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Abstract. The classical formulation of the program-synthesis problem is to find a
program that meets a correctness specification given as a logical formula. Recent
work on program synthesis and program optimization illustrates many potential
benefits of allowing the user to supplement the logical specification with a syntac-
tic template that constrains the space of allowed implementations. Our goal is to
identify the core computational problem common to these proposals in a logical
framework. The input to the syntax-guided synthesis problem (SyGuS) consists of
a background theory, a semantic correctness specification for the desired program
given by a logical formula, and a syntactic set of candidate implementations given
by a grammar. The computational problem then is to find an implementation from
the set of candidate expressions so that it satisfies the specification in the given
theory. We describe alternative solution strategies that combine learning, counter-
example analysis and constraint solving. We report on prototype implementations,
and present experimental results on the set of benchmarks collected as part of the
first SyGuS-Comp competition held in July 2014.
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1. Introduction

The goal of program synthesis is to automatically synthesize a program implementation
that satisfies a given correctness specification. Being able to do this reliably even at a
small scale could have a significant impact on software development by simultaneously
making software more reliable and reducing the effort required to produce it. Classically,
program synthesis was viewed as a problem in deductive theorem proving: a program is

1This paper is an extended version of [1]. Compared to [1] it contains additional solution strategies and
reports on more extensive evaluation on a larger set of benchmarks.



derived from the constructive proof of the theorem that states that for all inputs, there ex-
ists an output, such that the desired correctness specification holds (see [6]). Recent work,
however, has demonstrated an alternative approach to synthesis where the programmer,
in addition to the correctness specification, provides a syntactic template for the desired
program. For instance, in the programming approach advocated by the SKETCH system,
a programmer writes a partial program with incomplete details, and the synthesizer fills
in the missing details using user-specified assertions as the correctness specification [7].

The use of a syntactic constraint in addition to the correctness specification has
many potential benefits. First, the synthesis problem becomes more tractable because the
syntactic template limits the search space of potential implementations. Second, this ap-
proach gives the programmer the flexibility to describe the desired artifact using a com-
bination of syntactic and semantic constraints. Such forms of multi-modal specifications
have the potential to make programming more intuitive. Third, the syntactic template
can be used to constrain the space of implementations for the purpose of performance
optimizations. For example, to optimize the computation of the product of two matrices,
we can syntactically limit the search space to implementations that use only 7 recursive
multiplications on smaller sub-matrices to force the synthesizer to discover Strassen’s
algorithm. Fourth, because the synthesis problem boils down to finding a correct expres-
sion from the syntactic space of expressions, this search problem lends itself to machine
learning and inductive inference as discussed in Section 3.

The use of syntactic restrictions has been embraced by a number of recent efforts
such as synthesis of loop-free programs [8], synthesis of Excel macros from exam-
ples [9], program de-obfuscation [10], synthesis of protocols from the skeleton and ex-
ample behaviors [11], synthesis of loop-bodies from pre/post conditions [12], integration
of constraint solvers in programming environments for program completion [13], and
super-optimization by finding equivalent shorter loop bodies [14]. Also related are tech-
niques for automatic generation of invariants using templates and by learning [15,16,17],
and recent work on solving quantified Horn clauses [18]. Despite their common approach
to synthesis based on a combination of syntactic and semantic constraints, however, each
of these tools uses a different representation of the synthesis problem and different algo-
rithms to solve it. This makes it difficult to systematically explore the tradeoffs between
many of the algorithms used by these systems or to transfer synthesis technologies from
one system to another.

The main contribution of this paper is to formalize the syntax guided synthesis prob-
lem (SyGuS) and to present a standard format to describe such problems. The goal of the
SyGuS formalism is to capture the syntactic guidance that is essential to recent synthesis
efforts under a general formal framework based on logics and grammars—as opposed to
a specific programming language. In our formalization, the correctness specification of
the function f to be synthesized is given as a logical formula ϕ that uses symbols from a
background theory T . The syntactic space of possible implementations for f is described
as a set L of expressions built from the theory T , and this set is specified using a gram-
mar. The syntax-guided synthesis problem then is to find an implementation expression
e∈ L such that the formula ϕ[ f/e] is valid in the theory T . It is important to note that this
problem cannot be translated to determining the truth of a formula in the theory T , even
with additional quantifiers. To illustrate an application of the SyGuS-problem, suppose
we want to find a completion of a partial program with holes so as to satisfy given asser-
tions. A typical SyGuS-encoding of this task will translate the concrete parts of the par-



tial program and the assertions into the specification formula ϕ , while the holes will be
represented with the unknown functions to be synthesized, and the space of expressions
that can substitute the holes will be captured by the grammar.

The precedent for this kind of standardization effort can be found in the develop-
ment of solvers for Satisfiability Modulo Theories (SMT) [4]. Modern SMT solvers can
determine the truth of a complex logical formula with thousands of variables, despite
the computational intractability of the problem (see [4,5]). A key driving force behind
the sustained innovations that have made this possible has been the standardization of a
common interchange format for benchmarks called SMT-LIB (see smt-lib.org) and the
associated annual competition (see smtcomp.org). These efforts have proved to be instru-
mental in creating a virtuous feedback loop between the developers and users of SMT
solvers: with the availability of open-source and highly optimized solvers, researchers
from verification and other application domains find it beneficial to translate their prob-
lems into the common format instead of attempting to develop their own tools from
scratch, and the limitations of the current SMT tools are constantly exposed by the ever
growing repository of different kinds of benchmarks. Many of the synthesis systems
mentioned earlier actually rely on SMT solvers internally, but the existing formalization
behind SMT-LIB has no suitable abstraction for capturing the syntactic guidance. By
creating a common format for synthesis problems that is able to capture these syntactic
restrictions, we expect synthesis to benefit from a similar feedback loop.

