
DeepDelta: Learning to Repair Compilation Errors
Ali Mesbah∗

University of British Columbia
Canada

amesbah@ece.ubc.ca

Andrew Rice
University of Cambridge and

Google LLC, UK
acr31@cam.ac.uk

Emily Johnston, Nick Glorioso,
and Edward Aftandilian

Google LLC, USA
{epmjohnston,glorioso,eaftan}@google.com

ABSTRACT
Programmers spend a substantial amount of time manually repair-
ing code that does not compile. We observe that the repairs for
any particular error class typically follow a pattern and are highly
mechanical. We propose a novel approach that automatically learns
these patterns with a deep neural network and suggests program
repairs for the most costly classes of build-time compilation failures.
We describe howwe collect all build errors and the human-authored,
in-progress code changes that cause those failing builds to transi-
tion to successful builds at Google. We generate an AST di� from
the textual code changes and transform it into a domain-speci�c
language called Delta that encodes the change that must be made
to make the code compile. We then feed the compiler diagnostic
information (as source) and the Delta changes that resolved the di-
agnostic (as target) into a Neural Machine Translation network for
training. For the two most prevalent and costly classes of Java com-
pilation errors, namely missing symbols and mismatched method
signatures, our system called D���D����, generates the correct
repair changes for 19,314 out of 38,788 (50%) of unseen compilation
errors. The correct changes are in the top three suggested �xes 86%
of the time on average.

CCS CONCEPTS
• Software and its engineering→ Source code generation.

KEYWORDS
compilation errors, program repair, neural machine translation

ACM Reference Format:
Ali Mesbah, Andrew Rice, and Emily Johnston, Nick Glorioso, and Edward
Aftandilian. 2019. DeepDelta: Learning to Repair Compilation Errors. In
Proceedings of the 27th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE ’19),
August 26–30, 2019, Tallinn, Estonia. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3338906.3340455

1 INTRODUCTION
One of the bene�ts of using a compiled programming language
is that programming mistakes can emerge at compilation time
rather than when the program is executed. A failed build will often

∗This work took place while Ali Mesbah was a Visiting Researcher at Google.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5572-8/19/08.
https://doi.org/10.1145/3338906.3340455

prompt an edit-compile cycle in which a developer iterates between
attempting to resolve diagnostic errors and rerunning the compiler.

A previous large-scale study reported that professional develop-
ers build their code 7–10 times per day on average [44]. The study
found that build-time compilation errors are prevalent and cost
developers substantial time and e�ort to resolve. Build-time compi-
lation errors1 emerge when a developer compiles her code through
a build management system such as Bazel, Gradle, or Maven.

Our goal is to help developers to repair build errors automatically.
Previous research in the area of automated program repair has
focused on �nding patches when a test failure occurs through
�xed templates and search-based techniques [16, 24, 28, 29]. In
this paper, we propose a novel approach, called D���D����, for
automated repair of build-time compilation errors. Our insight is
that there exist common patterns in the way developers change
their code in response to compiler errors. Such patterns can be
learned automatically by extracting Abstract Syntax Tree (AST)
changes between the failed and resolved snapshots of the code and
feeding these as abstracted features to a deep neural network.

This paper makes the following contributions:

• We perform a large-scale study of compilation errors and
changes that resolve them to �nd the most prevalent and
costly error kinds in practice. Our dataset is collected from
developers’ code changes across thousands of Java projects
containing 300 million LOC at Google. Our study shows that
51% of all compiler diagnostics are related to the compiler
not being able to resolve a particular symbol, which is also
the most costly category of compiler errors to �x.

• We formulate automated repair as a Neural Machine Trans-
lation (NMT) [48] problem in which the source contains
information about the failure and the target is the set of
AST changes, captured in a domain-speci�c language, called
Delta, which resolves the failure.

• We present the instantiation of our approach, called D����
D����, which automatically generates source and target
features from previous developer data and learns repair pat-
terns for the two most prevalent and costly classes of Java
compilation errors in practice.

• We show that our technique is e�ective through a large-scale
empirical evaluation on 38,788 unseen compilation errors at
Google. Our results show that D���D���� can generate the
exact correct repair between 47%–50% of the time. Of these
cases, the correct �xes are in the top three suggested �xes
85%–87% of the time.

1In this paper, we use build errors and compilation errors interchangeability to mean
build-time compilation errors.

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia A. Mesbah, A. Rice, E. Johnston, N. Glorioso, and E. A�andilian

(a) Four builds with three build diagnostics D1–3. (b) Resolution session for D3.

Figure 1: Build Resolution Sessions.

2 COLLECTING COMPILATION ERRORS
The �rst step required for learning repair patterns is obtaining de-
veloper data on compilation errors. We collect this data as part of
the regular development cycle at Google. We also use this dataset
to characterize the prevalence and cost of di�erent classes of com-
pilation errors in practice.

2.1 Data Collection
Every build initiated by a developer is automatically logged at
Google. The log contains detailed information about each build,
including any compiler diagnostics, i.e., detailed error messages,
along with a snapshot of the code that was built.

For this study, we collected textual build logs for a period of two
months, from January 23, 2018, to March 23, 2018. The collected
logs were subsequently parsed and analyzed to understand which
build errors happen most frequently in practice. Although our build-
diagnostics framework is language-agnostic, in this paper, we focus
on build errors pertaining to Java projects.

2.2 Diagnostic Kinds
We group compiler error messages by diagnostic kind. A diagnostic
kind represents a class of errors that all have the same cause. Com-
pilers have error message templates into which concrete names are
interpolated. For example, javac uses the template “{0} is abstract;
cannot be instantiated” for an attempt to instantiate an abstract
class and it refers to it by the key abstract.cant.be.instantiated.
We built a parser to map concrete error messages in the build log
back to the message templates that produced them (see Table 2).

2.3 From Diagnostics to Resolutions
A failed build can contain numerous diagnostics; each of these
diagnostics might be new ormight be the same as one reported from
a previous build. We therefore �rst set out to convert sequences of
builds containing a particular diagnostic into resolution sessions.

D��������� 1 (R��������� S������ (RS)). A resolution session
(RS) for a build diagnostic Di is a sequence of two or more consecutive
builds, B1, B2, . . . , Bk where Di is �rst introduced in B1 and �rst
resolved in Bk , and the time between build Bn and Bn�1 is no more
than a given time window T .

The intention with a resolution session is to capture the period
of time that the developer is actively working on resolving the
diagnostic. Therefore, we de�ne the time window T to be one hour.
This window represents a “task switch window,” i.e., if a developer

has not performed a build within T , it is likely they have switched
to some other activity; e.g., they could have gone to a meeting,
lunch, or left the o�ce.

We quantify the developer cost in terms of time needed to resolve
a particular diagnostic. Consider a diagnostic Di with a resolution
session B1, B2, . . . , Bk . Let |Di | be the number of diagnostics pro-
duced by build Bi ; we call this the active diagnostics at Bi . Let Tsi
be the start time that build Bi was initiated, andTei be the end time
that build Bi completed. Then we de�ne active resolution cost as:

D��������� 2 (A����� R��������� C��� (ARC)). For a diag-
nostic Di , Active Resolution Cost (ARC) represents the active time
the developer spends resolving Di , excluding the cost of the builds
themselves, divided by the number of diagnostics present in the inter-
mediate builds of its resolution session:

k�1’
i=1

Tsi+1 �Tei
|Di |

Figure 1 depicts an example of how we construct resolution
sessions. As shown in �g. 1a, D1 and D2 are �rst introduced in
build 1, and D3 �rst appears in build 2. We consider a diagnostic
to be resolved when it disappears from the build (see De�nition
1). For instance, D3 disappears in build 4, and thus its resolution
session includes builds 2–4, as shown in Figure 1b.

