples together, though
each of them may only satisfy a subset of those examples in case of
synthesis failures. We formulate the sampling problem into a set
cover problem and solve it with an off-the-shelf set-cover solver [2].
This solver employs an iterative heuristic approximation method,
combining the greedy and Lagrangian relaxation algorithms. Best-
effort programs can be easily identified by counting and comparing
the number of satisfied examples of each logged program.

Parsing and Clustering Logged Programs to a Search Tree.
Figure 7 illustrates how to generate a search tree from logged pro-
grams. We first parse each logged program into a parse tree. Then,
we infer the derivation path of each parse tree by performing a pre-
order traversal. For instance, consider a regex concat(<A>,<B>).
The derivation path for this program is ? → concat(?,?) →
concat(<A>,?) → concat(<A>,<B>), where ? is a placeholder
for further derivation. Once we obtain the derivation path for
each program, we cluster all of them into a single search tree
by merging identical nodes. For example, concat(<A>,<C>) and
concat(<A>,<B>) have three identical nodes, ?, concat(?,?),
concat(<A>,?)), in their derivation paths, which will be merged
into single ones in the search tree.
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Figure 7: The pipeline of parsing explored program candidates and registering them into the search tree

4.4 Supporting New User Feedback in
Interpretable Synthesis

Since our interpretable synthesizer is adapted from an existing in-
teractive synthesizer [73], the user feedback elicitation features in
the original synthesizer—semantic augmentation, data augmenta-
tion, and syntactic annotation (originally proposed by [58])—have
also been inherited by our interpretable synthesizer. Here we briefly
introduce these interactive features. Please refer to [73] and [58]
for technical details. Semantic augmentation enables users to an-
notate how input examples should or should not be generalized to
other similar contexts, which is designed to resolve intent ambigu-
ity in user-provided examples. Data augmentation automatically
generates additional input examples and corner cases for a selected
program. It is designed to help computer end-users and novice pro-
grammers quickly understand and validate synthesized programs
without the need of inspecting and fully understanding their syntax.
Syntactic annotation enables users to mark parts of a synthesized
program to be included or excluded in the next synthesis iteration.

Rendering the explored search space to users also brings in op-
portunities to solicit new kinds of user feedback to guide the synthe-
sizer. Given an explored program space in the form of a search tree,
users can analyze the search paths taken by the synthesizer and
mark some search paths, i.e., partial programs represented by tree
nodes, as prioritized or prohibited. If one or more search paths are
prioritized, their corresponding partial programs will be used to ini-
tialize the worklist (line 1 in Algorithm 1). For each search path, the
synthesizer will search a constant depth (3 by default). If no satisfi-
able results are found within the given depth, the synthesizer will
fall back and explore other unprohibited paths. This fall-back mech-
anism is designed for cases where users develop wrong hypotheses
and guide the synthesizer towards a wrong direction, which is very
common in challenging programming tasks. On the other hand,
if a search path is prohibited, the synthesizer will add it into an
exclude set. We add a filter at line 10 in Algorithm 1 to compare
symbolic regexes in the worklist with those in the exclude set. The
synthesizer will stop exploring a search path if any symbolic regex
in the worklist is matched with or derived from a partial program
in the exclude set. In this way, the synthesizer ensures any search
paths marked as prohibited will be pruned from the search space.

5 USER STUDY
We conducted a within-subjects study with eighteen participants
to evaluate the usefulness and usability of interpretable synthesis.

We selected a state-of-the-art interactive synthesizer for regular
expressions [73] as the comparison baseline. Like traditional syn-
thesizers, this baseline synthesizer does not expose any internals
of the synthesis process, other than showing the elapsed time in a
progress bar. We investigated the following research questions:

• RQ1. Compared with traditional synthesis, to what extent
does interpretable synthesis augment users’ problem solving
capability?

• RQ2. How do users with various expertise and levels of
engagement tendency respond to interpretable synthesis?

• RQ3. How are representations with different fidelity of the
synthesis process perceived by users?

• RQ4. What obstacles have users encountered when using
interpretable synthesis?