The rest of the paper is organized in the following manner. In Section 2, we formal-
ize the core problem of syntax-guided synthesis with examples. In Section 3, we dis-
cuss a generic architecture for solving the proposed problem using the iterative counter-
example guided inductive synthesis strategy [19] that combines a learning algorithm with
a verification oracle. For the learning algorithm, we show alternative solution strategies,
as follows. The enumerative technique generates the candidate expressions of increasing
size relying on the input-output examples for pruning. The constraint-based techniques
encode the grammar production rules in a symbolic fashion, and generate a syntactic
constraint stipulating the existence of an expression adhering the grammar rules of upto
certain size or depth; then they call an SMT solver to find an expression consistent with
all the examples encountered so far. The stochastic search uniformly samples the set L
of expressions as a starting point, and then executes (probabilistic) traversal of the graph
where two expressions are neighbors if one can be obtained from the other by a single
edit operation on the parse tree. Last, the geometry-based solver is targeting generation
of guarded linear expressions only; it is agnostic to the SyGuS constraints and encodes
the examples as pairs (~x,val) where~x are perceived as vectors over k variables. It works
in two phases: in the first it uses computational geometry techniques to generate a set
of linear expressions such that at least one of them works for any given example; and
in the second phase it uses decision tree classifiers to generate the guards. In Section 4
we report on the performance of prototype implementations for the mentioned solution
strategies, over a set of 250 benchmarks collected as part of the first competition for
solvers for SyGuS — SYGUS-COMP 2014 that took place in July 2014.2 We conclude
in Section 5.

2SYGUS-COMP 2014 was a satellite event of SYNT/CAV 2014, and a part of FLoC Olympic Games 2014
at the Vienna Summer of Logic (VSL).



2. Problem Formulation

At a high level, the functional synthesis problem consists of finding a function f such
that some logical formula ϕ capturing the correctness of f is valid. In syntax-guided
synthesis, the synthesis problem is constrained in three ways: (1) the logical symbols and
their interpretation are restricted to a background theory, (2) the specification ϕ is limited
to a first order formula in the background theory with all its variables universally quan-
tified, and (3) the universe of possible functions f is restricted to syntactic expressions
described by a grammar. We now elaborate on each of these points.

Background Theory

The syntax for writing specifications is the same as classical typed first-order logic, but
the formulas are evaluated with respect to a specified background theory T . The theory
gives the vocabulary used for constructing formulas, the set of values for each type,
and the interpretation for each of the function and relation (predicate) symbols in the
vocabulary. We are mainly interested in theories T for which well-understood decision
procedures are available for determining satisfaction modulo T (see [4] for a survey).
A typical example is the theory of linear integer arithmetic (LIA) where each variable
is either a boolean or an integer, and the vocabulary consists of boolean and integer
constants, standard boolean connectives, addition (+), comparison (≤), and conditionals
(ITE). Note that the background theory can be a combination of logical theories, for
instance, LIA and the theory of uninterpreted functions with equality.

Correctness Specification

For the function f to be synthesized, we are given the type of f and a formula ϕ as its
correctness specification. The formula ϕ is a Boolean combination of predicates from
the background theory, involving universally quantified free variables, symbols from the
background theory, and the function symbol f , all used in a type-consistent manner.

Example 1 Assuming the background theory is LIA, consider the specification of a func-
tion f of type int× int 7→ int:

ϕ1 : f (x,y) = f (y,x) ∧ f (x,y)≥ x.

The free variables in the specification are assumed to be universally quantified: a given
function f satisfies the above specification if the quantified formula ∀x,y.ϕ1 holds, or
equivalently, if the formula ϕ1 is valid.

Set of Candidate Expressions

In order to make the synthesis problem tractable, the “syntax-guided” version allows the
user to impose structural (syntactic) constraints on the set of possible functions f . The
structural constraints are imposed by restricting f to the set L of functions defined by a
given context-free grammar GL. Each expression in L has the same type as that of the
function f , and uses the symbols in the background theory T along with the variables
corresponding to the formal parameters of f .



Example 2 Suppose the background theory is LIA, and the type of the function f is
int× int 7→ int. We can restrict the set of expressions f (x,y) to be linear expressions of
the inputs by restricting the body of the function to expressions in the set L1 described by
the grammar below:

LinExp := x | y | Const | LinExp+LinExp

Alternatively, we can restrict f (x,y) to conditional expressions with no addition by re-
stricting the body terms from the set L2 described by:

Term := x | y | Const | ITE(Cond,Term,Term)

Cond := Term≤ Term | Cond∧Cond | ¬Cond | (Cond)

Grammars can be conveniently used to express a wide range of constraints, and in par-
ticular, to bound the depth and/or the size of the desired expression.

SyGuS Problem Definition

Informally, given the correctness specification ϕ and the set L of candidates, we want to
find an expression e ∈ L such that if we use e as an implementation of the function f ,
the specification ϕ is valid. Let us denote the result of replacing each occurrence of the
function symbol f in ϕ with the expression e by ϕ[ f/e]. Note that we need to take care of
binding of input values during such a substitution: if f has two inputs that the expressions
in L refer to by the variable names x and y, then the occurrence f (e1,e2) in the formula ϕ

must be replaced with the expression e[x/e1,y/e2] obtained by replacing x and y in e by
the expressions e1 and e2, respectively. Now we can define the syntax-guided synthesis
problem, SyGuS for short, precisely:

Given a background theory T , a typed function symbol f , a formula ϕ over the vo-
cabulary of T along with f , and a set L of expressions over the vocabulary of T and
of the same type as f , find an expression e ∈ L such that the formula ϕ[ f/e] is valid
modulo T .