Table 1: Dataset

Builds 4.8 million
Failed Builds 1.0 million
Compiler Diagnostics 3.3 million
Resolution Sessions 1.9 million
Green & Singular Sessions 110,219

2.4 Dataset and Findings
Table 1 summarizes our dataset. We processed a total of 4.8 mil-
lion builds of which 1.0 million were failures, i.e., around 20% of all
builds fail.

Recall that a build failure can contain multiple compilation er-
rors, i.e., diagnostics. These build failures contained a total of 3.3
million diagnostics from which we were able to �nd 1.9 million res-
olution sessions. The remaining 1.5 million diagnostics for which
we found no resolution session correspond to those changes aban-
doned by developers or with more than one hour between build
attempts.

DeepDelta: Learning to Repair Compilation Errors ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Table 2: Top 10 diagnostic kinds by Active Resolution Cost (ARC).

Diagnostic kind Description Active cost (s) Builds Instances Cost
compiler.err Avg Max Avg Max Total % %
cant.resolve Use of unde�ned symbol 69 13327 2.6 143 949,325 51 47
cant.apply.symbol No method decl. found with matching signature 102 8330 2.6 101 151,997 8 11
strict Incorrectly declared dependencies in Bazel 120 6672 2.2 72 109,156 6 9
doesnt.exist Use of unde�ned package 66 7831 2.7 70 159,158 9 7
cant.apply.symbols No method decl. found with matching signature 115 8771 2.5 41 60,287 3 5
expected Syntax error 35 5190 2.5 72 168,299 9 4
inconvertible.types Attempt to cast between inconvertible types 96 6259 2.5 42 38,191 2 3
unreported.exception Checked exception, which must be handled 105 4234 2.3 32 22,684 1 2
does.not.override.abstract Failed to implement inherited abstract method 138 4963 2.8 43 8,089 0 1
already.de�ned Symbol already de�ned 90 5053 2.4 24 12,381 1 1

As a �nal step we identi�ed 110,219 resolution sessions which
contained only a single diagnostic (singular) and which ended in
a successful build (green). We use these singular, green resolution
sessions as training data since we can be sure that the change
made by the developer actually resolved the diagnostic in question.
Our dataset excludes automated batch builds since we are only
interested in interactive activity by developers.

Table 2 presents the top-ten most frequent and costly build errors
in our dataset. The table shows the diagnostic kind, active resolution
cost (average, min and max), the number of subsequent builds to
resolve the diagnostic (average, min and max), the number and
percentage of instances of each diagnostic kind, the relative active
resolution cost with respect to the total, and a textual description
of the diagnostic kind.

In total, there were 1,853,417 compiler diagnostics that were later
�xed within a resolution session. As the table shows, 51% (949,325)
of those diagnostics are related to the compiler not being able to
resolve a particular symbol, i.e., the cant.resolve diagnostic kind
with a “cannot �nd symbol” message. Our results also con�rm a
previous study conducted in 2014, which showed 43% of build errors
are caused by issues related to cant.resolve [44]. Compared to the
�ndings in 2014, it seems the issues developers have with missing
symbols have only been exacerbated. The next diagnostic kind in
the table in terms of instances is cant.apply.symbol with 8% of
total diagnostics. cant.apply.symbol happens when the compiler
cannot �nd a method declaration with the given types.

We also calculated the relative cost of build errors by multiplying
the number of build-diagnostic instances by the average active reso-
lution cost needed to resolve the diagnostic, for each diagnostic kind.
The total cost amounts to 57,215,441 seconds for twomonths of data.
This means within two months, developers spent approximately 21
months �xing build errors. From this total, cant.resolve is again
the most costly diagnostic kind by far, with 47% (⇡ 10 months)
of the total active resolution cost. cant.apply.symbol acounts for
11% (⇡ 2 months) of the total active resolution cost. These top-
two error classes alone account for 58% of the total cost, which is
approximately a year of developer cost in our dataset.

3 RUNNING EXAMPLE
Given the high prevalence and cost of cant.resolve and
cant.apply.symbol in practice, we focus on these two categories

of build errors to generate repair suggestions in this work. Note,
however, that our approach is generic enough to be applied to any
of these diagnostic kinds with minor adaptations. We use the
cant.resolve kind as a running example in our paper. An
identi�er must be known to the compiler before it can be used. An
inconsistency between the de�nition of an identi�er and its usage,
including when the de�nition cannot be found, is the root cause of
this build error. This occurs when there is, for instance, a missing
dependency (e.g., on another library), a missing import, or a
mistyped symbol name.

As a motivating example, consider the following code snippet:
import java.util.List;
class Service {

List <String > names () {
return ImmutableList.of(�pub�, �sub�);

}
}

When this code is built, the compiler produces the following error
message:
Service.java :4: error: cannot find symbol

symbol: variable ImmutableList

In this case, the developer has forgotten to import the package
for ImmutableList (from the Google Guava library) and so the com-
piler cannot resolve the symbol. To �x the problem, the developer
determines the correct package for the missing symbol and adds
an appropriate import statement:
import java.util.List;
+++ import com.google.common.collect.ImmutableList;
class Service {

List <String > names () {
return ImmutableList.of(�pub�, �sub�);

}
}

Because ImmutableList is de�ned in a di�erent project, onemust
also declare the dependency to the build system. Using the Bazel
build system, the �x might be to delete the existing reference to
Guava’s base package and add its collect package instead:
java_library(

name = �Service�,
srcs = [

�Service.java�,
],
deps = [

--- �//java/com/google/common/base�,

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia A. Mesbah, A. Rice, E. Johnston, N. Glorioso, and E. A�andilian

+++ �//java/com/google/common/collect�,
],
...

)

4 FINDING RESOLUTION CHANGES
Once build diagnostics are collected and resolution sessions are con-
structed, we pass the resolution sessions to the resolution change
detection step of our pipeline. The goal in this step is to systemati-
cally examine how developers change their source code to resolve
build errors.

4.1 Retrieving Code Snapshots
At Google, changes made to the source code in developers’ IDE
clients are automatically saved in the cloud as temporal snapshots.
This means a complete history of all saved changes made to the
code is preserved with retrievable snapshot identi�ers. This feature
allows us to go backward in time and retrieve a snapshot of the
code in the state it was in at the time of a particular build.

For every build resolution session computed, our approach �rst
extracts the snapshot IDs in the �rst and the last builds. The �rst
ID corresponds with the code snapshot that caused the diagnostic.
The second ID points to the code snapshot in which the diagnostic
was resolved.

Using each snapshot ID, we then query the snapshot cloud server
to obtain the code exactly as it was at that particular point in time.

4.2 AST Di�erencing
At this point, we have at our disposal two snapshots of the code at
the broken and �xed states, for each resolution session. To under-
stand how developers change their code to resolve build errors, we
compute the di�erences going from the broken state to the �xed
one.

The conventional method for detecting source code changes
is the Unix line di� [23], which computes changes at the textual
granularity of only line-level add and delete actions. This leads to a
di�which is largely dependent on how the source code is formatted.
While line di� is a popular method for human consumption, e.g.,
during code review, automatically inferring syntactic changes to
the code from textual line di�s is di�cult.