5.1 Participants
We recruited eighteen students (eight female and ten male) through
the mailing lists of the School of Engineering and Applied Sciences
at Harvard University. Sixteen participants were graduate students
and two were undergraduate students. Regarding their familiarity
with regular expressions, eleven participants said they knew regex
basics but only used it several times, while seven said they were
familiar with regexes and had used it many times. As part of the
pre-study survey, we measured participants’ engagement tendency
using the Need for Cognition Scale-6 (NCS-6) questionnaire [44].
The questionnaire contained six statements that describe a person’s
Need for Cognition characteristics in different situations, such as “I
would prefer complex to simple problems.” Appendix A lists all six
statements. For each statement, participants were asked to rate to
what extent the statement is characteristic of them on a 7-point
scale from “not at all like me (1)” to “very much like me (7).” The
final score for a participant was the average of the participant’s
ratings across all six statements. The higher the Need for Cognition
score, the more a participant tends to enjoy activities that involve
intellectual engagement and thinking. Among eighteen participants,
six participants have a medium level of engagement tendency (3
to 5 points), while twelve participants have a high engagement
tendency (above 5 points). Participants received a $25 Amazon gift
card as compensation for their time.

5.2 Tasks
We selected three tasks from the regular expression programming
benchmark in [73]. This benchmark was derived from realistic
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regex questions asked in Stack Overflow. The descriptions of these
three tasks and their solutions in both our DSL and standard regex
grammar are listed below. Note that these tasks may have multiple
correct solutions. During the study, if participants reached any
correct solution to a task, we considered them as having completed
the task successfully.

Task 1. Write a regular expression that validates a month with
a leading zero, e.g., 01, 02, 10, 12, but not 00, 1, 13. [ Post 2878010 ]

or(concat(<0>,<num1-9>),concat(<1>,or(<2>,or(<1>,<0>))))

^(0[1-9]|1[0-2]$

Task 2. Write a regular expression that accepts numeric values
that are seven or ten digits. [ Post 2908527 ]

or(repeat(<num>,7),repeat(<num>,10))

^\d{7}|\d{10}$

Task 3. Write a regular expression that validates a string of
comma-separated numbers, e.g., “1,2,3”, “12”, but not “1,”, “,1”, or
“12„3”.[ Post 5262196 ]

concat(repeatatleast(<num>,1),star(concat(<,>,repeatatleast(

<num>,1))))

^\d+(,\d+)*$

Compared with Task 2, Task 1 and Task 3 are much more chal-
lenging. Their solutions involvemore regex operators and constants,
and also require more computation power to synthesize. Without
human guidance, the baseline synthesizer can solve Task 2 in 5
minutes. However, Task 1 and Task 3 cannot be solved even after
100 minutes. According to the supplementary material of [73], Task
1 and Task 3 require a divide-and-conquer strategy to be solved.

5.3 Protocol
We recorded each user study session with the permission of partici-
pants. A study session took 85 minutes on average. In each session,
a participant completed one of the three tasks using interpretable
synthesis (i.e., the experiment condition) and another task using the
traditional synthesizer [73] (i.e., the control condition). To mitigate
the learning effect, both the order of task assignment and the order
of synthesizer assignment were counterbalanced across participants
through random assignment. In total, six participants tried each
of the three tasks in each condition. Before each task, participants
first watched a pre-recorded tutorial video of the synthesizer they
would use. Then they were given 20 minutes to finish the assigned
task. The task was considered failed if participants did not guide
the synthesizer to find a correct regex within 20 minutes.

After each task, participants answered a survey to reflect on the
usability of the assigned synthesizer. As part of the survey, they
were asked to answer five NASA Task Load Index questions [29] to
rate the cognitive load of using the assigned synthesizer to com-
plete the task. After finishing both tasks, participants answered a
final survey to directly compare the two synthesizers. The first au-
thor performed open-coding on participants’ responses to identify
themes and then discussed with co-authors to refine the themes
in multiple sessions. These themes were then used to explain the
quantitative results such as why participants performed better with
interpretable synthesis in the following section.