Example 3 For the specification ϕ1 presented earlier, if the set of allowed implementa-
tions is L1 as shown before, there is no solution to the synthesis problem. On the other
hand, if the set of allowed implementations is L2, a possible solution is the conditional
if-then-else expression ITE(x≥ y,x,y).

In some special cases, it is possible to reduce the decision problem for syntax guided
synthesis to the problem of deciding formulas in the background theory using additional
quantification. For example, every expression in the set L1 is equivalent to ax+by+c, for
integer constants a,b,c. If ϕ is the correctness specification, then deciding whether there
exists an implementation for f in the set L1 corresponds to checking whether the formula
∃a,b,c.∀X .ϕ[ f/ax+ by+ c] holds, where X is the set of all free variables in ϕ . This
reduction was possible for L1 because the set of all expressions in L1 can be represented
by a single parameterized expression in the original theory. However, the grammar may
permit expressions of arbitrary depth which may not be representable in this way, as in
the case of L2.



Synthesis of Multiple Functions

A general synthesis problem can involve more than one unknown function. In principle,
adding support for problems with more than one unknown function is merely a matter of
syntactic sugar. For example, suppose we want to synthesize functions f1(x1) and f2(x2),
with corresponding candidate expressions given by grammars G1 and G2, with start non-
terminals S1 and S2, respectively. Both functions can be encoded with a single function
f12(id,x1,x2). The set of candidate expressions is described by the grammar that contains
the rules of G1 and G2 along with a new production S := ITE(id= 0,S1,S2), with the new
start non-terminal S. Then, every occurrence of f1(x1) in the specification can be replaced
with f12(0,x1,∗) and every call to f2(x2) can be replaced with f12(1,∗,x2). Although
adding support for multiple functions does not fundamentally increase the expressiveness
of the notation, it does offer significant convenience in encoding real-world synthesis
problems.

Let Expressions in Grammar Productions

The SMT-LIB interchange format for specifying constraints allows the use of let expres-
sions as part of the formulas, and this is supported by our language also: (let [var =
e1] e2). While let-expressions in a specification can be desugared, the same does not
hold when they are used in a grammar. As an example, consider the grammar below for
the set of candidate expressions for the function f (x,y):

T := (let ((z Int U)) z+ z)

U := x | y | Const |U +U |U ∗U | T

The top-level expression specified by this grammar is the sum of two identical subex-
pressions built using arithmetic operators, and such a structure cannot be specified us-
ing a standard context-free grammar. In the example above, every let introduced by the
grammar uses the same variable name. If the application of let-expressions are nested
in the derivation tree, the standard rules for shadowing of variable definitions determine
which definition corresponds to which use of the variable.

SyGuS-LIB Input Format

To specify the input to the SyGuS problem, we have developed an interchange format,
called SyGuS-LIB3. It is based on the syntax of SMT-LIB2—the input format accepted
by the SMT solvers (see smt-lib.org). The input for the SyGuS problem to synthesize
the function f with the specification ϕ1 in the theory LIA, with the grammar for the
languages L1 is encoded in SyGuS-LIB as:

(set-logic LIA)

(SyGuS-fun f ((x Int) (y Int)) Int

((Start Int (x y

(Constant Int)

(+ Start Start)))))

(declare-var a Int)

(declare-var b Int)

3The full description of SyGuS-LIB is available at [2].



(constraint (= (f a b) (f b a)))

(constraint (>= (f a b) a))

(check-synth)

Optimality Criterion

The answer to our synthesis problem need not be unique: there may be two expressions
e1 and e2 in the set L of allowed expressions such that both implementations satisfy the
correctness specification ϕ . Ideally, we would like to associate a cost with each expres-
sion, and consider the problem of optimal synthesis which requires the synthesis tool to
return the expression with the least cost among the correct ones. A natural cost metric
is the size of the expression. In the presence of let-expressions, the size directly corre-
sponds to the number of instructions in the corresponding straight-line code, and thus
such a metric can be used effectively for applications such as super-optimization.

3. Inductive Synthesis

Algorithmic approaches to program synthesis range over a wide spectrum, from deduc-
tive synthesis to inductive synthesis. In deductive program synthesis (e.g., [6]), a pro-
gram is synthesized by constructively proving a theorem, employing logical inference
and constraint solving. On the other hand, inductive synthesis [20,21,22] seeks to find a
program matching a set of input-output examples. It is thus an instance of learning from
examples, also termed as inductive inference or machine learning [23,24]. Many current
approaches to synthesis blend induction and deduction [25]; syntax guidance is usually
a key ingredient in these approaches.

Inductive synthesizers generalize from examples by searching a restricted space of
programs. In machine learning, this restricted space is called the concept class, and each
element of that space is often called a candidate concept. The concept class is usually
specified syntactically. Inductive learning is thus a natural fit for the syntax-guided syn-
thesis problem introduced in this paper: the concept class is simply the set L of permis-
sible expressions.

