Industrial Experience with Design Patterns

Kent Beck, First Class Software *

Ron Crocker, Motorola Inc. *

Gerard Meszaros, Bell Northern Research ¥

James O. Coplien, AT&T ¥
Lutz Dominick, Siemens AG 8

Frances Paulisch, Siemens AG |l

John Vlissides, IBM Research **

Abstract

A design pattern is a particular prose form of record-
ing design information such that designs which have
worked well in the past can be applied again in similar
sttuations in the future. The availability of a collec-
tion of design patterns can help both the experienced
and the novice designer recognize situations in which
design reuse could or should occur.

We have found that design patterns: 1) provide an
effective “shorthand” for communicating complez con-
cepts effectively between designers, 2) can be used io
record and encourage the reuse of “best practices”, 3)
capture the essential parts of a design in compact form,
e.g. for documentation of existing software architec-
tures.

Since the patterns community is one that shares in-
formation in an open forum and builds on the experi-
ences of others, we chose to submit a joint paper on
our industrial experiences with patterns. We focus on
the lessons learned in our respective industrial setlings
as a first step towards enswering the questions “Pail-
terns sound very promising, but how are they actually
used n the industry and what benefits, if any, do they
bring in practice?”

We proceed by briefly describing each of our respec-
tive experiences with patterns. This is followed by a
joint “lessons learned” section and conclusion.

*First Class Software, P.O. Box 226, Boulder Creek, CA
95006, USA; E-mail: kentb@ix.netcom.com

tAT&T Bell Laboratories, 1000 E. Warrenville Rd.,
Naperville, IL 60566, USA; E-mail: cope@research.att.com

{Motorola Inc., 1501 W. Shure Dr., Arlington Heights, IL
60004, USA; E-mail: crocker@cig.mot.com

§Siemens AG, ZFE T SE 2, D-81730 Miinchen, Germany;
E-mail: Lutz.Dominick@zfe.siemens.de

YCurrent address: Object Systems Group, 250 Sixth Ave.
SW Suite 1200, Calgary, Alberta, Canada T2P 3H7; E-mail:
gerard@osgcorp.com

HSiemens AG, ZFE T SE 2, D-81730 Miinchen, Germany;
E-mail: Frances.Paulisch@zfe.siemens.de

**IBM T.J. Watson Research Center, P.O. Box 704, Yorktown
Heights, NY 10598, USA; E-mail: vlis@watson.ibm.com

0270-5257/96 $5.00 © 1996 IEEE
Proceedings of ICSE-18

103

1 Introduction

Software developers have a strong tendency to reuse
designs that have worked well for them in the past
and, as they gain more experience, their repertoire of
design experience grows and they become more profi-
cient. Unfortunately, this design reuse is usually re-
stricted to personal experience and there is usually
little sharing of design knowledge among developers.
A design pattern is a particular form of recording de-
sign information such that designs which have worked
well in particular situations can be applied again in
similar situations in the future by others. The avail-
ability of a catalog of design patterns can help both
the experienced and the novice designer recognize sit-
uations in which design reuse could or should occur.
Such a collection is time-consuming to create, but it
is our experience that the invested effort pays off.

A pattern is said to be a “solution to a problem in
a context”. The basic structure consists of a name for
the pattern, a problem statement, a context in which
the problem occurs, and a description of the solution
together with additional information such as the asso-
ciated tradeoffs, a list of where this pattern has been
applied etc. The form consists of structured prose and
sketches (such as OMT diagrams and interaction dia-
grams). There is general agreement that the pattern
1dentifies a set of “forces” or constraints which are
subsequently resolved in the solution.

Design patterns have received a lot of attention
lately, especially in the object-oriented community.
The reason for the recent interest in design patterns is
not the novelty of the designs themselves, but rather
the vision that a diverse community of experienced
software practitioners, communicating mostly via the
internet, can share and collectively grow a set of design
repertoires in the form of patterns. The patterns com-
munity is sufficiently enthused about the prospective
advantages to be gained by making this design knowl-
edge explicit in the form of patterns, that hundreds of
patterns have been written, discussed and distributed.

1.1 A brief history of design patterns

Software design patterns had their origin in the late
1980’s when Ward Cunningham and Kent Beck devel-
oped a set of patterns for developing elegant user inter-
faces in Smalltalk [5]. At around the same time, Jim

Coplien was developing a catalog of language-specific
C++ patterns called 1dioms [9]. Meanwhile, Erich
Gamma recognized the value of explicitly recording
recurring design structures while working on his doc-
toral dissertation on object-oriented software develop-
ment [16]. These people and others met and intensified
their discussions on patterns at a series of OOPSLA
workshops starting in 1991 organized by Bruce Ander-
son [4, 3] and by 1993 the first version of a catalog of
patterns was in draft form (summarized in [17]) which
eventually formed the basis for the first book on design
patterns [18]. All of these activities were influenced by
the works of Christopher Alexander, a building archi-
tect and urban planner [2, 1] who coined the term
“pattern” to refer to recurring designs in Sbuilding)
architecture. In the summer of 1993, a small group of
pattern enthusiasts formed the “Hillside Generative
Patterns Group” and subsequently organized the first
conference on patterns called the “Pattern Languages
of Programming” (PLoP) in 1994 [11].

1.2 The patterns community

The success of the PLoP conference in August '94
and the unveiling of the so-called “Gang-of-Four” [18]
book at October ’94 OOPSLA created a surge of in-
terest in the topic of design patterns. Due to their
basically simple nature, patterns are subject to “over-
hype”, particularly by those who do not fully under-
stand what the real capabilities are or how hard it
is to write good patterns. Several mailing lists have
been set up by Ralph Johnson at the University of
Illinois and this has led to the development of an
internet-based community of software developers in-
terested in patterns. A World-Wide-Web site! is also
maintained at the University of Illinois which serves as
a central location for information on patterns. Most of
the active members of this online patterns community
are practically-oriented experienced software develop-
ers and, as such, they are quick to correct any overly-
high expectations placed on patterns by newcomers.