To analyze code changes at the syntactic level, we take a tree
di�erencing approach [13, 15]. We parse the broken and �xed snap-
shots of each resolution session to generate the corresponding
abstract syntax trees (ASTs). We have created parsers for Java and
the Bazel BUILD language in this project, although support for
other languages can easily be added.

Then the ASTs of the broken and �xed snapshots are passed into
a tree di�erencing algorithm.

D��������� 3 (AST D���). Given two ASTs, source asts and target
astt , an AST Di� is a set of vertex change actions that transforms
asts into astt .

The AST di�erencing algorithm �rst tries to map each vertex
on the source AST asts to a vertex on the target AST astt , by
comparing the vertex labels. If any unmatched vertices are detected,
it computes a short sequence of edit actions capable of transforming
asts into astt . Finding the shortest edit action is NP-hard; therefore,

COMPILATION_UNIT

IMPORT

java.util.List

CLASS

IDENTIFIER

Service

METHOD

IDENTIFIER

names

PARAMETERIZED_TYPE

IDENTIFIER

List

IDENTIFIER

String

RETURN

METHOD_INVOCATION

of

IDENTIFIER

ImmutableList

STRING_LITERAL

pub

STRING_LITERAL

sub

COMPILATION_UNIT

IMPORT

java.util.List

CLASS

IDENTIFIER

Service

METHOD

IDENTIFIER

names

PARAMETERIZED_TYPE

IDENTIFIER

List

IDENTIFIER

String

RETURN

METHOD_INVOCATION

of

IDENTIFIER

ImmutableList

STRING_LITERAL

pub

STRING_LITERAL

sub

IMPORT

com.google.common.collect.ImmutableList

a) Before
b) After

Inserted

Figure 2: Java AST Changes.

heuristics are used to compute a short transformation from asts to
astt deterministically [13]. The �nal output of the tree di�erencing
step is composed of a set of change actions that indicate moved,
updated, deleted, or inserted vertices on the source and target ASTs:

• Moved: an existing vertex (and its children) in asts is moved
to another location in astt .

• Updated: the old value of a vertex in asts is updated to a new
value in astt .

• Deleted: a vertex (and its children) in asts is removed in astt .
• Inserted: a vertex that is non-existent in asts is added in astt .

Figure 2 visualizes the AST of our motivating example (see Sec-
tion 3) in the initial broken state (a) and the �xed AST (b) after the
developer added the import in the Java code.

The changed vertices detected by the AST di� are indicated in
grey in Figure 2. The AST di� for the Java code in the running
example detects that there is an IMPORT vertex inserted into the
root vertex, COMPILATION_UNIT. The fully-quali�ed package name of
ImmutableList is also inserted as a child vertex into the new IMPORT
vertex. For the build �le, the change action detected is an update
in the dependencies (deps), namely, the common base package is
updated to common collect.

4.3 Resolution Changes
Our insight is that there are recurrent patterns in the way devel-
opers resolve build errors in practice. Such patterns can be auto-
matically inferred from resolution changes and leveraged to assist
developers.

D��������� 4 (R��������� C����� (RC)). A resolution change
(RC) is an AST Di� between the broken and resolved snapshots of the
code, in a build resolution session.

5 REPAIRING BUILD ERRORS
Recent studies [2, 21] suggest that models originally developed
for analyzing natural language, such as n-gram models, are also
e�ective for reasoning about source code. This has come to be
known as the software naturalness hypothesis [2], which states that
large code corpora are statistically similar to natural-language text,
since coding is also an act of human communication. Following this
naturalness hypothesis, we believe probabilistic machine learning
models that target natural language can be further exploited for

DeepDelta: Learning to Repair Compilation Errors ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

helping software developers. More speci�cally, the idea we pro-
pose here is to formulate the task of suggesting build repairs as a
Neural Machine Translation (NMT) problem. Instead of translat-
ing one natural language into another, in our case, a given source
build-diagnostic feature is “translated” to a target resolution change
feature that resolves the diagnostic.

5.1 Feature Extraction
We generate features from each resolution change: a build diag-
nostic and the edits that �x that diagnostic. We use the generated
features as input into a neural network to learn patterns of trans-
formations between build diagnostics and resolution changes.

For each resolution change in the resolution sessions, we gener-
ate a source feature and a target feature, separately. A pair of source
and target features capture information about the build failure and
AST changes made to resolve the failure, respectively.
Source Features. The source feature pertains to the build diag-
nostic kind and its textual description. These can be included in
the source features for any diagnostic kind without any diagnostic-
speci�c knowledge.

To provide more contextual information to the machine-learning
algorithm, we can optionally add more diagnostic-speci�c infor-
mation to the source feature. For instance, for cant.resolve, we
parse the snapshot of the broken code into an AST. We locate the
missing symbol on the AST using the information provided by the
compiler, such as its label and location. Once the symbol is located,
we traverse the tree to extract its AST path.

COMPILATION_UNIT

IMPORT

java.util.List

CLASS

IDENTIFIER

Service

METHOD

IDENTIFIER

names

PARAMETERIZED_TYPE

IDENTIFIER

List

IDENTIFIER

String

RETURN

METHOD_INVOCATION

of

IDENTIFIER

ImmutableList

STRING_LITERAL

pub

STRING_LITERAL

sub

Missing symbol

Figure 3: AST Path of ImmutableList.

D��������� 5 (AST P��� (AP)). The AST Path AP of a missing
symbol Sm is de�ned as the sequence of AST vertices from the root to
the parent vertex of Sm on the AST of the broken snapshot.

Figure 3 highlights the AST path for the missing symbol in our
running example. Our evaluations show that including the AST
path can increase the accuracy of the technique between 15-20%.
The AST path provides the deep neural network with contextual
information about the missing symbol, such as whether the symbol
is a local variable inside a method or a class variable.

Delta.grammar

resolution_change_feature
: file_type WS (change_action (WS)?)* EOF ;

change_action
: change_type WS (location WS)? single_token token_seq -

location WS single_token token_seq ;

file_type : �BUILDFILE � | �JAVAFILE � ;
change_type : �INSERT � | �DELETE � | �UPDATE � | �MOVE � ;
location : �INTO � | �FROM � | �BEFORE � | �AFTER � ;
single_token : TOKEN WS ;
token_seq : (TOKEN (WS)*)* ;
WS : (� � | �\t�) ;
TOKEN : (COLON | QUOTE | COMMA | LOWERCASE | UPPERCASE | DIGIT -

| UNDERSCORE) +;

fragment UNDERSCORE : �_� ;
fragment COLON : �:� ;
fragment QUOTE : ��� ;
fragment COMMA : �,� ;
fragment LOWERCASE : [a-z] ;
fragment UPPERCASE : [A-Z] ;
fragment DIGIT : [0-9] ;

Listing 1: Delta grammar

In addition to the AST path of the symbol, its tree vertex type and
label, as well as its child vertices (e.g., type arguments for method
calls) are added to the source feature.