6 USER STUDY RESULTS
6.1 User Performance Improvement
When using interpretable synthesis, 11 of 18 participants success-
fully guided the synthesizer to a correct regex solution, while only 5
of 18 participants finished the task when using traditional synthesis.
Fisher’s exact test shows that this performance difference is not
statistically significant (p=0.09222). Further investigation shows
that it is because in both conditions, participants did very well in
the easy task (Task 2)—all six participants who were assigned Task
2 using interpretable synthesis finished it, and five of six partici-
pants assigned Task 2 using traditional synthesis finished it. This
is not surprising because the baseline synthesizer has already been
proven quite efficient to solve average programming tasks [73].

For the two challenging tasks (Task 1 and Task 3), none of the
participants finished the two most challenging tasks using tradi-
tional synthesis. By contrast, using interpretable synthesis, two
out of six participants finished Task 1 (16:42 min on average) and
three of six participants finished Task 3 (17:25 min on average).
Fisher’s exact test shows that the performance difference in these
two challenging tasks is statistically significant (p=0.03727).

There are four main reasons that participants performed much
better with interpretable synthesis in challenging programming
tasks. First, 10 participants self-reported that they gained more
insights of the synthesis process, indicating that they built a more
detailed mental model. P3 wrote in the post survey, “it [the inter-
pretable synthesizer] was more helpful because it was more obvious
to directly see which search paths the algorithm went down, and to
then edit search paths the algorithm should not have gone down.”
Second, the interface affords participants using their more accu-
rate mental model to strategically add more examples or prune
unproductive search paths during synthesis. P5 wrote, “the sam-
ple view and tree view can give me useful information, such as the
search order and explored regex or partial regex. This information can
easily help me refine my inputs (e.g. examples, annotations) to guide
the synthesizer and/or help me find the correct solution by myself.”
Third, in challenging tasks, the synthesizer often failed to find any
satisfying programs within a given time budget. In such cases, inter-
pretable synthesis provided more means of guiding the synthesizer,
e.g., annotating representative regexes that are partially correct,
prioritizing or prohibiting some search paths, etc. By contrast, par-
ticipants with traditional synthesis had very few options other than
(1) increasing the time budget and (2) adding, deleting, or modifying
input-output examples by guesswork. P7 complained, “the lack of
information about why a search was failing was frustrating. It felt
like I had to go back to go forward by eliminating examples to recover
regex candidates.” Fourth, in the post-study survey, three partic-
ipants reported they got inspiration from some partially correct
regexes and intermediate results in the search tree. When facing a
new language, i.e., the regex DSL in our tool, seeing the programs
tried by the synthesizer helped them learn the language and gave
them hints about possible correct solutions. P3 said, “when I look at
the search tree, it can give me hints of what sub-expressions should
be included in the final regex and may even let me know the correct
regex before the synthesizer actually finds the solution.”

Despite the advantages brought by interpretable synthesis, seven
participants still failed to complete assigned tasks within 20minutes.

https://stackoverflow.com/questions/2878010/regular-expression-for-validating-month
https://stackoverflow.com/questions/2908527/regular-expression-for-validating-numeric-values
https://stackoverflow.com/questions/5262196/regular-expression-to-check-comma-separted-number-values-in-flex
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Figure 8: Cognitive load measured by NASA TLX

We manually analyzed the screen recordings and identified several
reasons. First, some participants misunderstood the DSL syntax
and the semantics of some regex operators such as startwith and
repeat. As a result, they wasted a lot of time to recover from their
own misunderstandings and did not have enough time to finish the
task. For example, two participants thought DSL regexes should
be constructed from left to right as in the standard regex grammar.
It took them a while to realize they could use operators such as
or and concat to connect sub-expressions in a top-down manner.
Second, some participants engaged in a wrong direction for too
long before realizing it was a dead end. In fact, 8 of 18 participants
started with wrong hypotheses in their mind. Some of them quickly
realized they were wrong by observing how the synthesized regexes
following those hypotheses failed on their own examples. Yet others
just took much longer time to realize it. Third, participants felt
overloaded with too many options to guide the synthesizer, not
knowing which one option would be the best to communicate their
intent to the synthesizer. They ended up spending a lot of time
inspecting information in different views and switching back and
forth.