The practical nature of patterns themselves and
the people writing and using patterns should not be
underestimated. As Ralph Johnson once wrote [20]:
“One of the distinguishing characteristics of computer
people is the tendency to go “meta” at the slightest
provocation. Instead of writing programs, we want to
invent programming languages. Instead of inventing
programming languages, we want to create systems for
specifying programming languages. There are many
good reasons for this tendency, since a good theory
makes it a lot easier to solve particular instances of
the problem. But if you try to build a theory with-
out having enough experience in the problem, you are
unlikely to find a good solution. Moreover, much of
the information in a design is not derived from first
principles, but obtained by experience.”

Presumably due to the nature of patterns being
used to record and reuse existing design knowledge,
the patterns community has been said to have an “ag-
gressive disregard for originality” [15]. As a concrete
example of this, all design patterns in [18] are based on

Ihttp:/ /st-www.cs.uiuc.edu/users /patterns/patterns. htm!

104

designs which occur in two or more existing, real appli-
cations. Perhaps because no one feels like they “own”
a particular design, there is a distinct feeling that the
members of the patterns community are working to-
wards a common goal in developing a broad collection
of patterns as opposed to the competitive nature com-
mon to other disciplines (e.g. which person publishes
a certain theorem first).

Since the patterns community is one that shares
information in an open forum and builds on the ex-
periences of others, it seemed natural to us to sub-
mit a joint paper on our experiences with patterns.
We focus, in particular, on the lessons learned in our
respective industrial settings as a first step towards
answering the questions “Patterns sound very promis-
ing, but how are they actually used in the industry
and what benefits, if any, do they bring in practice?”

2 Industrial experience with patterns

2.1 Smalltalk Best Practice Patterns —
Kent Beck (First Class Software)

I have been writing what I intend to grow into a
comprehensive system of patterns for Smalltalk pro-
gramming, called the Smalltalk Best Practice Patterns
(SBPP). I’ll report here on the status of these pat-
terns and my experience teaching them to and watch-
ing them used by two clients developing commercial
software in Smalltalk.

The SBPP are intended to accelerate the pace at
which teams of Smalltalk developers begin realizing
the benefits of objects and Smalltalk by communicat-
ing the techniques used by expert Smalltalkers. Al-
though many patterns are still under development, a
core set of patterns are finished that cover most of the
important design and coding problems.

The best developed section contains 90 patterns for
coding. It presents successful tactics for Smalltalk —
naming conventions, reuse of the collection classes,
common control flow patterns, and code format-
ting. The emphasis throughout is on communicating
through code. The patterns are intended to generate
code that meets the simple style rule “say everything
once and only once”. The section on design has 15 pat-
terns, most of which exist only in outline form. When
finished, they are intended to cover similar material
to Design Patterns [18]. I teach these patterns using
presentations similar to “Patterns Generate Architec-
tures” [6]. The section on user interface design has 25
patterns for designing user interfaces and 15 patterns
for implementing them in Smalltalk. These patterns
are not yet ready to be taught. The final section cov-
ers project management. These 30 patterns focus on
the non-programming tasks of programmers — testing,
documentation, and scheduling.

2.1.1 Hewitt Associates

Hewitt Associates has a group of five Smalltalk pro-
grammers working on the next generation of a system
implemented originally on large, mainframe comput-
ers. They have extensive experience with objects, al-
though the team members have varying levels of fa-
miliarity with objects and all are new to Smalltalk.

Initially, the team met once a week for several
months. As the coding patterns became available,
they discussed a few patterns a week. Now that pro-
duction coding has begun, discussing and learning
about programming style is done primarily as part of
group code reviews. I spent two days with the team
when they started coding seriously. We alternated
working on projects with presentation and discussion
of the most important patterns.

The resulting code is remarkably good. The most
experienced members are making excellent design de-
cisions that I only appreciate after having them ex-
plained carefully to me. Even the junior members of
the team, new to Smalltalk and objects, are writing
1diomatic Smalltalk code. I have noticed the pattern
titles becoming part of the spoken vocabulary of the
team — “Oh, that’s a Parameters Object’, “We need a
Guard Clause here”.

2.1.2 Orient Overseas
(OOCL)

OOCL has a much more ambitious effort, with 25-
30 developers working to replace centralized applica-
tions with a worldwide distributed architecture. The
project grew very quickly, which has resulted in some
chaos as the team tries to find a common identity and
culture.

David Ornstein and [introduced patterns two ways.
First, we held two “Smalltalk Bootcamps”, where
teams of 10-12 develop a simple application from re-
quirements to tested, documented, shipping code in
three days. We interspersed discussion of important
patterns and software engineering issues with frantic
development. The lessons learned here seem to stick
very well. In contrast, patterns presented in lecture
style were not learned as readily.

An activity we held with some success was a Pat-
tern Bowl. We chose a piece of code to review. We
divided the audience (25 developers) into two teams.
Each team got points for recognizing the presence or
absence of patterns in the review code in a limited
amount of time. The winners received guardianship
of a token trophy until the next Pattern Bowl. We
were happy with the results for two reasons. First,
the code 1n question got a very thorough review. Ev-
eryone in the room had a pretty good grasp of what
it did and how it did it. You could use a Pattern
Bowl to communicate critical shared code. Second,
the teams were forced to discuss the meaning of pat-
terns, because there were penalties for mis-identifying
a pattern.

Overall, patterns have had a big impact mostly
on the early members of the team, five or six bright
new Smalltalkers we spent a lot of individual time
with. Their designs are sophisticated, their code id-
iomatic. Later additions, including some experienced
Smalltalk programmers, showed reluctance to simply
follow the dictates of the patterns, preferring their own
style. The unfinished state of the patterns has def-
initely made teaching them to experienced program-
mers more difficult.

I have always tried to write my patterns with a
substantial section in the middle that presented the

Container Limited

105

motivation for the pattern, why possible alternatives
don’t work, and led up to the conclusion. OOCL asked
me early on to strip all that out, leaving patterns with
a name, a problem statement, and a solution. I put
together such an abridged version. It has been widely
used as a reference and development guide, often being
posted on cubicle walls within sight of the workstation.