For our running example, the source feature would include:
• Diagnostic kind: compiler.err.cant.resolve
• Diagnostic text: cannot �nd symbol
• AST path: COMPILATION_UNIT CLASS METHOD RETURN
METHOD_INVOCATION of

• Symbol type: IDENTIFIER
• Symbol label: ImmutableList

For cant.apply.symbol, we augment the source feature with
three types of data, namely, expected, found, and reason. Expected
pertains to the expected types inferred by the compiler, found
shows the types found in the code, and reason represents a textual
description of why the compiler cannot apply the symbol.
Target Features. The target feature contains information about the
resolution changes, i.e., AST changes made to the failing snapshot
to resolve the build diagnostic.

To capture the resolution-change features, we de�ne a domain-
speci�c language (DSL) called Delta. Delta’s grammar is formally
speci�ed in the Extended Backus-Naur form (EBNF) for ANTLR [39]
and shown in Listing 1.

Each Delta feature starts with a �le type (i.e., JAVAFILE or BUILDF-
ILE) where the change was applied, followed by a series of change
actions. Each change action contains an AST-change type (e.g.,
INSERT, UPDATE) and the changed AST node’s type and value. For
change types INSERT, DELETE, and MOVE, the parent node of the
changed node is also included to provide more contextual informa-
tion about the relative proximity of the changed node on the AST.
For UPDATE, the before and after values of the changed nodes are
captured.

For our running example, the target resolution-change features
for Java and for the build �le are shown in Listing 2 and Listing 3,
respectively.
Feature Generation. Once features are computed, all source and
target features are analyzed, separately, to generate two vocabulary

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia A. Mesbah, A. Rice, E. Johnston, N. Glorioso, and E. A�andilian

fileType JAVAFILE
change_action

change_type INSERT
single_token IMPORT
location INTO
single_token COMPILATION_UNIT

change_action
change_type INSERT
single_token com
token_seq google common collect ImmutableList
location INTO
single_token IMPORT

Listing 2: Delta Java example

fileType BUILDFILE
change_action

change_type UPDATE
location BEFORE
single_token java
token_seq com google common base
location AFTER
single_token java
token_seq com google common collect

Listing 3: Delta build �le example

lists of |V | frequent tokens for source and target, respectively. For
instance, since the token ‘COMPILATION_UNIT’ is the root node of
the AST path, it occurs frequently in the source features. Therefore,
this token will be in the source vocabulary list. Similarly, the token
‘BUILDFILE’ exists in many target features and will be included
in the target vocabulary list. These frequent tokens are used for
embeddings during the training and inference, i.e., tokens from the
vocabulary are mapped to vectors of real numbers for training and
inferred vectorized representations are mapped back to the tokens
in vocabulary for inference.

Finally, the features dataset is randomly partitioned into three
chunks of 70%, 15%, and 15% for training, online evaluation of the
model during training, and o�ine evaluation of the model against
unseen features (see Section 6), respectively.

5.2 Learning Resolution Change Patterns
Recent deep NMT models have been quite successful at translat-
ing natural language text from a source language to a target lan-
guage [48]. NMT achieves this by modelling and learning the con-
ditional probability p(� |x) of translating a source feature x into
a target feature � through an encoder-decoder [6] setting, also
known as seq2seq [46]. The encoder is responsible for computing
a representation for each source feature x , without making any
predictions. The decoder’s task is to generate a translation � based
on that source representation, by predicting the next tokens in the
sequence.

Our deep neural network is built on top of TensorFlow [1]. It
is composed of deep Long Short-Term Memory (LSTM) [22] Re-
current Neural Networks (RNNs) of 1024 units with 4 encoder and
4 decoder layers. As encoder type we use the Google Neural Ma-
chine Translation (GNMT) encoder [48], which is composed of 1
bi-directional layer and 3 uni-directional layers.

As optimizer, we employ the Stochastic Gradient Descent (SGD)
algorithm [9] with a learning rate of 1.0. To mitigate over-�tting the
model, we set a dropout value of 0.2. The idea is to randomly ignore

units from the neural network during training, which prevents
co-adaptations on the training data [45].

LSTMs perform well for short to medium input sequences but
fail on large sequences. Attention mechanisms [3, 30] solve this
limitation to a large extent by extending the attention span of
the network. Since our resolution-change feature sequences could
potentially be long, in our network, we adopt the normed Bahdanau
attention [3].

5.3 Inferring Repair Suggestions
The whole process of generating resolution sessions, resolution
changes, and features, as well as training the model is pipelined
using sequential dependencies, which makes our whole learning
process automated and repeatable.

Once the model is trained, it is uploaded to a server where we
can query it for repair inference. The model can produce various
translations for any given input. In our NMT setting, the translation
is carried out using beam search [48], a heuristic search algorithm
that makes a trade-o� between translation time and accuracy. The
input to the model is a source feature x representing a compila-
tion failure. The inferred suggestions are returned as n sequences
{�1,�2, . . . ,�n }. Each �i represents a distinct repair suggestion for
x and is composed of a series of resolution change tokens to be
applied to the failing program.

6 EVALUATION
We conducted an empirical evaluation to assess the e�cacy of
D���D���� for the two most prevalent and costly compilation
errors, namely cant.resolve and cant.apply.symbol.

6.1 Data Generation
The dataset we use for training and evaluation is described in Sec-
tion 2.4, which is composed of developer build data collected over
a two months period at Google.

AST di�s between the failing and resolved snapshots were com-
puted for all green, singular resolution sessions in our dataset. We
constrain the number of AST changes to be larger than zero and
fewer than six, as higher numbers of changes often include refac-
torings, and in previous studies �xes have been shown to contain
fewer than six modi�cations [35]. We computed 110,219 green,
singular resolution sessions in total, over 37,867 distinct Java and
7,011 distinct build �les.

Since we are dealing with a large industrial codebase, we set |V |,
the maximum number of frequent tokens in the source and target
vocabulary lists, to 30,000. The output of the feature-generation
step is two vocabulary �les for source and target, each contain-
ing a maximum of 30,000 unique tokens. In total, 265,456 and
25,201 source/target features were generated for cant.resolve and
cant.apply.symbol, respectively. These feature sets are randomly
shu�ed and partitioned in three separate categories, namely, Train
(for training), Val (for online evaluation during training) and Test
(for o�ine evaluation of the trained model) as presented in Table 3.
Each category contains source and target feature pairs.

DeepDelta: Learning to Repair Compilation Errors ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Valid Suggestions

Fr
eq

ue
nc

y

0 2 4 6 8 10

0
50

00
10

00
0

15
00

0

5265

1633
929 1071 1007 1152 1451

4490 4392

14710

1/10 2/10 3/10 4/10 5/10 6/10 7/10 8/10 9/10 10/10

(a) cant.resolve
Valid Suggestions

Fr
eq

ue
nc

y

0 2 4 6 8 10

0
50

0
10

00
15

00
20

00
25

00

0 4 5 1 1 16 24 47

204

2385

1/10 2/10 3/10 4/10 5/10 6/10 7/10 8/10 9/10 10/10

(b) cant.apply.symbol

Figure 4: Distribution of valid suggestions over the 10 generated suggestions per failure.

Table 3: Generated features

Diagnostic Kind Features Train Val Test Vocab
cant.resolve 265,456 186,992 42,363 36,101 30,000
cant.apply.symbol 25,201 19,407 3,107 2,687 30,000

6.2 Training
We generate features and train two models separately for
cant.resolve and cant.apply.symbol to compare the
applicability of D���D���� on di�erent diagnostic kinds. In
addition to the deep neural network setup described in Section 5.2,
we con�gure the network as follows. The maximum sequence
length for both source and target is set to 100. The batch size is
128, and the number of training steps is 100,000. We con�gure the
inference to generate 10 suggestions (See Section 5.3).