3.1. Synthesis via Active Learning

A common approach to inductive synthesis is to formulate the overall synthesis problem
as one of active learning using a query-based model. Active learning is a special case
of machine learning in which the learning algorithm can control the selection of exam-
ples that it generalizes from and can query one or more oracles to obtain both examples
as well as labels for those examples. In our setting, we can consider the labels to be
binary: positive or negative. A positive example is simply an interpretation to f in the
background theory T that is consistent with the specification ϕ; i.e., it is a valuation to
the arguments of the function symbol f along with the corresponding valuation of f that
satisfies ϕ . A negative example is any interpretation of f that is not consistent with ϕ .
We refer the reader to a paper by Angluin [26] for an overview of various models for
query-based active learning.

In program synthesis via active learning, the query oracles are often implemented
using deductive procedures such as model checkers or satisfiability solvers. Thus, the



Figure 1. Counterexample-Guided Inductive Synthesis (CEGIS)

overall synthesis algorithm usually comprises a top-level inductive learning algorithm
that invokes deductive procedures (query oracles); e.g., in our problem setting, it is intu-
itive, although not required, to implement an oracle using an SMT solver for the theory
T . Even though this approach combines induction and deduction, it is usually referred to
in the literature simply as “inductive synthesis.” We will continue to use this terminology
in the present paper.

Consider the syntax-guided synthesis problem of Sec. 2. Given the tuple (T , f , ϕ ,
L), there are two important choices one must make to fix an inductive synthesis algo-
rithm: (1) search strategy: How should one search the concept class L? and (2) example
selection strategy: Which examples do we learn from?

3.2. Counterexample-Guided Inductive Synthesis

Counterexample-guided inductive synthesis (CEGIS) [19,29] shown in Figure 1 is per-
haps the most popular approach to inductive synthesis today. CEGIS has close connec-
tions to algorithmic debugging using counterexamples [22] and counterexample-guided
abstraction refinement (CEGAR) [30]. This connection is no surprise, because both de-
bugging and abstraction-refinement involve synthesis steps: synthesizing a repair in the
former case, and synthesizing an abstraction function in the latter (see [25] for a more
detailed discussion).

The defining aspect of CEGIS is its example selection strategy: learning from coun-
terexamples provided by a verification oracle. The learning algorithm, which is initial-
ized with a particular choice of concept class L and possibly with an initial set of (pos-
itive) examples, proceeds by searching the space of candidate concepts for one that is
consistent with the examples seen so far. There may be several such consistent concepts,
and the search strategy determines the chosen candidate, an expression e. The concept
e is then presented to the verification oracle OV , which checks the candidate against the
correctness specification. OV can be implemented as an SMT solver that checks whether
ϕ[ f/e] is valid modulo the theory T . If the candidate is correct, the synthesizer termi-
nates and outputs this candidate. Otherwise, the verification oracle generates a coun-
terexample, an interpretation to the symbols and free variables in ϕ[ f/e] that falsifies
it. This counterexample is returned to the learning algorithm, which adds the counterex-
ample to its set of examples and repeats its search; note that the precise encoding of a
counterexample and its use can vary depending on the details of the learning algorithm



Expression to Verifier Learned Test Input

x 〈x = 0,y = 1〉
y 〈x = 1,y = 0〉
1 〈x = 0,y = 0〉

x+ y 〈x = 1,y = 1〉
ITE(x≤ y,y,x) –

Table 1. A run of the enumerative algorithm

employed. It is possible that, after some number of iterations of this loop, the learning al-
gorithm may be unable to find a candidate concept consistent with its current set of (pos-
itive/negative) examples, in which case the learning step, and hence the overall CEGIS
procedure, fails.

Several search strategies are possible for learning a candidate expression in L, each
with its pros and cons. In the following sections, we describe three different search strate-
gies and illustrate the main ideas in each using a small example.

3.3. Illustrative Example

Consider the problem of synthesizing a program which returns the maximum of two
integer inputs. The specification of the desired program max is given by:

max(x,y)≥ x ∧ max(x,y)≥ y ∧

(max(x,y) = x∨max(x,y) = y)

The search space is suitably defined by an expression grammar which includes addition,
subtraction, comparison, conditional operators and the integer constants 0 and 1.

3.4. Enumerative Learning

The enumerative learning algorithm [11] adopts a dynamic programming based search
strategy that systematically enumerates concepts (expressions) in increasing order of
complexity. Various complexity metrics can be assigned to concepts, the simplest being
the expression size. The algorithm needs to store all enumerated expressions, because ex-
pressions of a given size are composed to form larger expressions in the spirit of dynamic
programming. The algorithm maintains a set of concrete test cases, obtained from the
counterexamples returned by the verification oracle. These concrete test cases are used
to reduce the number of expressions stored at each step by the dynamic programming
algorithm.

We demonstrate the working of the algorithm on the illustrative example. Table 1
shows the expressions submitted to the verification oracle (an SMT solver) during the
execution of the algorithm and the values for which the expression produces incorrect re-
sults. Initially, the algorithm submits the expression x to the verifier. The verifier returns
a counterexample 〈x = 0,y = 1〉, corresponding to the case where the expression x vio-
lates the specification. The expression enumeration is started from scratch every time a
counterexample is added. All enumerated expressions are checked for conformance with
the accumulated (counter)examples before making a potentially expensive query to the



Production Component

E→ ITE(B,E,E) Inputs: (i1 : B)(i2, i3 : E)

Output: (o : E)

Spec: o = ITE(i1, i2, i3)

B→ E ≤ E Inputs: (i1, i2 : E)

Output: (o : B)

Spec: o = i1 ≤ i2

Table 2. Components from Productions

verifier. In addition, if the algorithm enumerates two expressions e and e′ that evaluate
to the same value on the examples obtained so far, then only one of e or e′ needs to be
considered for the purpose of constructing larger expressions.