2.1.3 Conclusion

I have seen the SBPP, even in their half-finished
state, have dramatic effects on the quality and quan-
tity of code produced by teams. I am pleased at how
the patterns often encourage good code not by admon-
ishing against mistakes, but by presenting a positive
set of habits. The effects on communication of adding
the names of patterns to the team’s shared vocabulary
is emerging as a powerful positive force.

Experienced programmers often resist adopting
patterns. I suspect the best way to engage developers
with strong notions of how things ought to be done is
to encourage them to modify and extend the patterns
with their own favorite tricks.

Patterns make good projects better. They do not
resurrect bad projects. Most of the many things
that can go wrong with a project can still go wrong,
whether or not patterns are used. Patterns solve a
limited (but critically important) set of communica-
tion problems with team development, and make in-
dividuals more productive. They cannot substitute for
effective project management.

2.2 Pattern in AT&T — James Coplien

2.2,1 AT&T patterns programs
There are many independent patterns efforts afoot
across AT&T; we touch on just a few of them here.

Fault-tolerant architectures: Patterns capture
proven, mature practices in a domain such as build-
ing architecture or software design. AT&T has sev-
eral core competencies that are fundamental to our
history of quality customer service. High-availability
system design and fault-tolerant software are among
these core competencies. Many of these core compe-
tencies can be captured as patterns, since they solve
a wide variety of reliability and availability problems
that arise during architecture and design.

We approached two development communities and
asked management to point us to their experts on
operations, administration, maintenance and provi-
sioning. This program of “pattern mining” collected
dozens of patterns from a handful of experts. We
refined these patterns and captured them on-line in
HTML? where they were made available to the gen-
eral AT&T research and development community.

Process patterns: We have used patterns in the
domain of process and organization, as well as in the
domain of software architecture. Patterns are a lit-
erary form that conveys a solution to a problem in a

2HyperText Markup Language, the publishing language of
the World Wide Web.

context: though most practitioners are exploring ar-
chitectural patterns, there is no reason to limit them
to software design. We have found the recurring pat-
terns of outstanding software development organiza-
tions through an extensive research program [10]. We
can use those patterns to solve organizational and pro-
cess problems.

Object patterns: Little of our patterns work re-
lates to the object paradigm. Objects are just one way
of partitioning systems, and they are not always the
best way to organize high-availability or fault-tolerant
architectures. Besides, there are many more proven,
mature patterns in the architectures of legacy systems
than there are in the young, rapidly changing object-
oriented systems.

Early work in AT&T to gather proven C-++ pro-
gramming idioms has culminated in a collection of
widely used programming techniques [9]. One can
think of these as proto-patterns; they were in fact one
of the foundations from which contemporary patterns
practice grew. The seminal Design Patterns book [18]
built on these and other patterns to provide a general,
language-independent collection of patterns by which
object-oriented programming competency might be
judged. These patterns are seeing wide use in ma-
ture AT&T projects. We have steered some young
object-oriented projects away from patterns, however.
Most new object-oriented projects must learn a design
method and a new programming language, in addition
to building a new architecture. We have noticed that
incorporating more than three significantly new prac-
tices in a project increases risk, so patterns are put off
until the project masters the initial changes.

2.2.2 How patterns have helped us

Training: We have just started to use the fault-
tolerance and high-availability patterns in architec-
tural training. There are two aspects to this training:
pattern training per se, and pattern supplements to
architectural training. Pattern training is largely for
organizations that are “pattern consumers”. These
organizations are building new projects, using pat-
terns as audits and drivers for design. We have found
this training to be effective on many levels. Not
only do attendees deepen their understanding of pat-
terns in general and of specific core competency pat-
terns, but they deepen their appreciation for archi-
tecture and telecommunications foundations. Most
of these courses are conducted as Workshops that
are highly participatory, with design exercises and
pattern-writing exercises. We believe that it is dif-
ficult for designers to appreciate patterns fully, unless
they have written one.

Some architecture courses are slowly adopting pat-
terns as an adjunct to materials presented in a tra-
ditional format. So far, we haven’t found this use of
patterns to be a significant aid to the learning process.
Patterns are probably perceived as a distraction to the
traditional educational structures, and we conjecture
that pattern-based architecture education might work
better if the whole course were pattern-based. We
plan further work in this area.

106

Architecture documentation: In our pattern
mining exercise, a new development project was
the client for patterns extracted from contemporary
projects. When architects from the contemporary
project saw the patterns, they saw a solution to a
problem that had been plaguing them for some time.
Earlier attempts to capture the project architecture
had failed to resolve the tradeoffs between a good de-
scription of the vertical architecture and architectural
layering; patterns provided a way to unify those two
perspectives. The original “source” organization is
now one of the most active pattern organizations in
AT&T, mining its own patterns as architecture docu-
mentation.

Shaping New Architectures: By “mining” the
fault-tolerant patterns of contemporary AT&T soft-
ware systems, we can lay the groundwork for emerg-
ing and future project architectures. Much support
for the emerging patterns work in AT&T came from a
new project for which high availability is of paramount
importance. The new project is evaluating the fault-
tolerance and high-availability patterns gleaned from
contemporary systems to see which ones are well-
suited to the new system’s market and technology.

Requirements Acclimation: Requirements docu-
ments draw on market foresight and experience. Most
analysts focus on the market foresight of the sales and
marketing force, but draw on their personal anecdotes
or on review input for the experience component. Pat-
terns provide a written experience base that can feed
the requirements process in the following way. As for-
mative projects acquire patterns from their peers and
predecessors, they go through them to select those
that address problems in the project requirements.
Once in a while, a pattern will solve a problem that
seems like it should be in requirements, but the re-
quirement is found to be missing. Such requirements
are added to subsequent editions of the requirements
document. We did not foresee this benefit of patterns
at the outset, but it has proven to be a valuable use
of patterns in new projects.

Process Assessment: We use the process patterns
to assess the health of development organizations. Our
process research effort receives many requests for pro-
cess improvement assistance; we use the process pat-
terns as one set of tools to identify and remedy prob-
lems. These patterns, which have been published [10],
are being similarly used in many companies outside

AT&T.