To train a model, we feed the source and target features of the
train dataset as well as the vocabulary lists to the network. The
model starts by creating the source and target embeddings for all
token representations. To that end, a vocabulary is provided for the
source and target for tokens that are meant to be treated uniquely.
We also feed the Val dataset to the network for online evaluation
during training. Our models are trained on Google’s internal cloud
nodes with GPUs.

6.3 Evaluation Method
We use the Test datasets, containing the source and target features,
for our evaluation. These are datasets that our trained models have
not seen before. We evaluate each diagnostic kind separately. For
each item in the test dataset, we retrieve the source feature and
send it to the inference server to obtain repair suggestions. The
target feature of the item in the test dataset, which is the �x the
developer performed to repair the build error, is used as a baseline
to assess the 10 suggestions generated by D���D����.

We employ di�erent metrics for evaluating repair suggestions.
Perplexity. Perplexity [4] measures how well a model predicts
samples. Low (e.g., single digit) perplexity values indicate the model
is good at predicting a given sequence.

BLEU. The next metric we use to assess the generated output
of the model is BLEU [38]. BLEU is a well-known and popu-
lar metric for automatically evaluating the quality of machine-
translated sentences. It has been shown to correlate well with hu-
man judgments [7, 17]. BLEU calculates how well a given sequence
is matched with an expected sequence in terms of the actual to-
kens and their ordering using an n-gram model. The output of the
BLEU metric is a number between 1–100. For natural language
translations, BLEU scores of 25–40 are considered high scores [48].

Syntactic Validation. For validating the suggestions for syntacti-
cal correctness, we generate a lexer and parser from our Delta gram-
mar through ANTLR4. We pass each inferred suggestion through
the Delta lexer/parser. This way, we assess whether the model gen-
erates suggestions that conform to the grammar of the expected
resolution changes. The output is binary, i.e., either the suggestion
is valid or invalid.

Correctness of Suggestions. A source build diagnostic is consid-
ered correctly repaired if at least one of the 10 suggested repairs is
valid and exactly matches the �x the developer performed, i.e., the
target feature (baseline) in the test dataset. We use textual string
equality for comparing each suggestion with the baseline.

Ranking of Correct Repairs. The ranking of the correct sugges-
tion in the list of the suggestions is an indication of how well the
model can generate the correct repair. The higher its ranking, the
sooner the repair can be applied. For each failure that D���D����
generates a correct suggestion, we note its position on the list of
10 suggestions.

6.4 Results
Table 4 presents our results for the two diagnostic kinds we evalu-
ated. For each diagnostic kind, the table shows the achieved per-
plexity and BLEU scores, the number of compilation failures in the
Test dataset evaluated against the trained models, the number of
suggestions generated (i.e., 10 suggestions per failure), the average
percentage of valid suggestions per failure, the percentage of cor-
rect suggestions overall, and the percentage of correct repairs that
are ranked in the top 3 suggestions.

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia A. Mesbah, A. Rice, E. Johnston, N. Glorioso, and E. A�andilian

Table 4: Results

Diagnostic Kind Perplexity BLEU Failures Suggestions Valid Suggestions Correct Failure Repair Ranked top 3
cant.resolve 1.8 42 36,101 361,010 71% (18,051) 50% 85%
cant.apply.symbol 8.5 43 2,687 26,870 98% (1,263) 47% 87%

Position

Fr
eq
ue
nc
y

0 2 4 6 8 10

0
20
00

40
00

60
00

80
00

10
00
0

12
00
0

11192

2697

1425
837 661

323 306 203 169 118

(a) cant.resolve

Position

Fr
eq
ue
nc
y

0 2 4 6 8 10

0
20
0

40
0

60
0

80
0

705

268

117

66
44

12 9 15 6 15

(b) cant.apply.symbol

Figure 5: Position of the correct suggestion.

Perplexity and BLEU Scores. Recall that low perplexity (i.e., sin-
gle digits) and high BLEU scores (i.e., 25–40) are desired for the
models. As Table 4 shows, our models reached low perplexity values
of 1.8 and 8.5 for cant.resolve and cant.apply.symbol, respec-
tively. Also, the BLEU scores achieved were high, namely 42 for
cant.resolve and 43 for cant.apply.symbol.

Validation. Figure 4 shows the distribution of valid suggestions
over the 10 generated suggestions per failure as histograms. Our val-
idation against the Delta grammar reported that on average 71% of
the generated suggestions are valid per failure for cant.resolve.
For cant.apply.symbol, the percentage of valid suggestions is
higher at 98% since the code changes are syntactically simpler
in nature (e.g., method argument changes). As it can be seen, the
majority of the generated sequences are valid. We discuss the main
reasons for invalid suggestions in Section 7.

Correctness. Table 4 shows that 18,051 out of the 36,101 (50%) fail-
ures in our Test dataset received a correct repair suggestion, i.e.,
one of the 10 suggestions for that failure was an exact match with
the actual developer �x, for cant.resolve. For cant.apply.symbol,
D���D���� achieves a similar rate of correct suggestions, namely,
1,263 out of 2,687 (47%).

Ranking. For the failures with correct suggestions, we evaluate
the position of the correct suggestion within the list of suggested
resolutions. Figure 5 depicts the distribution of the position of the
correct �xes in the 10 generated suggestions. Our data shows that
the majority of the correct suggestions are on the �rst position. For
cant.resolve, 85% of the correct �xes are in the top three positions.
Similarly, for cant.apply.symbol, 87% of the correct �xes are in
the top three positions.

7 DISCUSSION AND THREATS TO VALIDITY

Correctness. D���D���� is able to suggest an exact correct sug-
gestion for around half of the build failures in our evaluation. Note
that a correct suggestion is not a simple binary output. It is com-
posed of a complex sequence of AST changes to be applied to the
failing code. Compared to the state-of-the-art repair rate of 27% for
syntax errors [18], we believe our 50% correctness rate is substantial
in practice. Our relatively high accuracy rate can potentially be
attributed to the following properties of our dataset and approach:

• There are indeed recurrent and common patterns in how
developers resolve build failures, which D���D���� is able
to extract from the resolution changes,

• Our target language, Delta, is highly structured, allowing
the model to learn the patterns in a systematic manner.

Invalid Sequences. We investigated the main reasons behind the
invalid suggestions, which can be attributed to:

(1) Unknown tokens: the occurrence of the <unk> token in the
inferred target sequences. The model predicts a vectorized
embedding that the decoder then tries to translate into a
token; sometimes that embedding falls far away from the
valid tokens in the given vocabulary and cannot be matched
to one of the frequent tokens. This can happen for failures
that do not have a �x change pattern the model has learnt
or when our vocabulary does not contain the token because
it is not a frequent token.

(2) Incomplete sequences: the sequence generated misses parts
of the expected Delta grammar sequence. This happens es-
pecially for longer sequences (i.e., more than 90 tokens) and
missing tokens at the end part of sequences.