Figure 8 shows participants’ responses to the five NASA TLX
questions [29]. When using interpretable synthesis, participants
felt less frustrated, spent less effort, and gave themselves much
better performance ratings. Welch’s t-test on the five comparisons
in Figure 8 shows that the mean differences of performance, effort,
and frustration are statistically significant (p=0.04885, p=0.03737,
and p=0.02105). Yet the mean differences of mental demand and
hurry are not (p=0.6717 and p=0.5495). This indicates that the per-
ception of better performance, less effort and less frustration is
more consistent across participants, while there is more diversity
in participants’ perception of mental demand and hurry.

Figure 9 shows the overall preference and usefulness ratings
given by our participants. Among 18 participants, 14 of them pre-
ferred or strongly preferred interpretable synthesis, and all but one
participants find interpretable synthesis more useful than tradi-
tional synthesis. In the post-study survey, 10 participants explained
that they were able to get more insights into the synthesis pro-
cess and observe how their feedback impacted the search strategy,
which helped them better figure out what to do next. P8 said, “it
provided a sense of what the synthesizer was doing when it failed
instead of just a blank wall and an error message. Towards the end
of the first [traditional synthesis] session, I felt almost helpless.” 11
participants appreciated that they had more agency to control how

and where to search in interpretable synthesis, especially when the
synthesizer seemed off-track. P1 wrote, “[interpretable synthesis]
allows me to partially guide the synthesizer if I know the next few
steps—I don’t have to know the entire solution, but I know how to
start and I can let the synthesizer fill in the holes.”

6.2 Performance and Responses of Different
Kinds of Users

We characterize different kinds of users with two factors—regex
expertise and engagement tendency, and investigate both their
objective performances and subjective preferences in the user study.

Table 1: The performance of different kinds of participants
when using interpretable synthesis.

Expertise Engagement Tendency
Novice Expert Medium High

Task 1 1/5 1/1 2/3 0/3
Task 2 4/4 2/2 3/3 3/3
Task 3 1/2 2/4 0/2 3/4
Total 6/11 5/7 5/8 6/10

Performance Difference. Table 1 shows the performance, i.e., task
success rate, of different kinds of participants using interpretable
synthesis. Using interpretable synthesis, regex experts were only
marginally better than regex novices: 71% of regex experts (5/7)
completed the task assigned to them using interpretable synthesis,
while 55% of novices (6/11) completed their tasks using interpretable
synthesis. This result is surprising to us. We initially hypothesized
that experts would do much better than novices, since experts have
more domain knowledge and interpretable synthesis provides a way
to incorporate their domain knowledge into the synthesis process.
Section 7 offers a discussion on this.

As for engagement tendency, there was little performance dif-
ference among participants, regardless of their estimated place on
that spectrum: 63% of participants (5/8) with high engagement ten-
dency completed their tasks using interpretable synthesis, while a
comparable 60% of participants (6/10) with medium-level engage-
ment tendency completed their tasks using interpretable synthesis.
This suggests that engagement tendency has little impact on user
performance. This is in contrast to our initial hypothesis that users
with high engagement tendency would perform much better as the
abundance of information presented in interpretable synthesis re-
quires intense intellectual engagement. We discussed one possible
explanation in Section 7.

Preference Difference. While interpretable synthesis enabled par-
ticipants at various levels of expertise and engagement tendency to
perform at similar levels, the participants’ subjective experience,
as measured by their stated preferences, was less uniform. The
participants that expressed the strongest preference toward inter-
pretable synthesis were those with either less expertise or higher
engagement tendency (see Figure 10). The preference difference
as a function of engagement tendency was consistent with our
initial hypothesis, since the abundance of information in inter-
pretable synthesis indeed required more intellectual engagement
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Figure 9: Most participants found interpretable synthesis more useful and preferred to use it over traditional synthesis.
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Figure 10: Participants with less expertise or higher engagement tendency preferred interpretable synthesis more.