2.2.3 Yet to be done

Designers find individual patterns illuminating and
inspirational. We have patterns at all levels, from ar-
chitectural frameworks down to design patterns and
idioms [7]. The number of total patterns numbers in
the hundreds. Scale is a major obstacle to systematic
and effective patterns usage.

We are currently evaluating pattern organizing
schemes, indexing schemes, and other attacks on the

scale of the pattern knowledge base. Bob Hanmer has
instituted an indexing scheme where the Intent ap-
pears as part of the index entry, but not as part of
the pattern itself. We are also planning to work with
knowledge engineers to help organize patterns accord-
ing to expected search criteria.

2.3 Design patterns at Motorola — Ron
Crocker

Much like AT& T, Motorola has several independent
efforts investigating the use of design patterns for sys-
tem development. Unfortunately, I can only discuss
with any substance the effort that I’m involved with3.

2.3.1 Design patterns vs. software architec-

tures

At Motorola Cellular Infrastructure Group (CIG),
recent efforts in applying design patterns to the de-
velopment process have centered on the relationship
between software architecture and design patterns.
For some time now, the focus of the systematic im-
provement efforts at CIG have centered around find-
ing an approach for system development that allows
for “large-grained” reuse [13]. Initially, this program
focused on the use of object-oriented approaches early
in the life cycle, primarily to provide a foundation for
this reuse. These attempts were not totally success-
ful. Analyzing these projects indicated some common
characteristics that effectively limited any large-grain
reuse, including;:

o Strong coupling of OO artifacts within a single
product

o Short-term needs superseded longer-term needs,
even when the benefits were clear.

These findings are not particularly surprising given
the strong product-oriented culture of Motorola. How-
ever, reaching corporate goals of a factor of 10 im-
provement in time-to-market requires substantially
less work in development — you simply can’t do the
same amount of work in 1/10th the time.

Enter the centralized software architecture organi-
zation, lead by the Strategic Software Technologies or-
ganization within CIG [14, 12]. As an organization,
CIG has accumulated considerable domain expertise
and has some very seasoned software architects. In
evaluating several purported software architectures,
again we found some common symptoms:

o A lack of preciseness in the specification made
them ambiguous.

e The architects developed their own terminology
to talk about concepts that we would have imme-
diately recognized had they used “our” vocabu-
lary.

e We did not have direct/immediate access to the
architects.

3 Another effort is documented elsewhere [24].

107

Each of these problems led directly to communica-
tion problems, which lessens the effectiveness of the
architecture. Because the architectures are ambigu-
ous, they can be interpreted in ways other than in-
tended. Because the language was “foreign”, the am-
biguities tend to be amplified and the architectures
become product-centric. Finally, questions about the
architecture have nowhere to be directed and are hence
left unanswered.

Our search for technology solutions turned to de-
sign patterns. From previous readings, we knew that
design patterns offered an approach for describing ar-
chitectural entities independent from their implemen-
tation. We were concerned about the roots of de-
sign patterns coming from the object-oriented com-
munity, since our organization has little OO experi-
ence. Our approach was to simply not use design
patterns in an OO form. We would use design pat-
terns to capture problem-domain-specific entities in
an implementation-independent way for sharing across
projects (and products).

2.3.2 Current status

So far, we have a small catalog of design patterns
focused on (in telephony terms) fault management.
There is already an implicit design pattern being used
in many of our products for handling faults in the
equipment. It’s robust and understood by the senior
technical staff. The problem with this pattern is that
it’s only implicit. It exists in the heads of the senior
people and in the code. In the cases where we reuse
this pattern, the pattern is “rediscovered” from the
code and re-implemented, often with minor improve-
ments. None of these improvements, however, affect
the basic “higher-order” pattern. These are the sort
of patterns that we will be cataloging. Based on some
near-term results using the fault management pattern,
other problem areas are being identified for “patterni-
fication”. Our expectation is that these patterns will
interact to form a fabric of patterns for telephony.

2.3.3 Pattern applicability spaces

We have a model of the world depicted roughly in
Figure 1. We separate the development process into
three large “buckets”: Products, Problem-Space (en-
tities), and Solution-Space (entities). The Products
are implementations of solutions for specific customer
use. CIG examples of products would include base
stations, cellular telephone switches, and customer
database products. Each of these products is rooted
in its problem-space entities. Base stations require
mobility management capabilities and radio manage-
ment capabilities. These capabilities tend to be largely
independent of both the product itself and implemen-
tations of the product. The issues identified above
(product-specific nature of OO artifacts and special-
ized architectural language) have the effect of mask-
ing the inherent problem-space nature of these capa-
bilities. The solution-space is where we implement
both problem-independent capabilities and product-
specific instances of the problem-space capabilities.
For example, for the majority of the patterns de-
scribed in [18] we would consider solely solution-space
architectures (“Implementation Architectures”) that

Products

Reference Implementation A’
g Architectures Architectures
S
S —)
-] "

8 Problem- Solution- |

Space Space

Pro%j g 1 o
E‘“’ : S-Product Product X
oordination Product Y

Product 2

~f——— Pattems ————--

* Architecture Spec.
Languages
» “Ad-Hoc” Methods

* Object Frameworks
* Meta-Object Protocols
+ Domain-Specific Languages

Figure 1: Architectural Spaces

are problem-space independent; other problem-spaces
may see those as both problem-space and solution-
space patterns.

Each of the spaces has an architectural basis. The
Problem-Space architecture we call “Reference Archi-
tecture” to indicate that it is not a concrete imple-
mentation but rather a guide to developing products
incorporating these problem-space entities. We view
the critical aspects of these architectures being the
definition of the (behavioral aspects of the) entities
and their interactions, and therefore focus less on the
particular implementation issues. The Solution-Space
architectures we call “Implementation Architectures”
since their primary focus is on particular instances of
products.