DeepDelta: Learning to Repair Compilation Errors ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Table 5: Most frequent repair patterns for cant.resolve

Change Description Resolution Change Pattern Examples for {X}, {Y}
Add missing build dependency BUILDFILE INSERT STRING_LITERAL {X} INTO PASS deps {java truth extensions}
Change the method call JAVAFILE UPDATE BEFORE MEMBER_SELECT {X} AFTER MEMBER_SELECT {Y} {add}, {put}
Add missing import statement JAVAFILE INSERT IMPORT INTO COMPILATION_UNIT INSERT {X} INTO IMPORT {java com google common base}
Change build dependency BUILDFILE UPDATE BEFORE IDENTIFIER {X} AFTER IDENTIFIER {Y} {java_library, android_library}
Change the missing symbol JAVAFILE UPDATE BEFORE IDENTIFIER {X} AFTER IDENTIFIER {Y} {ImmutableList}, {ImmutableSet}
Remove import JAVAFILE DELETE {X} FROM IMPORT {java com google common base}

Generalizibility. It is possible that our results and techniques
would not generalize to other development environments. For ex-
ample, environments where IDE use is more prevalent may have a
di�erent dominant diagnostic kind. However, although our dataset
is from one company, nearly all projects are included in a single
large source-code repository at Google. Thus, our dataset

• Includes more than 10,000 Java projects containing 300 mil-
lion LOC. Of these projects, many are open-source, though
we only have data on those developed primarily at Google.

• Represents changes made by tens of thousands of profes-
sional developers worldwide, from various backgrounds, us-
ing around �ve di�erent editors/IDEs.

• Contains 110,219 singular build-time compilation errors and
�xes, over 37,867 distinct Java and 7,011 distinct build �les,
collected over a two-month period.

Thus we believe it seems reasonable that our program repair
technique would generalize to any other coherent development
environment, where there are patterns in how developers address
a particular diagnostic kind. While the particular �xes our system
learns and suggests would not work in other repositories and build
systems, the technique itself is general and should apply to any
other source code repository and build system. For example, con-
sider the case of adding a dependency on another project to a Bazel
build �le. This concept exists in other widely used build systems.
As long as a parser were provided to parse other types of build con-
�guration �les (e.g., POM �les for Maven, build.gradle for Gradle),
our system should be able to learn how to add dependencies in the
appropriate way.

Most Frequent Repair Patterns. We can use the generated fea-
tures to explore how developers resolve compilation errors. Since
we are interested in the change patterns, we �rst abstract away
identi�er names by replacing their values (e.g., ‘ImmutableList’)
with constant strings (i.e., ‘{X}’) in the target resolution-change fea-
tures.We then vectorize the abstracted features usingword2vec [34]
with an n-gram tokenizer. Then, we feed the vectorized features
into the k-means algorithm [32] with k = 20. Table 5 presents
the most frequent patterns we witnessed in the six largest clusters
for cant.resolve. The table contains the pattern description, the
resolution change pattern, and value examples for each cluster.

Reproducibility. Our dataset contains AST of proprietary code,
which unfortunately cannot be published. Our dataset is unique
because it contains snapshots of in-progress code, not just code
committed to source control. This granularity is key to making our
approach work. We are not aware of any open-source datasets that
provide this level of error/�x detail. Our �ndings can be reproduced
in other contexts by collecting �ne-grained developer histories, and

using our speci�cation of the Delta language and the open-source
TensorFlow NMT library.
Diagnostic Kinds. Our work addresses diagnostics only for Java
projects. However, our technique is general and relies only on AST
di�erencing; the only language-speci�c portion is the parsers used
to build the ASTs. We should be able to support other languages
simply by implementing parsers for them.

We focused on two error types (cant.resolve and
cant.apply.symbol) in this work for two reasons: First, these
cover the majority of Java compilation errors developers make at
Google: 59% of all instances, 58% by cost (Table-II). Our data show
that, whether or not they are easy to �x (R1), in practice
developers spend a huge amount of time manually �xing them.
Automating these repairs would free developers to focus on other
issues. Second, adding a new error type requires collecting
relevant developer data and re-training the model, which is
time-consuming.

Our results show that D���D���� works well for two distinct
error types with di�erent �x patterns. We expect to perform as well
on other build-error types and plan to extend support to other types.
We are not aware of any tools that repair Java compilation errors to
compare directly against in our evaluation. The most related work
we found [18] repairs syntax errors (a single error type only) in C,
with a far lower success rate.
Parsable AST. For our AST-di�-based approach to work, the bro-
ken code must be parsable into an AST. With the missing symbol
errors we examined, the code is always parseable resulting in a
unique AST, but this will not be true for other diagnostic kinds.
Parsers can be designed to recover from syntax errors instead of
failing fast [5]. We may need to switch to such a parser to handle
incomplete ASTs.

8 FUTUREWORK
Turning Delta Programs Back into CodeModi�cations.Delta
programs are essentially a di�erence between two versions of the
same program. D���D���� predicts this di�erence given an input
constructed from the diagnostic. Given an inferred Delta program,
we must apply that di�erence to an unseen program. In particular,
we need to know where to make a suggested change. Here we
sketch how we plan to address this problem for several classes of
commonly suggested Delta changes.

Consider the most frequent resolution change patterns for
cant.resolve in Table 5. For “Add missing import statement” and
“Remove import,” we do not require any location information
because imports must be in a speci�c location in a Java source �le.
For “Change the method call” and “Change the missing symbol,”
we know the location of the missing symbol from the diagnostic

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia A. Mesbah, A. Rice, E. Johnston, N. Glorioso, and E. A�andilian

text, and we can modify the code at that location. For “Add missing
build dependency” and “Change build dependency,” we know
which build rule produced the error, and we can make the change
to its dependency list.

In general, we should usually be able to infer where to make
the suggested change either by construction (i.e., there is only one
syntactically valid place to make the modi�cation) or by leveraging
the location information in the diagnostic text.
Putting the Program Repair Tool Into Production.We intend
to integrate D���D���� into the development environment of de-
velopers at our company. To that end, we will need to verify sug-
gestions before applying them to user code. We intend to build a
system to speculatively apply suggested �xes to a code snapshot
and attempt to build them. We can then discard suggested �xes
that do not compile, and only present the ones that do to the user.
There is also interesting user interface work to do here to ensure
that the tool is actually useful to developers.

9 RELATEDWORK
Extracting Change Patterns. Extracting change patterns from
code has received some attention in the literature. Most existing
techniques, however, require pre-de�ned rules or human inter-
vention to extract patterns. Fluri and Gall [14] de�ne 41 basic
change types for Java, which they use to discover more complex
changes [15] through hierarchical clustering. Pan [37] use the Unix
di� to create a database of basic changes and use Datalog to man-
ually specify rules for more complex change types. Liveshits and
Zimmerman [26] propose a technique for discovering API usage
patterns through association rule mining of code histories of two
Java projects. They use the patterns to detect violations. Kim et
al. [25] manually inspect human-written patches and extract six
common �x patterns in Java. They subsequently use these patterns
for automated program repair. Hanam et al. [19] provide a semi-
automatic approach for bug �x pattern detection. They extract
feature vectors of language construct AST changes that resolve
runtime bugs and use clustering to group them into ranked clusters
of bug patterns. The clusters are then manually inspected to extract
bug �x patterns. Our approach requires no manual intervention
and learns unknown resolution change patterns.
Synthesizing Transformations by Example. Another related
area of work is code transformation techniques, such as LASE [33],
Genesis [27], NoFAQ [8], and REFAZER [41], which can extract and
synthesize syntactic transformations from given examples. These
techniques could potentially be used for program repair. Unlike
our work, they operate either on a single example or a small set of
examples; it is unclear how well they would perform on extracting
patterns from hundreds of thousands of examples, and how to apply
the synthesized transformations in the setting of program repairs.
Automated Program Repair. Our work falls in the realm of au-
tomated program repair, which pertains to the act of �xing bugs
through automated techniques. Program repair has been applied
to di�erent domains such as data structures [11, 12], user inter-
faces [49], and source code of di�erent programming languages
such as C [16, 24, 29], Java [10, 25], JavaScript [36], and PHP [42].