Proceeding with the illustrative example, the algorithm then submits the expression
y and the constant 1 to the verifier. The verifier returns the values 〈x = 1,y = 0〉 and
〈x = 0,y = 0〉, respectively, as counterexamples to these expressions. The algorithm then
submits the expression x+ y to the verifier. The verifier returns the values 〈x = 1,y = 1〉
as a counterexample. The algorithm then submits the expression shown in the last row of
Table 1 to the verifier. The verifier certifies it to be correct and the algorithm terminates.

The optimization of pruning based on concrete counterexamples helps in two ways.
First, it reduces the number of invocations of the verification oracle. In the example we
have described, the correct expression was examined after only four calls to the SMT
solver, although about 200 expressions were enumerated by the algorithm. Second, it
reduces the search space for candidate expressions significantly (see [11] for details). For
instance, in the run of the algorithm on the example, although the algorithm enumerated
about 200 expressions, only about 80 expressions were stored.

3.5. Constraint-based Learning

The symbolic CEGIS approach uses a constraint solver both for searching for a candi-
date expression that works for a set of concrete input examples (concept learning) and
verification of validity of an expression for all possible inputs. We use component based
synthesis of loop-free programs as described by Jha et al. [10,8]. Each production in
the grammar corresponds to a component in a library. A loop-free program comprising
these components corresponds to an expression from the grammar. Some sample com-
ponents for the illustrative example are shown in Table 2 along with their corresponding
productions.

The input/output ports of these components are typed and only well-typed programs
correspond to well-formed expressions from the grammar. To ensure this, Jha et al.’s en-
coding [8] is extended with typing constraints. We illustrate the working of this algorithm
on the maximum of two integers example. The library of allowed components is instan-
tiated to contain one instance each of ITE and all comparison operators(≤,≥,=) and
the concrete example set is initialized with 〈x = 0,y = 0〉. The first candidate loop-free
program synthesized corresponds to the expression x. This candidate is submitted to the
verification oracle which returns with 〈x = −1,y = 0〉 as a counterexample. This coun-
terexample is added to the concrete example set and the learning algorithm is queried
again. The SMT formula for learning a candidate expression is solved in an incremental
fashion; i.e., the constraint for every new example is added to the list of constraints from



Iteration Loop-free program Learned counter-example

1 o1 := x 〈x =−1,y = 0〉
2 o1 := x ≤ x

o2 := ITE(o1, y, x) 〈x = 0,y =−1〉
3 o1 := y ≥ x

o2 := ITE(o1, y, x) –

Table 3. A run of the constraint learning algorithm

the previous examples. The steps of the algorithm on the illustrative example are shown
in Table 3.

If synthesis fails for a component library, we add one instance of every operator to
the library and restart the algorithm with the new library. We also tried a modification
to the original algorithm [8], in which, instead of searching for a loop-free program
that utilizes all components from the given library at once, we search for programs of
increasing length such that every line can still select any component from the library.
The program length is increased in an exponential fashion (1, 2, 4, 8, · · · ) for a good
coverage. This approach provides better running times for most benchmarks in our set,
but it can also be more expensive in certain cases.

Sketch-based Solver

An alternative constraint-based learning approach is implemented in the Sketch-based
solver, which uses the symbolic CEGIS implementation in SKETCH [19,29]. This solver
implementation lets us leverage and build upon numerous encoding optimizations in
SKETCH for an efficient symbolic encoding of our constraints. A grammar for the un-
known function is encoded as a typed SKETCH function. The productions for each gram-
mar variable are encoded as a typed SKETCH generator, where holes are used to en-
code different return choices for the production rules. For the illustrative example, the
unknown function f is translated to the following SKETCH function.

int f(int x, int y){

return rulefunc2(x,y,BND);

}

The generator names for the grammar production rules such as rulefunc2 are
freshly generated for each grammar variable. Each generator call also takes an additional
parameter BND that is used to bound the number of recursive calls of the generator. For
instance, the Term production rules in the grammar of language L2 are encoded as the
following SKETCH generator.

generator int rulefunc2(int x, int y, int bnd){

assert(bnd>0);

if(??) return x;

if(??) return y;

if(??) return ??;

int t1 = rulefunc2(x,y,bnd-1);



int t2 = rulefunc2(x,y,bnd-1);

bit t3 = rulefunc1(x,y,bnd-1);

if(??) return ite(t3, t1, t2);

assert false;

}

The generator rulefunc2 first ensures that the recursion inline bound is not violated
(bnd> 0). It uses the SKETCH hole construct (??) to encode different rule choices, where
a hole can be assigned any constant integer value. An important optimization in this
encoding is to factor out recursive generator calls into temporary variables such as t1

and t2 instead of inlining them into return expressions of the rule choices. This helps
the solver perform symmetry breaking to identify common sub-expressions in recursive
calls.

Since SKETCH uses a SAT solver for both concept learning as well as the verification
step, we need to bound the search space for possible concepts. This is done by bounding
the space of possible inputs and the inlining depth of recursive calls in grammar produc-
tion rules. The Sketch-based solver first starts with small bounds for inputs and inline
amount, and then iteratively increases the two bounds in a coordinated way.