This brings us to consider technologies that can aid
in describing the architectures in the given spaces. We
consider design patterns a technology that spans the
spaces, and believe that design patterns represent a
technology that can be used to smooth the transition
between spaces and final products. Other technologies
we have investigated (object frameworks, meta-object
protocols, and application-specific languages) tend to
reside in the solution-space, as they apply more di-
rectly to the issues relating to implementing designs.

2.3.4 Summary

There are two thrusts in our use of design patterns.
The first is in using the technology to encapsulate
problem-space entities for larger-grained reuse across
product families as described above. The other is in
using object frameworks and application-specific lan-
guages to implement these patterns for easier imple-

108

mentation. Those investigations are on-going and not
at a point to report progress. Nevertheless, we have
seen some effects of using design patterns in our efforts
so far:

e Design patterns have little to do with object-
oriented technology. This technology is indepen-
dent of object-oriented technology. The software
systems from which we are extracting design pat-
terns are not object-oriented, and the resulting
design patterns are not object-oriented. These
design patterns can be implemented using object-
oriented designs, but it is not required to be this
way.

e Design patterns represent a mechanism for eas-
ily sharing design information among groups of
architects. We have found that with the design
patterns we have written, they have been quickly
understood by both the senior architects and the
product developers. Other approaches have been
less successful in bridging this gap.

e Writing good design patterns is difficult and time-
consuming. In our efforts so far, we have spent
much time on understanding how to write good
design patterns so that they provide enough infor-
mation to the reader to be useful. Our initial de-
sign patterns have gone through many iterations
to ensure quality. This implies that only high-
value problems should be captured using design
patterns, and therefore choosing the appropriate
problems becomes an issue.

e It is hard to quantify the impact of design pat-
terns on our development effort. Currently, there
are no metrics capable of distinguishing the im-
pact of design patterns from other changes in our
development process. Without further efforts on
such metrics, we will never know the true benefit
of this technology.

2.4 Experiences using patterns at BNR —
Gerard Meszaros

At BNR, the research and development subsidiary
of NorTel (formerly known as Northern Telecom), we
first became aware of the term “patterns” at OOPSLA
1993. We instantly recognized that we had been doing
something very similar for quite some time as part of a
major re-engineering effort of our DMS-100 family of
telephone switches [23]. We have used the “pattern”
and similar forms to capture project knowledge in a
number of areas. While many of these patterns are
specific to our problem domain and form the basis
of our competitive advantage, we freely publish the
more generic ones in the recognition that we get far
more in return for a relatively small investment. The
patterns we write and use can be roughly categorized
as process/method patterns and technical patterns.

2.4.1 Process/Method patterns

Capturing a design methodology as patterns:
As part of developing a new architecture to allow rapid
development and delivery of telecommunications ser-
vices (a.k.a. “Features”), we realized that service de-
velopers would require guidance in using the architec-
ture. We began to develop a “service design” method-
ology. As the “pattern form” was as yet undeveloped,
we captured the methodology as a series of “seman-
tic models” starting with requirements and domain
model, leading to the architecture model, the design
model and finally the implementation model. Specific
aspects of each model were identified and the heuris-
tics for transforming them to the related aspect of the
next model were captured.

Many of these patterns were “prescriptive” in that
they described how to get from one model to another.
As an example, a number of the patterns describe how
to find and identify similar concepts in different re-
quirements documents and capture the common con-
cepts in the domain model of a service. These patterns
effectively are a “recipe” for doing abstraction for peo-
ple to whom this does not come naturally.

Architecting Method: In the process of re-
architecting our call processing system, we have come
to recognize a number of key patterns of behavior of
architects that lead to good architecture. Many of
these patterns are technical in nature. We have cap-
tured a number of these in [19] for review and publi-
cation at PLoP-95.

The non-technical patterns include ones such as
“Just say NO to Politics” (let the project managers
solve the question of how the work is divided; archi-

109

tects should concentrate on ensuring that the design
decisions are made for technical reasons.)

2.4.2 Technical patterns

We had discovered a number of recurring patterns
in the design of telephone services. We had coined
terms for many of these, such as modifier service (a
service which observes another service and adds addi-
tional behavior at appropriate points.)

The patterns mailing list on the internet gave us
early access to the patterns that were to be published
in [18]. We also invited Richard Helm to come teach
an introductory course on these patterns. We recog-
nized many of the patterns in our system, often to the
point of being able to list our own specializations of
the general patterns being described.

We quickly found ourselves expressing our designs
in terms of these patterns. They gave us a precise yet
concise way of synchronizing our thoughts which saved
a lot of effort. No longer did we have to describe a key
portion of the design since we had a common under-
standing of what was meant by “this object is using
the Observer Pattern to monitor this other object.”

Patterns in Software Architecture: We have
found patterns to be particularly useful for defining
and describing software architectures. Many patterns
(Observer, Strategy, Composite, Half-Object Plus Pro-
tocol to name a few) are particularly useful when defin-
ing the the architecture of a system because they en-
capsulate potential changes to the system. The ac-
tual mechanisms used to implement these patterns
can vary widely based on cost-space tradeoffs but can
be hidden from the core objects (business objects) in-
volved.

2.4.3 Reflections on the BNR experience

Personality Types: Using patterns written by oth-
ers only takes an open mind; writing patterns takes a
special mind! Most people whom we have exposed
to the concept of patterns can quickly become profi-
cient at using the common ones. But we have found
that only a small percentage of people can write pat-
terns. With respect to patterns, there are three kinds
of people: those who see patterns everywhere and can
describe them, those who can recognize patterns but
can not describe them easily, and those who are obliv-
ious to the pattern surrounding them. This difference
seems to stem from a basic orientation of people to
focus on similarities as opposed to differences between
things.

Impact of Patterns: We have not attempted to
measure the impact of patterns on productivity but
we have noticed that communication between people
with a “shared space” of patterns is quicker, more
complete, and less likely to be misunderstood. At the
programming level, we have had people design what
might be rather complex designs much more quickly
than expected by using one or more design patterns.