than traditional synthesis. However, regarding expertise, we ini-
tially hypothesized experts would prefer interpretable synthesis
more than novices, since experts had enough knowledge and exper-
tise to understand the information in search trees and samples. By
contrast, novices seemed to appreciate it more. After analyzing the
post-study surveys, we realized that experts often had already de-
veloped some hypotheses (e.g., partial programs) in their mind after
reading a task description. As a result, they wanted to directly give
the synthesizer some starting points to work on and rapidly update
their own hypotheses based on the synthesis result, rather than
waiting for the synthesizer to initiate the interaction and navigat-
ing sampled programs or search trees. Unlike experts, novices did
not have strong instincts or expertise to rely on and thus showed
more appreciation to the synthesis details such as partially correct
programs and search trees that helped them initialize and refine
their own hypotheses about the correct solution.

6.3 Responses to Different Representations of
Explored Program Space

Our interface includes three representations that explain the syn-
thesis process with different levels of fidelity: the live-updated line
chart, the various samples of programs tried so far, and the search
tree. In the post-study survey, we asked participants to report their
preference and rate the usefulness and cognitive overload of each
representation. Among 18 participants, 13 of them preferred to nav-
igate and annotate the search tree, 5 of them preferred to inspect

and annotate representative programs (i.e., samples), while none of
them preferred the live-updated line chart.

We coded participants’ explanations to understand why each
representation was preferred. The search tree was most preferred
(13/18) for two main reasons: it gave them fine-grained control and
a holistic view. Six participants mentioned that the search tree pro-
vided fine-grained control of the synthesis process. P6 explained,
“the user can easily control what patterns should be considered first.
It’s much easier than guessing more input examples or including/ex-
cluding regex operators.” While interacting with the synthesizer
and observing how different kinds of regexes pass or fail their own
examples of desired behavior, participants often developed their
own hypotheses about what the final regex might be. Compared
with annotating individual regex operators, they found it more
convenient to annotate the search tree to give the synthesizer their
preferred starting point. By observing the synthesis result from the
starting point they gave, they could quickly validate and refine their
hypotheses. The search tree was also specifically called out by four
participants as giving them a holistic view of the synthesis process.
P4 wrote, “the tree gives me a whole view of available expressions
and helps me construct the right expression and guide the synthesizer
better. With the sample view, I am restricted to just thinking about
the functions that the synthesizer has [already] tried.”

Still, five participants preferred samples over the search tree.
Two participants said the sample view makes it very tangible to
figure out how their own examples relate to various possible pro-
grams. One participant found the different kinds of programs in the
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Figure 11: The search tree was considered the most useful, while the samples were considered the most overwhelming.

sample view inspiring. One participant found it intuitive to anno-
tate sampled programs to narrow down the search space, compared
with navigating the search tree.

The line chart was the least preferred because participants felt
the line chart only told them the synthesizer was making some
progress but did not provide actionable information compared with
the sample view and the search tree.

We hypothesized that the search tree would be the most over-
whelming representation, since it required navigation over a tree
hierarchy. The concept of partial regular expressions might not
be easy to reason about, especially for participants with the least
expertise. Surprisingly, the majority of participants (15/18) did not
find the search tree overwhelming. In Figure 11b, participants’ sense
of overwhelm as a function of different representations indicates
that the search tree was considered no more overwhelming than
the line chart, while the sample representation was considered the
most overwhelming.

We did observe a relationship between users’ engagement ten-
dency and their preferences for different presentations. As shown
in Column Engagement Tendency in Table 2, only half of the partic-
ipants with lower engagement tendencies preferred the search tree,
while nearly all the participants with high engagement tendency
preferred it.

When considering the expertise of participants, we expected the
regex experts preferred the search tree more than novices, since the
experts might bemore comfortable looking at partial regular expres-
sions. Contrary to our expectations, there was not much difference
between experts’ and novices’ preferences (Column Expertise in Ta-
ble 2). In fact, two out of the five experts in the study liked samples
more. Since they were familiar with regular expressions, these two
participants found it more intuitive to simply read the synthesized
regexes and then check which examples these regexes did and did
not satisfy, compared with navigating through the search tree.