Patch search techniques have a number of shortcomings in prac-
tice. First, they often require pre-de�ned templates of bug patterns

and cannot learn new patterns. Second, the patch generation pro-
cess needs to search the vast program space, which can be costly as
thousands of patches need to be generated to �nd one that resolves
the failure. Finally, they have been shown [28] to produce many
false positives, i.e., they often �x the test failure, but not the actual
fault.

Machine Learning for ProgramRepair. Allamanis et al. [2] pro-
vide a comprehensive survey of recent advancements in techniques
that adopt machine learning for source-code analysis. Wang et
al. [47] propose a technique for fault prediction. They feed abstract
semantic features of the code to a neural network for classi�cation.
Raychev et al. [40] use neural networks for code completion of
missing API calls. Seidel et al. [43] target type error localization
through a supervised classi�cation approach.

Gupta et al. [18] propose a seq2seq machine learning approach
for repairing syntax errors in C. One main di�erence with our
work is that they feed the whole source code of the buggy and
�xed versions to the network and achieve a repair rate of 27%. We,
however, focus only on learning the features of the failure and
the accompanying AST changes that resolve it, which allows us
to achieve a much higher accuracy rate (50%). They target syntax
errors in C, while we target build-time compilation errors in Java.
In addition, they evaluate their work on small student assignments,
while our evaluation is on a large corpus of real developer data.

Our paper is the �rst to learn AST change patterns for �xing
compilation errors. Related work that targets build errors [20, 31] is
di�erent from ours. They focus only on build-�les while we target
both Java and build �les; they use pre-de�ned repair-templates,
while we learn repair patterns. And, we do it at orders of magnitude
larger scale; [31] and [20] use 37 and 175 failures, respectively, while
we evaluate DeepDelta on 38,788 failures.

10 CONCLUSION
In this paper, we studied build errors and how developers change
the source code to resolve them in practice. We showed that pat-
terns exist in such code changes. We proposed a generic technique
to learn patterns of code changes, extracted from AST di�s between
failure and resolution pairs. We formulated automated program re-
pair as a machine translation problem. Using a deep neural network,
our technique, D���D����, is capable of suggesting AST changes
when given a build diagnostic as input. Our evaluation on a large
corpus of real developer data at Google shows that D���D���� gen-
erates correct �xes with 50% accuracy for two compiler diagnostic
kinds, with the correct �x in the top three 85%–87% of the time.

Our current system suggests �xes for the two most costly diag-
nostic kinds, cant.resolve and cant.apply.symbol. We intend to
expand support to other diagnostic kinds.

ACKNOWLEDGMENTS
We thank Petros Maniatis for his invaluable feedback on an ear-
lier draft of this paper and Thang Luong, Rui Zhao, and Eugene
Brevdo from the Google Brain team for helping us with the GNMT
framework.

DeepDelta: Learning to Repair Compilation Errors ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Je�rey

Dean, Matthieu Devin, Sanjay Ghemawat, Geo�rey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,
Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-Scale Machine
Learning.. In OSDI, Vol. 16. 265–283.

[2] Miltiadis Allamanis, Earl T. Barr, Premkumar Devanbu, and Charles Sutton. 2017.
A Survey of Machine Learning for Big Code and Naturalness. arXiv preprint
arXiv:1709.06182 (2017).

[3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural Machine
Translation by Jointly Learning to Align and Translate. In International Conference
on Learning Representations.

[4] Peter F Brown, Vincent J Della Pietra, Robert L Mercer, Stephen A Della Pietra,
and Jennifer C Lai. 1992. An Estimate of an Upper Bound for the Entropy of
English. Computational Linguistics 18, 1 (1992), 31–40.

[5] Michael G. Burke and Gerald A. Fisher. 1987. A Practical Method for LR and LL
Syntactic Error Diagnosis and Recovery. ACM Trans. Program. Lang. Syst. 9, 2
(March 1987), 164–197. https://doi.org/10.1145/22719.22720

[6] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase
Representations Using RNN Encoder-decoder for Statistical Machine Translation.
arXiv preprint arXiv:1406.1078 (2014).

[7] Deborah Coughlin. 2003. Correlating Automated and Human Assessments of
Machine Translation Quality. In Proceedings of MT summit IX. 63–70.

[8] Loris D’Antoni, Rishabh Singh, and Michael Vaughn. 2017. NoFAQ: Synthesizing
Command Repairs from Examples. In Proceedings of the 11th Joint Meeting on
Foundations of Software Engineering (ESEC/FSE 2017). ACM, 582–592. https:
//doi.org/10.1145/3106237.3106241

[9] Je�rey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark
Mao, Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al. 2012. Large Scale
Distributed Deep Networks. In Advances in neural information processing systems.
1223–1231.

[10] Favio DeMarco, Jifeng Xuan, Daniel Le Berre, and Martin Monperrus. 2014.
Automatic Repair of Buggy if Conditions and Missing Preconditions with SMT.
In Proceedings of the 6th International Workshop on Constraints in Software Testing,
Veri�cation, and Analysis. 30–39.

[11] Brian Demsky and Martin Rinard. 2005. Data Structure Repair Using Goal-
directed Reasoning. In Proceedings of the International Conference on Software
Engineering (ICSE). 176–185.

[12] Bassem Elkarablieh, Ivan Garcia, Yuk Lai Suen, and Sarfraz Khurshid. 2007.
Assertion-based Repair of Complex Data Structures. In Proceedings of the twenty-
second IEEE/ACM international conference on Automated software engineering.
ACM, 64–73.

[13] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Mar-
tin Monperrus. 2014. Fine-grained and Accurate Source Code Di�erencing.
In International Conference on Automated Software Engineering (ASE). 313–324.
https://doi.org/10.1145/2642937.2642982

[14] Beat Fluri and Harald C Gall. 2006. Classifying Change Types for Qualifying
Change Couplings. In Program Comprehension, 2006. ICPC 2006. 14th IEEE Inter-
national Conference on. IEEE, 35–45.

[15] Beat Fluri, Michael Wuersch, Martin Pinzger, and Harald Gall. 2007. Change
Distilling: Tree Di�erencing for Fine-grained Source Code Change Extraction.
IEEE Transactions on software engineering 33, 11 (2007).

[16] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer. 2012. GenProg: A Generic
Method for Automatic Software Repair. IEEE Transactions on Software Engineering
38, 1 (Jan 2012), 54–72. https://doi.org/10.1109/TSE.2011.104

[17] Yvette Graham and Timothy Baldwin. 2014. Testing for Signi�cance of Increased
Correlation with Human Judgment. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP). 172–176.

[18] Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. 2017. DeepFix:
Fixing Common C Language Errors by Deep Learning.. In Proceedings of the
Conference on Arti�cial Intelligence (AAAI). 1345–1351.

[19] Quinn Hanam, Fernando S de M Brito, and Ali Mesbah. 2016. Discovering Bug
Patterns in JavaScript. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSE). ACM, 144–156.