2.5 Patterns in industrial automation at
Siemens — Frances Paulisch/Lutz Do-
minick

Various operating divisions at Siemens are investi-
gating the effectiveness of using patterns to improve
their software production and these activities are co-
ordinated through our department. Many of the soft-
ware design patterns that are not subject to non-
disclosure are being published by our colleagues in

[8]. In this section, we focus on our particular project

where we are investigating the effectiveness of apply-

ing patterns to technologically-oriented applications
like the process control of steel mills.

2.5.1 Identifying an initial set of patterns

QOur project team, the “pattern mentors”, consists
of two (software) pattern specialists and two (indus-
trial automation) domain specialists. The first step
was to identify potential patterns in interviews with
domain experts and then to iteratively refine them
(again in consultation with domain experts). In each
round we focused on a specific knowledge area. We
invited the experts to give a short introductory talk
about the solutions they used in their projects and
we introduced the notion of patterns. Then we had a
discussion to discover the patterns that the projects
teams had been using intuitively. Roughly three in-
terviews were required to finish a set of patterns. In
their final form, the domain experts agreed that the
pattern met our two major criteria of:

o correctly representing the problem-/solution-pair
and

e being a useful representation of knowledge de-
manded by their projects.

In one case two experts initially claimed that their
solutions to a similar problem were incompatible with
each other, but after seeing the problem-/solution-pair
posed as a pattern, agreed that their solutions were
indeed very similar.

As an additional “sanity check” we also presented
several patterns to experts of a different but related
area who had not taken part in the discussion. The
level of detail used in the pattern-form was found to
be appropriate for providing an understanding of the
related areas.

The current state of our project is such that the
final proof, the evaluation of the effectiveness of these
patterns in concrete steel mill projects, has not yet
been achieved, but we are working towards this goal.
Our work demonstrates that a small team of people
with knowledge of both patterns and of the domain
can build up a set of domain-specific patterns which
serve as a basis for demonstrating the effectiveness of
patterns to the domain experts. Once such a set of
essential patterns has been identified and the domain
experts have agreed to the effectiveness of their rep-
resentation in pattern-form, how should one go about
extending the set of patterns?

»

110

2.5.2 Identifying additional patterns

Ideally, a domain expert should be the pattern au-
thor because they have the best knowledge of the do-
main, but there are several hindrances which must be
overcome to accomplish this. The domain experts

e need time to learn what patterns are and how to
identify and use them,

e need practice at abstracting away detail and writ-
ing patterns, and

e are so tied up in their daily projects that they
find it hard to take the first hurdle and actually
write patterns.

Although necessary during the introduction of pat-
terns into an organization, it is exceedingly difficult
to write patterns, as we did, based on second-hand
experience. Doug Lea of SUNY Oswego, who was in
a similar situation consulting with avionics engineers
developing a set of online design patterns for avionics
control systems as part of the Adage project [21], re-
ports that he wrote many of the patterns himself after
consultation with domain experts for reasons similar
to what we experienced [22].

2.5.3 Making patterns available online

To make the patterns more accessible and attractive
to the domain experts, we recorded all of our patterns
in HTML in a platform-independent online catalog of
patterns. This catalog was organized as a set of three
axes which relate to the application domain (in our
case the level of automation, the physical structure of
the milling machine, and the product-quality features
of the milled steel).

The online catalog allows the use of multiple entry
points, navigation among the patterns, and a hierar-
chical structure. The navigation aspect is especially
important when the pattern collection grows larger
than about 50 patterns which can no longer be lin-
early organized in book-form. We used links to hide
information which is not immediately relevant to the
user so that they can see that the information is there
if they want it, but are not distracted by it. Further-
more, many terms are connected to an online glossary
which resulted from a partial domain analysis of the
application area. It is too early to tell how useful this
online collection of patterns is to the domain experts,
but initial indications are positive.

2.5.4 Initial experience in using patterns

Our initial experience in using patterns indicates
that patterns are more likely to be accepted and ap-
plied if a significant portion of the design is covered by
either a group of low-level patterns or a single higher-
level “architectural” pattern. Our users expect some
kind of tool support, especially when they are faced
with ca. 30 or more patterns. In cases where no appro-
priate technological design pattern is judged to be ide-
ally suited, the users tend to choose structure-oriented
patterns such as “pipe-and-filter” or “layered architec-
ture” over process-oriented patterns.

2.5.5 Future directions

Many of the realizations made within the software
reuse community, such as

e the importance of high-level mangement commit-
ment, and

o the effectiveness of making a strict distinction be-
tween the teams responsible for developing com-
ponents and those responsible for identifying and
maintaining them

apply equally well to the industrial use of patterns.

We have noticed a strong relationship between the
technological design patterns and software design pat-
terns. The technological design patterns we have dis-
covered thus far are planned to serve as the basis
for a software application framework for the process-
automation of steel mills. Here, we are particularly
interested in investigating the interplay between the
technological and the software design patterns (e.g.
representing the process-control of a conveyor belt as
a pipe-and-filter architecture).

2.6 Design patterns in design reviews —
John Vlissides

Having served as a consultant to a half-dozen com-
panies, I'm struck by the similarities in what they
all try to do. Each project has its unique aspects,
certainly, but they are mere variables in a recurring
formula. Every project has included a user interface
component communicating with some sort of compu-
tation component, usually backed by a database. Ev-
ery project sought to decouple these components to
one degree or another. Everyone wanted to use ob-
ject technology, though not everyone understood why.
And while the average experience level varied, ev-
ery development team struggled with the design pro-
cess: false starts, iteration, and delays were the norm.
These recurrences are mostly beneficial; they let one
know what to expect and how to impart the most ben-
efit. But two recurring problems proved troublesome.
The following sections describe these problems and
how design patterns have helped me deal with them.

2.6.1 Unearthing the design and its rationale

The first of these irritants was the quasi-courtroom
tactics I had to adopt to get to the truth of a design.
Developers usually had trouble explaining the gist of
what they had done, either because they had no means
to express it or because they honestly didn’t know. 1
was confronted with one spaghetti class diagram after
another. The unstated hope was that I would come
to understand the design by sheer osmosis. In reality,
there was never time for that.