6.4 RQ4. Obstacles and Lessons
The user study also revealed several obstacles of using interpretable
synthesis:
The last mile problem. Among the seven participants who did
not complete the task using interpretable synthesis, three of them

Table 2: The preference of individual representations from
different kinds of users

Expertise Engagement Tendency
Novice Expert Medium High

Line Chart 0 0 0 0
Sample 3 2 4 1

Search Tree 8 5 4 9

guided the synthesizer to generate a regex close to the correct solu-
tion before running out of time. For example, in Task 1, P5 reached to
a regex, or(concat(<0>,<num1-9>),concat(<1>,or(<0>,<1>))).
He only needed to substitute the last subexpression or(<0>,<1>)
with or(<0>,or(<1>,<2>)) to get the correct answer. Though
this substitution looks trivial to a human, it is much harder for a
synthesizer without human guidance, because, at this point, the
synthesizer has searched deeply in the program space. Every step
forward means exponentially more possible programs to explore,
which would take significant time for the synthesizer. We made
similar observations in other study sessions—participants made
quick progress with the synthesizer in the first 5 to 10 minutes,
then they felt the synthesizer got slower and slower, and in turn
they needed to provide more and more guidance to reach the fi-
nal complex regex. This phenomenon is quite similar to the last
mile problem in telecommunication, supply chain management, and
public transportation.

In the example above, prioritizing a search path such as or(concat
(<0>,<num1-9>),concat(<1>,?)) would significantly reduce the
program space to explore in the next iteration. On the other hand,
if a user could precisely locate such a complex search path, the user
is likely to have already known the final regex. In fact, three partic-
ipants complained that the synthesizer needed too much guidance
in the last few steps, which seemed unnecessary as they believed
they already knew the answer. In the end, they felt they spent most
of time helping the synthesizer rather than being helped.

This poses a fundamental question to synthesis designers—if a
user has mentally developed a correct program while interacting
with the synthesizer, is it necessary for the user to continue to use
the synthesizer? In a real-world setting, the answer is likely no. If a



Interpretable Program Synthesis CHI ’21, May 8–13, 2021, Yokohama, Japan

user has mentally reached a correct program before the synthesizer,
we argue that it is not necessary to stick with the synthesizer and
force it to solve the last mile problem. As the synthesis process is
opened up in interpretable synthesis, users are now able to inspect
partially correct programs or observe how a synthesizer succeeds
or fails in different search paths. By pinpointing a search path, they
could even ask the synthesizer to try out their own hypotheses
and rapidly update their own mental models of the space of correct
programs. Therefore, we recommend synthesis designers and users
to treat a synthesizer as an artificial pair programmer that gener-
ates, validates, and refines various hypotheses together with a user
symbiotically, rather than an all-or-nothing tool.
Lack of flexibility to directly suggest a partial program. In the
post-study survey, seven participants wished they could enter their
own hypotheses (i.e., partial programs) and ask the synthesizer
to start its search from there. P4 wrote, “while the search tree is
immensely helpful in choosing the right direction to search from,
I would still like to give initial seed functions that it should start
from. This would potentially narrow down search space from the
beginning.” In the current interface, they have to wait for relevant
components appearing in sampled programs or the search tree
before they can annotate them. This is much slower compared with
directly communicating their own hypotheses to the synthesizer.
More support for navigating samples and search trees. In the
post-study survey, four participants mentioned the difficulty of
navigating sampled programs and search trees. P6 wrote, “it is hard
to find the right search path with the [interpretable] synthesizer—
especially, it’s difficult to get the right pattern from the samples.”
Indeed, both the sample view and the search tree view present
programs naively and provide little support for rapid navigation or
comparing and contrasting. More research is needed in presenting
many programs in a more visual and easy-to-interpret manner, such
as using code alignment and color highlighting [22].