[20] Foyzul Hassan and Xiaoyin Wang. 2018. HireBuild: An Automatic Approach
to History-driven Repair of Build Scripts. In 2018 IEEE/ACM 40th International
Conference on Software Engineering (ICSE). IEEE, 1078–1089.

[21] Abram Hindle, Earl T Barr, Zhendong Su, Mark Gabel, and Premkumar De-
vanbu. 2012. On the Naturalness of Software. In Proceedings of the International
Conference on Software Engineering (ICSE). IEEE, 837–847.

[22] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.
Neural computation 9, 8 (1997), 1735–1780.

[23] James Wayne Hunt and M Douglas McIlroy. 1976. An Algorithm for Di�erential
File Comparison. Bell Laboratories Murray Hill.

[24] Y. Ke, K. T. Stolee, C. L. Goues, and Y. Brun. 2015. Repairing Programs with
Semantic Code Search. In Proceedings of the International Conference on Automated

Software Engineering (ASE). IEEE Computer Society, 295–306. https://doi.org/10.
1109/ASE.2015.60

[25] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. 2013. Automatic
patch generation learned from human-written patches. In Proceedings of the
International Conference on Software Engineering (ICSE). 802–811.

[26] Benjamin Livshits and Thomas Zimmermann. 2005. DynaMine: Finding Common
Error Patterns by Mining Software Revision Histories. In ACM SIGSOFT Software
Engineering Notes, Vol. 30. ACM, 296–305.

[27] Fan Long, Peter Amidon, and Martin Rinard. 2017. Automatic Inference of Code
Transforms for Patch Generation. In Proceedings of the 11th Joint Meeting on
Foundations of Software Engineering. ACM, 727–739.

[28] Fan Long and Martin Rinard. 2015. Staged Program Repair with Condition
Synthesis. In Proceedings Joint Meeting on Foundations of Software Engineering
(ESEC/FSE 2015). ACM, New York, NY, USA, 166–178. https://doi.org/10.1145/
2786805.2786811

[29] Fan Long and Martin Rinard. 2016. An Analysis of the Search Spaces for Gener-
ate and Validate Patch Generation Systems. In Proceedings of the International
Conference on Software Engineering (ICSE). ACM, New York, NY, USA, 702–713.
https://doi.org/10.1145/2884781.2884872

[30] Thang Luong, Hieu Pham, and Christopher D Manning. 2015. E�ective Ap-
proaches to Attention-based Neural Machine Translation. In Proceedings of the
Conference on Empirical Methods in Natural Language Processing. 1412–1421.

[31] Christian Macho, Shane McIntosh, and Martin Pinzger. 2018. Automatically
Repairing Dependency-related Build Breakage. In 2018 IEEE 25th International
Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE,
106–117.

[32] James MacQueen et al. 1967. Some Methods for Classi�cation and Analysis
of Multivariate Observations. In Proceedings of the �fth Berkeley symposium on
mathematical statistics and probability, Vol. 1. Oakland, CA, USA, 281–297.

[33] Na Meng, Miryung Kim, and Kathryn S McKinley. 2013. LASE: Locating and
Applying Systematic Edits by Learning from Examples. IEEE Press.

[34] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Je� Dean. 2013.
Distributed Representations of Words and Phrases and Their Compositionality.
In Advances in neural information processing systems. 3111–3119.

[35] Hoan Anh Nguyen, Anh Tuan Nguyen, Tung Thanh Nguyen, Tien N Nguyen,
and Hridesh Rajan. 2013. A Study of Repetitiveness of Code Changes in Soft-
ware Evolution. In Proceedings of the 28th IEEE/ACM International Conference on
Automated Software Engineering. IEEE Press, 180–190.

[36] Frolin Ocariza, Karthik Pattabiraman, and Ali Mesbah. 2014. Vejovis: Suggesting
Fixes for JavaScript Faults. In Proceedings of the International Conference on
Software Engineering (ICSE). ACM, 837–847.

[37] Kai Pan, Sunghun Kim, and E James Whitehead. 2009. Toward an Understanding
of Bug Fix Patterns. Empirical Software Engineering 14, 3 (2009), 286–315.

[38] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU:
A Method for Automatic Evaluation of Machine Translation. In Proceedings of
the Annual Meeting on Association for Computational Linguistics. Association for
Computational Linguistics, 311–318. https://doi.org/10.3115/1073083.1073135

[39] Terence J. Parr and Russell W. Quong. 1995. ANTLR: A Predicated-LL (k) Parser
Generator. Software: Practice and Experience 25, 7 (1995), 789–810.

[40] Veselin Raychev, Martin Vechev, and Eran Yahav. 2014. Code Completion with
Statistical Language Models. In Acm Sigplan Notices, Vol. 49. ACM, 419–428.

[41] Reudismam Rolim, Gustavo Soares, Loris D’Antoni, Oleksandr Polozov, Sumit
Gulwani, Rohit Gheyi, Ryo Suzuki, and Björn Hartmann. 2017. Learning Syntactic
Program Transformations from Examples. In Proceedings of the 39th International
Conference on Software Engineering. IEEE Press, 404–415.

[42] Hesam Samimi, Max Schäfer, Shay Artzi, Todd Millstein, Frank Tip, and Laurie
Hendren. 2012. Automated Repair of HTML Generation Errors in PHP Ap-
plications Using String Constraint Solving. In Proceedings of the International
Conference on Software Engineering (ICSE). IEEE, 277–287.

[43] Eric L. Seidel, Huma Sibghat, Kamalika Chaudhuri, Westley Weimer, and Ranjit
Jhala. 2017. Learning to Blame: Localizing Novice Type Errors with Data-driven
Diagnosis. Proc. ACM Program. Lang. 1, OOPSLA, Article 60 (Oct. 2017), 27 pages.
https://doi.org/10.1145/3138818

[44] Hyunmin Seo, Caitlin Sadowski, Sebastian Elbaum, Edward Aftandilian, and
Robert Bowdidge. 2014. Programmers’ Build Errors: A Case Study (at Google).
In Proceedings of the International Conference on Software Engineering (ICSE).
724–734. https://doi.org/10.1145/2568225.2568255

[45] Nitish Srivastava, Geo�rey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: A Simple Way to Prevent Neural Networks from
Over�tting. Journal of Machine Learning Research 15 (2014), 1929–1958. http:
//jmlr.org/papers/v15/srivastava14a.html

[46] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to Sequence
Learning with Neural Networks. In Advances in neural information processing
systems. 3104–3112.

[47] Song Wang, Taiyue Liu, and Lin Tan. 2016. Automatically Learning Semantic
Features for Defect Prediction. In Proceedings of the International Conference on
Software Engineering (ICSE). ACM, 297–308.

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia A. Mesbah, A. Rice, E. Johnston, N. Glorioso, and E. A�andilian

[48] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Je�
Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, ?ukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian,
Nishant Patil, Wei Wang, Cli� Young, Jason Smith, Jason Riesa, Alex Rudnick,
Oriol Vinyals, Greg Corrado, Macdu� Hughes, and Je�rey Dean. 2016. Google’s

Neural Machine Translation System: Bridging the Gap between Human and
Machine Translation. CoRR abs/1609.08144 (2016). http://arxiv.org/abs/1609.
08144

[49] Sai Zhang, Hao Lü, and Michael D Ernst. 2013. Automatically Repairing Broken
Work�ows for Evolving GUI Applications. In Proceedings of the International
Symposium on Software Testing and Analysis. 45–55.