3.6. Learning by Stochastic Search

The stochastic learning procedure is an adaptation of the algorithm recently used by
Schufza et al. [14] for program super-optimization. The learning algorithm of the CEGIS
loop uses the Metropolis-Hastings procedure to sample expressions. The probability of
choosing an expression e is proportional to a value Score(e), which indicates the extent
to which e meets the specification ϕ . The Metropolis-Hastings algorithm guarantees that,
in the limit, expressions e are sampled with probability proportional to Score(e). To com-
plete the description of the search procedure, we need to define Score(e) and the Markov
chain used for successor sampling. We define Score(e) to be exp(−βC(e)), where β is
a smoothing constant (set by default to 0.5), and the cost function C(e) is the number of
concrete examples on which e does not satisfy ϕ .

We now describe the Markov chain underlying the search. Fix an expression size n,
and consider all expressions in L with parse trees of size n. The initial candidate is chosen
uniformly at random from this set [31]. Given a candidate e, we pick a node v in its parse
tree uniformly at random. Let ev be the subexpression rooted at this node. This subtree is
replaced by another subtree (of the same type) of size equal to |ev| chosen uniformly at
random. Given the original candidate e, and a mutation e′ thus obtained, the probability
of making e′ the new candidate is given by the Metropolis-Hastings acceptance ratio
α(e,e′) = min(1,Score(e′)/Score(e)).

The final step is to describe how the algorithm selects the expression size n. Al-
though the solver comes with an option to specify n, the expression size is typically not
known a priori given a specification ϕ . Intuitively, we run concurrent searches for a range
of values for n. Starting with n = 1, with some probability pm (set by default to 0.01),
we switch at each step to one of the searches at size n±1. If an answer e exists, then the
search at size n = |e| is guaranteed to converge.

Consider the earlier example for computing the maximum of two integers. There
are 768 integer-valued expressions in the grammar of size six. Thus, the probabil-
ity of choosing e = ITE(x ≤ 0,y,x) as the initial candidate is 1/768. The subex-



pression to mutate is chosen uniformly at random, and so the probability of decid-
ing to mutate the boolean condition x ≤ 0 is 1/6. Of the 48 boolean conditions
in the grammar, y ≤ 0 may be chosen with probability 1/48. Thus, the mutation
e′ = ITE(0 ≤ y,y,x) is considered with probability 1/288. Given a set of concrete
examples {(−1,4),(−3,−1),(−1,−2),(1,2),(3,1),(6,2)}, Score(e) = exp(−2β ), and
Score(e′) = exp(−3β ), and so e′ becomes the new candidate with probability exp(−β ).
If, on the other hand, e′ = ITE(x ≤ y,y,x) had been the mutation considered, then
Score(e′) = 1, and e′ would have become the new candidate with probability 1.

Our algorithm differs from that of Schufza et al. [14] in three ways: (1) we do not
attempt to optimize the size of the expression while the super-optimizer does so; (2) we
synthesize expression graphs rather than straight-line assembly code, and (3) since we
do not know the expression size n, we run concurrent searches for different values of n,
whereas the super-optimizer can use the size of the input program as an upper bound on
program size.

3.7. Learning Functions using Classifiers and Geometry

Another CEGIS-based approach to synthesize expressions is to use machine learning
techniques in a more “black-box” manner, learning purely from counterexamples. As
in earlier sections, the synthesis engine consists of two parts, a learner and a teacher,
who work in turns and communicate with each other. Importantly, in this approach the
learner is completely agnostic of the constraints imposed by the SyGuS formula. This
characteristic distinguishes the approach of this section from the previous three methods
— those methods do not strictly require input-output pairs as counterexamples since
they learn from the SyGuS constraints grounded by counterexamples. Additionally, as
in the enumerative method, the learner has an inductive bias towards learning simpler
expressions (say, expressions of smaller size and smaller constants).

Learning Guarded Linear Expressions

We now describe a learning algorithm that synthesizes guarded linear expressions. These
are functions that can be expressed in the logic:

GLE := ite(LP,GLE,GLE) | LE

LP := LE < LE | LE≤ LE | LE = LE

LE := c | cx | LE+LE

where x ranges over a fixed finite set of variables V with domain D (which can be reals,
rationals, integers, or natural numbers), and where c ranges over rationals.

We would like the learner to build a guarded linear expression that satisfies a certain
set of examples. The most natural notion of an example that can guide the learner in
learning a function f with domain Dd and range D is a pair (~x,val), where ~x ∈ Dd and
val ∈ D, with the intended meaning that f (~x) = val. In other words, we assume the
teacher can give counter-examples that precisely point to certain inputs and also give the
values of the function on these inputs.

The learner hence learns from a set of examples E = {(~xi,vali), i = 1, . . .n}. A
guarded linear expression e satisfies such a set of examples E if the function f defined
by the expression e maps each~xi to vali.



Building a teacher who can examine a hypothesis function h given by the learner
and check whether it satisfies a SyGuS specification is easy, as in all other CEGIS ap-
proaches. However, it turns out that giving concrete counterexamples of the form (~x,val)
is not easy for general SyGuS problems. We use certain heuristic techniques that use con-
straint solvers to build a teacher that can return such counterexamples for some SyGuS
problems.

The learner we designed works in two phases, given a set of examples E:

• Phase 1: [Geometry] First, we synthesize a set of linear expressions LE1, . . . ,LEk
such that at least one of them will work for any given example. In other words,
for every (~x,v) ∈ E, there is some i such that LEi when evaluated on ~x gives v.
This problem is essentially to find a small set of planes that include all the given
points in (d +1)-dimensional space (viewing the space describing the inputs and
the output of the function synthesized), and we use a greedy algorithm that uses
computational geometry techniques.