7 DISCUSSION AND FUTUREWORK
Though synthesis failures are often attributed to user mistakes or
the complexity of a problem, Padhi et al. proved that the chance of
running into synthesis failures was also significantly impacted by a
fundamental design choice—the expressiveness of a synthesizer [55].
Increasing grammar expressiveness allows a synthesizer to solve
more problems, but it also makes the underlying program space
exponentially bigger. This inevitably increases its chance of failing
on some previously solvable problems given the same amount of
time. Over the years, the PL and ML communities have devoted
significant effort to optimizing synthesis algorithms. There is no
doubt that synthesis algorithms will continuously be improved.
Yet, as pointed out by Gulwani et al. [26], ultimately, there will be
limits to complexity that no algorithm improvements can address.
Since the problem space in the real world is infinite, there will
always be problems that are too complex for a synthesizer to solve,
especially within a short time that a user is willing to wait. In such
a case, interpretable synthesis offers an alternative way to address
the complexity of real-world problems. Compared with the black-
box design, interpretable synthesis helps users gain more insights
about when and where a synthesizer is stuck, so they can provide

more strategic feedback based on their hypotheses and domain
knowledge.

Though it is possible that a user may reach a correct solution
before a synthesizer, it is still beneficial to have an interpretable
synthesizer as a mental debugger to help users develop, validate,
and refine their hypotheses of the correct solution. When solv-
ing challenging tasks, it is common that programmers may start
with a wrong mental state or hypothesis. In our user study, eight
participants started in a wrong direction when solving a task. For
example, in Task 1, P8 initially thought the correct solution should
contain the repeatatleast operator. After prioritizing the search
path of repeatatleast(?,-1), he quickly realized that it was a
dead end since the synthesizer enumerated thousands of regexes
along that search path but none of them satisfied his examples. By
observing how various possible regexes were enumerated and then
rejected by the synthesizer, participants said they gained a better
understanding of a task and also some hints for the final solution.

We are well aware that, compared with traditional synthesis,
the interpretable synthesis interface renders much more code-rich
information and synthesis details, imposing more cognitive load
on our users. Surprisingly, participants’ responses suggest the
opposite—when using interpretable synthesis, participants actually
felt slightly less mental demand (Figure 8). One explanation is that
although interpretable synthesis showed more information and
had a more complex UI, participants gained more insights about
the synthesis process, which in turn made it easier for them to
provide effective feedback to the synthesizer to make progress. By
contrast, when using traditional synthesis, participants had to think
much harder to make good guesses. Due to a lack of insights about
the synthesis process, in case of synthesis failures, participants
had to guide the synthesizer in a trial-and-error manner, guessing
which examples might puzzle the synthesizer and then changing
or deleting them. If it did not work, they had to try modifying
another example until the synthesizer finally returned something.
This requires a lot of guesses and observations.

We are also surprised by the marginal performance difference
between novices and experts and between participants with a high
engagement tendency and participants with a relatively low en-
gagement tendency (Section 6.2). One plausible reason is that the
abundance of information in interpretable synthesis was still con-
sumable for participants with less expertise or lower engagement
tendency, leading to effective actions in the tasks. This implies that,
when synthesis details are presented in an understandable way, the
benefits indeed outweigh the cost, bridging the gap between users
with different expertise and engagement tendencies.

Many users of program synthesis techniques are still end users,
who may not be comfortable looking at programs in any program-
ming language. It is an interesting yet challenging task to extend
the design of interpretable synthesis to communicate the synthesis
process to them. As discussed in Section 2, prior work has explored
several ways to communicate the end result, i.e., synthesized pro-
grams, to end-users, but not in an interpretable synthesis process.
For example, FlashProg [46] translates synthesized string transfor-
mations to natural language descriptions to explain their function-
ality to end-users. In future work, we could adapt this technique
to, e.g., communicate the search tree representation of a synthesis
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process by translating each search path to natural language de-
scriptions, such as “the synthesizer first tries the repeatatleast
operator.” Communication support, such as pop-up tool tips, linked
help pages, and video demonstration snippets, can also be consid-
ered to help end-users understand how to respond to code-rich
information displays.