My only recourse was relentless interrogation. I
would ask question after question until I had built up
a consistent mental model of the system. Inevitably
that would involve backtracking—someone would con-
tradict what was said earlier, causing a partial collapse
of my mental model. Sometimes the collapse would
come only after we had gone down a series of blind
alleys. The more successful attempts along these lines

111

tended to raise more questions than they answered:
Why did you design it that way? Is what seems to be
gratuitous complexity really worthwhile? What are
your assumptions, and why are they realistic? What
happens six months from now when I need new capa-
bility X?

Which leads me to the second irritant: shallow de-
sign rationale. Often the developers simply didn’t
know why a design was the way it was. No one both-
ered writing down the reasons for each major change
to the design, let alone the incremental ones. As a
result, we had to reverse-engineer the design choices
time and again—an uncomfortable process for all con-
cerned.

2.6.2 Enter design patterns

After four years of this, things finally began to
change when in early 1993 I started incorporating
early drafts of material that eventually became Design
Patterns [18] into my consulting engagements. Rough
as that material was, it gave me something concrete
to offer in the way of exemplary designs. It also fo-
cused my thinking so that I could more readily identify
designs based on what the developers were trying to
do. No longer did I have to assume that they had
developed something entirely new for me to fathom.
Instead, I considered the flexibility they were pursu-
ing as a way to isolate a design pattern. Then I could
concentrate on mapping the classes they had defined
to those in the pattern. If there was some semblance
of correspondence, I could feel good about their de-
sign and offer constructive criticism immediately. If I
could see no correspondence, then I would introduce
the pattern to them. Sometimes the flexibility they
sought was ill-defined or spurious; the pattern would
elude me in those cases. Thus the catalog of design
patterns became a kind of sounding board, a test suite
for valid design. Of course, this experience helped us
refine the patterns themselves.

2.6.3 Sharing design patterns

For all these benefits, though, the burden of pat-
tern application fell largely on my shoulders. The
patterns weren’t complete or polished enough to give
to the development teams ahead of time. I trotted
them out as needed, but because they were hard to
share with others, they tended to stay confined to my
head. Their consummate benefits didn’t emerge until
the team members could internalize them as well.

That couldn’t happen until Design Patterns ap-
peared on bookshelves in late 1994. For my first major
engagement thereafter, I insisted that each developer
read and understand the book prior to our meeting.
1 had no delusions about this request; I thought few
would read it all, let alone understand it. But that
was their responsibility, and I expected most people
to have at least looked at it.

As it turned out, not only had everyone read it,
but a core group (5 out of 12) had a remarkably good
grasp of the patterns we discussed. There was also
enthusiasm, not just for design patterns but for the
developers’ own design as well, because they found
that they had used some design patterns unwittingly.

object-oriented

Patterns ... FCS T AT&T | Motorola | BNR T Siemens | IBM
are a good communications || / 4 4 v V4 v
medium

are extracted from working Vv V4 V4 V4 V4
designs

capture design essentials Vi v VA v Vi
enable sharing of “best v V4 v v
practices”

are not necessarily v Vv v

should be introduced through
mentoring

<

<

are difficult/time-consuming to
write

<
<

require practice to write

N N]

Table 1: Sources for Summary Observations

Seeing the design patterns was a vindication of sorts—
it legitimized approaches they had been unsure of.

2.6.4 The biggest payoff: communication

But the best part of the encounter was the high
level of communication we achieved. We discussed de-
signs not in terms of classes and objects and methods
but to a great extent in terms of design pattern con-
cepts: participants, applicability, consequences, trade-
offs. Discussion remained at the design pattern level
unless and until there was a controversy, at which
point we might drop down to the nuts and bolts. But
that was infrequent. I’m happy to report that pattern
concepts dominated our discussions.

In fact, I came away from this engagement feeling
a satisfaction I hadn’t felt after any other, and I at-
tribute it unreservedly to the use of design patterns by
all concerned, not just myself. Another engagement
along these lines has been scheduled for this fall. The
project under review will be a different one, with an-
other, somewhat larger development team at its helm.
As a further twist, several of the team members from
the earlier engagement will participate. They will act
as I did, but to small subgroups of the overall team.
That will help spread the burden and hopefully permit
even more incisive discussions.

3 Lessons learned

Despite our diverse backgrounds and experiences,
several common lessons can be drawn from our own ex-
periences with patterns as well as from our colleagues
in the patterns community. Table 1 shows the sources
of the summary observations listed below. Although
in some cases it is difficult to give a binary answer,
checkmarks indicate that this company has made this
experience. Unfortunately, we do not have any mea-
surable data on the impact of patterns available yet,
at least not in a form we could currently publish. But
the consistency among our experiences with patterns,
leads us to believe in the value of lessons listed here.

112

Patterns serve as a good team communica-
tions medium. Typically, when several pattern-
aware software developers are discussing various po-
tential solutions to a problem, they use the pattern
names as a precise and concise way to communicate
complex concepts effectively.

Patterns are extracted from working designs.
Each design pattern discussed above was extracted
from existing, working designs (and in the case of the
organizational patterns of AT&T, from existing orga-
nization) and not created without experience. The de-
sign patterns capture the essence of working designs in
a form that makes them usable in future work, includ-
ing specifics about the context that makes the patterns
applicable or not.

Patterns capture the essential parts of a de-
sign in a compact form. This compact represen-
tation helps developers and maintainers understand
and therefore not contort the architecture of a sys-
tem. Making this often only implicitly understood
knowledge explicit allows for more effective software
development.

Patterns can be used to record and encourage
the reuse of “best practices”. This is especially
important for helping less-experienced developers pro-
duce good designs faster. A collection of design pat-
terns in handbook-form is useful for teaching software
engineering. However, note that, in partial contrast to
handbooks from other engineering disciplines, a design
pattern is not a rule to be followed blindly, but rather
it should serve as a guide to the designer and/or pro-
vide alternatives when being applied to a particular
situation.