• Phase 2: [Classifier] Given the linear expressions from the first phase, which will
form the leaves of the expression we synthesize, we then synthesize the guards.
This is done using a classification algorithm, which decides a way to assign one of
the linear expressions to each input point such that the examples are mapped cor-
rectly. We use a decision tree classifier for this, using a fast and scalable machine-
learning algorithm for decision trees [36,24].

The first phase, based on geometry, works as follows. Assume that |E|= n where n
is large, and assume that we want to find k planes, where k is a small constant, that cover
all the examples, viewing the examples as points in (d + 1)-dimensional space. Given
d +2 points in d +1 dimensions, (~xi,vali), where each~xi = 〈x1

i , . . .x
d+1
i 〉, we can check

if these points are co-planar, by checking whether the following holds:∣∣∣∣∣∣∣∣∣∣∣∣

x1
1 x2

1 . . . xd+1
1 1

x1
2 x2

2 . . . xd+1
2 1

...
...

...
...

x1
d+2 x2

d+2 . . . xd+1
d+2 1

∣∣∣∣∣∣∣∣∣∣∣∣
= 0

This is a standard result in computational geometry [38].
We now build a greedy algorithm for finding a small number of planes that cover

all the examples. Note that if k planes are sufficient to cover all points, then there must
be a plane that covers

⌈ n
k

⌉
of the points. Furthermore (d + 1) points are sufficient to

determine a plane. Consequently, we can randomly choose (d +2) points that are close
to each other, and check for their co-planarity. If they are co-planar, and cover more than
a threshold of

⌈ n
k

⌉
points, we select the plane determined by these points and recurse to

find the remaining (k− 1) planes from the non-covered points. Otherwise, we select a
different set of (d +2) points and iterate.

In the second phase, we label each input in the examples with a plane (from the
ones identified in the first phase) that correctly maps that input to its output. We then
use a decision-tree classification algorithm [36,24] to classify all inputs according to la-



bel planes such that the examples are mapped to the correct planes. Decision-trees can
classify points according to a finite set of numerical attributes. We choose numerical at-
tributes that are linear combinations of the variables, with bounded integer coefficients.
The decision-tree learner then constructs a classification that uses Boolean combinations
of formulas of the form a≤ t, where a is a numerical attribute and t is a threshold (con-
stant) which it synthesizes. Note that the linear coefficients for the guards are hence enu-
merated by our tool— the decision tree learner just picks appropriate numerical attributes
and synthesizes the thresholds.

The decision-tree learner that we use is a standard state-of-the-art decision tree al-
gorithm, called C5.0 [37,36], and is extremely scalable and has an inductive bias to
learn smaller trees. It constructs trees using an algorithm that does no back-tracking, but
chooses the best attributes heuristically using information gain, calculated using Shan-
non’s entropy measure. We modify these algorithms so that some of the steps (such as
pruning) which are traditionally performed to reduce overfitting, are removed, since we
want a classifier that works precisely on the given sample and cannot tolerate errors.

Building a teacher who counters the learner’s hypotheses with concrete counter-
examples is hard. First, if the SyGuS specification does not describe a function exactly
(i.e., if there are many functions that could satisfy the formula), then finding a precise
input and output will be hard, or even impossible. (For instance, if the SyGuS specifi-
cation just demanded f (x) > x, then there is no concrete counterexample we can give.)
However, typically, there are at least certain inputs where the function is determined by
the specification, and the teacher tries to extract such points when the hypothesis fails to
satisfy the specification.

The learner and the teacher work together to synthesize the expression; the expres-
sion is found when the teacher finds that the current hypothesis of the learner satisfies the
SyGuS specification. We implemented this solver, called ALCHEMIST, and its evaluation
is discussed in the section on experimental results.

4. Experimental Results

We now present the experimental evaluation of the previously described prototype syn-
thesizers on a benchmark suite of synthesis problems. The current set of benchmarks is
limited to synthesis of loop-free functions on integers and bitvectors with no optimality
criterion; nevertheless, the benchmarks provide an initial demonstration of the expres-
siveness of the base formalism and of the relative merits of the individual solution strate-
gies presented earlier. Specifically, in this section we explore three key questions about
the benchmarks and the prototype synthesizers.

• Complexity of the benchmarks. Our suite includes a range of benchmarks from
simple toy problems to non-trivial functions that are difficult to derive by hand.
Some of the benchmarks can be solved in a few hundredths of a second, whereas
others could not be solved by any of our prototype implementations. In all cases,
however, the complexity of the problems derives from the size of the space of
possible functions and not from the complexity of checking whether a candidate
solution is correct.

• Relative merits of different solvers. The use of a standard format allows us
to perform the first side-to-side comparison of different approaches to synthesis.



None of the implementations were engineered with high-performance in mind,
so the exact solution times are not necessarily representative of the best that can
be achieved by a particular approach. However, the order of magnitude of the
solution times and the relative complexity of the different approaches on different
benchmarks can give us an idea of the relative merits of each of the approaches
described earlier.

• Effect of problem encoding. For many problems, there are different natural ways
to encode the space of desired functions into a grammar, so we are interested in
observing the effect of these differences in encoding for the different solvers.

4.1. Experimental Setup

The solvers were run on the StarExec platform [33] with a dedicated cluster of 9 nodes,
were each node consisted of two 4-core 2.4GHz Intel processors with 256GB RAM and
a 1TB hard drive. For the competition, we limited the memory usage of each solver run
to be 20GB.