During the user study, some participants broke down a task into
smaller pieces to solve in our interface. For example, in Task 2, some
participants first guided the synthesizer to generate a regex tomatch
7 digits, marked it to be included in the next synthesis iteration,
and then focused on synthesizing another regex that matches 10
digits. In future work, we plan to investigate tool support for task
decomposition, such as allowing users to enter partial examples
and synthesize regex operators one by one.

The focus of this paper is to understand the value of interpretable
program synthesis. Prior work has shown that participants achieved
a significantly higher success rate with the assistance of a synthe-
sizer on regex tasks (73% vs 28%) [12]. Given this prior evidence,
we chose a comparison baseline in which participants finished
tasks with a traditional synthesizer with no interpretability sup-
port, rather than finishing tasks manually.

Our interpretable synthesis approach requires instrumenting a
synthesizer to log candidate programs that have been generated
and tested during synthesis. It is applicable to program synthesis
tools whose backbone algorithm involves iterative search, such
as enumeration-based search [4, 21, 66], stochastic search [34, 63],
or an explicit search process guided by a SMT solver [31] or a
probabilistic model [6, 7, 18, 20, 40]. However, some synthesizers
completely reduce this search problem to other problems such as
satisfiability modulo theories and statistical machine translation.
These synthesizers cannot be easily instrumented to log enumer-
ated programs as described in Section 4.3, since they encode user
specifications and programs to logical formulae or vectors, and
then delegate the search process to a SMT solver or a sequence-to-
sequence model. As a result, we would need to further instrument
the underlying SMT solver and machine learning model, which
remains as an interesting topic to investigate in the future.

8 CONCLUSION
This paper presents a new synthesis design called interpretable
synthesis. Unlike traditional black-box synthesis, interpretable syn-
thesis communicates the program space explored by a synthesizer
to users, so users can gain more insights of the synthesis process
and provide more well-informed guidance to the synthesizer based
on their own hypotheses, domain knowledge, and mental model of
the synthesizer. Interpretable synthesis is especially useful when
a synthesizer fails to generate a program that is consistent with
user-provided specifications in an acceptable time. It provides a way
of inspecting the explored program space and identifying unpro-
ductive search directions that the synthesizer is wasting time on. In
a lab study with eighteen participants, we evaluated the usefulness
of interpretable synthesis and measured the cost of rendering the
abundance of synthesis details to users. The results are promising:
the availability of information about—and the ability to act on—the
internals of the synthesis process enabled more users to complete
challenging programming tasks with the synthesizer.
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A THE NEED FOR COGNITION SCALE-6
(NCS-6) QUESTIONNAIRE

This questionnaire is composed of six statements that describe a
person’s need-for-cognition characteristics. Responses are given
on a 7-point scale from “not at all like me (1)” to “very much like
me (7)”. Four of the six statements are positively associated with
need for cognition, while the other two statements are negatively
associated (i.e., reverse scored). Asterisks designate the statements
that are reverse scored.
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1. I would prefer complex to simple problems.
2. I like to have the responsibility of handling a situation that

requires a lot of thinking.
3. Thinking is not my idea of fun.*
4. I would rather do something that requires little thought than

something that is sure to challenge my thinking abilities.*
5. I really enjoy a task that involves coming upwith new solutions

to problems.
6. I would prefer a task that is intellectual, difficult, and important

to one that is somewhat important but does not require much
thought.

B THE COGNITIVE LOAD QUESTIONNAIRE
This questionnaire includes five of the six questions in the original
NASA TLX questionnaire [29]. The question “How physically de-
manding was the task?” is excluded, since the programming tasks
in our user study do not involve much physical effort.

Q1. How mentally demanding was using this tool? (1—Very Low,
7—Very High)

Q2. How hurried or rushed were you during the task? (1—Very
Low, 7—Very High)

Q3. How successful would you rate yourself in accomplishing
the task? (1—Perfect, 7—Failure)

Q4. How hard did you have to work to achieve your level of
performance? (1—Very Low, 7—Very High)

Q5. How insecure, discouraged, irritated, stressed, and annoyed
were you? (1—Very Low, 7—Very High)
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