Patterns are not necessarily object-oriented.
Although the design patterns as we describe them
come from the object-oriented community, there is
nothing inherent in design patterns that makes them

object-oriented. Not coincidentally, there is nothing
inherent in object-oriented programs that make them
candidate sources for design patterns. Qur experiences
have shown that design patterns can be found in a va-
riety of software systems, independent of the methods
used in developing those systems.

The use of pattern mentors in an organization
can speed the acceptance of patterns. Pattern
mentors can help provide a balance between encourag-
ing good design practices based on patterns and dis-
couraging overly high expectations of designs based
on patterns. Initially, pattern mentors can help de-
velopers recognize the patterns that they already use
in their application domain and show how they could
be reused in subsequent projects. Pattern mentors
should also watch that the wrong patterns are not ap-
plied to a problem (i.e. people tend to reuse things
that they know and the same temptation will apply
to patterns, regardless of whether the pattern actu-
ally fits the problem)*.

Good patterns are difficult and time-consu-
ming to write. Writing good patterns is a skill that
does not come easy. Furthermore, the writing of a pat-
tern typically involves an iterative process in which
the pattern is presented to others and/or applied in
projects, relevant comments are incorporated, and the
process repeated until the result is adequate. However,
we have found that, as one gains experience at writing
patterns, the effort for recognizing and writing them
1s reduced.

Pattern practice is of utmost importance. Af-
ter the initial phase of learning about patterns by see-
ing many good examples, one comes to appreciate the
true value of patterns best from recognizing and writ-
ing them oneself.

4 Conclusions

In our joint experience, we have seen that the use
of patterns can have a dramatic impact on the way
a team develops software. The improved communica-
tion through patterns alone is a valuable asset. Giving
novices the opportunity to learn from positive exam-
ples which already form the basis of a shared team
vocabulary can help speed their contribution to the
team. On the other hand, good patterns are hard
to write, especially for those developers to whom ab-
straction does not come naturally. It is difficult to
find a balance between the advantages and disadvan-
tages, especially when measurable results are not yet
available. It is clear that many people in the soft-
ware engineering community recognize the emergence
of patterns, but only few have had any opportunity,
until now, to learn about their benefits and drawbacks
in practice.

4 4To someone with a hammer, everything looks like a nail.”

113

References

[1]

[2]

(3]

[4]

(8]

)

[10]

[11]

[12]

Christopher Alexander. The Timeless Way of
Building. Oxford University Press, New York,
1979.

Christopher Alexander et al. A Pattern Lan-
guage: Towns, Buildings, Construction. Oxford
University Press, New York, 1977.

B. Anderson and P. Coad. Patterns workshop.
In OOPSLA’93 Addendum to the Proceedings,
Washington, D.C., January 1994. ACM Press.

Bruce Anderson. Towards an architecture hand-
book. In OOPSLA Addendum to the Proceedings.
ACM Press.

Kent Beck. Using a pattern language for pro-
gramming. In Addendum to the Proceedings of
QOOPSLA’87, volume 23,5 of ACM SIGPLAN
Notices, page 16, May 1988.

Kent Beck and Ralph Johnson. Patterns Gen-
erate Architecture. In Furopean Conference on
Object-Oriented Programming (ECOOP), 1994.

Frank Buschmann and Regine Meunier. A system
of patterns. In James O. Coplien and Douglas C.
Schmidt, editors, Pattern Languages of Program
Design. Addison-Wesley, 1995.

Frank Buschmann, Regine Meunier, Hans Rohn-
ert, Peter Sommerlad, and Michael Stal. Pattern-
Oriented Software Architecture: A System of Pat-
terns. John Wiley and Sons, 1996. (in prepara-
tion).

James O. Coplien. Advanced C++: Programmang
Styles and Idioms. Addison-Wesley, 1992.

James O. Coplien. A generative development-
process pattern language. In James O. Coplien
and Douglas C. Schmidt, editors, Pattern Lan-
guages of Program Design. Addison-Wesley, 1995.

James O. Coplien and Douglas C. Schmidt, ed-
itors. Patiern Languages of Program Design.
Addison-Wesley, 1995.

R. Crocker and J. Engelsma. Continuing inves-
tigations into an organizational-wide software ar-
chitecture. In ICSE-17 Workshop on Software
Architecture, April 1995.

R. T. Crocker. Reaching for ‘10X’ improvements
- why OO isn’t the answer! In Proc. of 10th In-
ternational Conference on Advanced Science and

Technology, pages 91-96, March 1994.

J. Engelsma and G. P. Saxena. Building com-
petence in software architecture at Motorola’s
Cellular Infrastructure Group. In OOPSLA ‘94
Workshop on Software Architectures, Oct. 1994.

Brian Foote. quoted during the PLoP ’94 confer-
ence (see [CS95]), 1994.

[16] Erich Gamma. Object-Oriented Software Devel-
opment based on ET++. PhD thesis, Univer-
sity of Zurich, Institut fiir Informatik, 1991. (in
German). Also available through Springer-Verlag,
Berlin, 1992.

[17] Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides. Design Patterns: Abstraction
and Reuse of Object-Oriented Design. In O. Nier-
strasz, editor, European Conf. on Object-Oriented
Programming (ECOOP), Kaiserslautern, Ger-
many, July 1993. Springer Verlag, LNCS 707.

[18] Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides. Design Patterns — Elements
of Reusable Object-Oriented Software. Addison-
Wesley, 1995.

[19] Allen Hopley. Levels of abstraction. In Paitern
Languages of Programming Conference, 1995.

[20] Ralph E. Johnson. Why a conference on pat-
tern languages? Software Engineering Notes,
19(1):50-52, January 1994.

[21] Doug Lea. Design patterns for avionics control
systems. Available through WWW site http://st-
www.cs.uiuc.edu/users/patterns/patterns.html,
1994.

[22] Doug Lea. personal communication, 1995.

[23] Gerard Meszaros. Software architecture in BNR.
In David Garlan, editor, Proc. of Ist Intl. Work-
shop on Architectures for Software Systems, 1995.
held in cooperation with ICSE-17.

[24] D. Schmidt. Experience using design patterns to
develop reuseable object-oriented communication
software. Communications of the ACM, October
1995.

114