To account for variability and for the constant factors introduced by the prototype
nature of the implementations in the first competition, we report the running times on a
roughly logarithmic scale. To be precise, we classified the solution times into buckets ac-
cording to the following solution time values: 1, 3, 10, 30, 100, 300, 1000, 3600 seconds,
such that the first bucket is for running times less than 1 second, the second for running
times between 1 to 3 seconds, the third for running times between 3 to 10 seconds and
so on. The last bucket is for runs that timed out after an hour.

4.2. Overview of the Results

We collected 254 synthesis benchmarks from various sources and grouped them into ten
main categories: Hacker’s Delight [32] problems, integer benchmarks, arrays, Boolean
and bit-vector problems, invariant generation problems (with and without unbounded in-
tegers), benchmarks using the let construct, benchmarks with multiple unknown func-
tions to be synthesized, and benchmarks from the area of vehicle collision control. We
now briefly describe the benchmarks problems in each of the category.

The results for the number of benchmarks solved by each solver is summarized in
Fig. 2. The top figure shows, for each category, the total number of benchmarks in that
category, and the number of benchmarks solved in that category by at least one of the
participating solvers. We can see that none of the ICFP benchmarks were solved, and
that the arrays and bitvectors categories have lower percentage of solved benchmarks.
For the Hacker’s Delight category, the two invariant generation categories, the vehicle
control category, and the multiple functions category, the percentage of solved instances
is relatively higher.

The bottom-left figure shows the number of benchmarks solved per solver per cate-
gory. We can observe that the enumerative solver solved more benchmarks than the other
solvers (a total of 132), and that the stochastic and Sketch-based solvers are not far be-
hind (with totals of 93 and 88 respectively). The Symbolic solver solved a total of 43
benchmarks, whereas the Alchemist solver solved a total of 8 benchmarks.

The bottom-right figure shows the number of benchmarks solved uniquely per solver
per category (where a benchmark is said to be solved uniquely by a solver if that is the
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Figure 2. Results on the number of solved benchmarks.

only solver among the five that solved that benchmark). It is notable that each of the
solvers were able to solve some benchmarks that none of the other solvers managed to
solve.

4.3. Benchmarks and Evaluation per Category

We now present a more detailed description of the benchmark categories and the perfor-
mance of different solvers on the constituent benchmark problems in each category.

Hacker’s Delight Benchmarks

This category includes 57 different benchmarks derived from 20 different bit-manipulation
problems from the book Hacker’s Delight [32]. These bit-vector problems were among
the first to be successfully tackled by synthesis technology [19,10,8] and remain an active
area of research. For these benchmarks, the goal is to discover clever implementations
of bit-vector transformations (colloquially known as bit-twiddling). For most problems,
there are three different levels of grammars numbered d0, d1 and d5; level d0 involves
only the instructions necessary for the implementation, so the synthesizer only needs
to discover how to connect them together. Level d5, at the other extreme, involves a
highly unconstrained grammar, so the synthesizer must discover which operators to use
in addition to how to connect them together.

Fig. 3 shows the performance of the solvers on these benchmarks. For the Hacker’s
Delight benchmarks (hd) we see that the enumerative solver dominates, followed by the
stochastic and Sketch-based solvers. The levels d0-d5 are indicated as part of the name
of the benchmark. It is worth mentioning, however, that none of the grammars for these
problems required the synthesizer to discover the bit-vector constants involved in the



0	  
1	  
2	  
3	  
4	  
5	  
6	  
7	  
8	  
9	  

arr
ay
_se
arc
h_
2.s
l	  

arr
ay
_se
arc
h_
3.s
l	  

arr
ay
_se
arc
h_
4.s
l	  

arr
ay
_se
arc
h_
5.s
l	  

arr
ay
_se
arc
h_
6.s
l	  

arr
ay
_se
arc
h_
7.s
l	  

arr
ay
_se
arc
h_
8.s
l	  

arr
ay
_se
arc
h_
9.s
l	  

arr
ay
_se
arc
h_
10
.sl	  

arr
ay
_se
arc
h_
11
.sl	  

arr
ay
_se
arc
h_
12
.sl	  

arr
ay
_se
arc
h_
13
.sl	  

arr
ay
_se
arc
h_
14
.sl	  

arr
ay
_se
arc
h_
15
.sl	  

arr
ay
_su
m_
2_
5.s
l	  

arr
ay
_su
m_
2_
15
.sl	  

arr
ay
_su
m_
3_
5.s
l	  

arr
ay
_su
m_
3_
15
.sl	  

arr
ay
_su
m_
4_
5.s
l	  

arr
ay
_su
m_
4_
15
.sl	  

arr
ay
_su
m_
5_
5	  1
.sl	  

arr
ay
_su
m_
5_
15
.sl	  

arr
ay
_su
m_
6_
5.s
l	  

arr
ay
_su
m_
6_
15
.sl	  

arr
ay
_su
m_
7_
5.s
l	  

arr
ay
_su
m_
7_
15
.sl	  

arr
ay
_su
m_
8_
5.s
l	  

arr
ay
_su
m_
8_
15
.sl	  

arr
ay
_su
m_
9_
5.s
l	  

arr
ay
_su
m_
9_
15
.sl	  

arr
ay
_su
m_
10
_5
.sl	  

arr
ay
_su
m_
10
_1
5.s
l	  

	  
8meout	  
	  	  3600	  
	  	  	  1000	  
	  	  	  300	  
	  	  	  100	  

30	  
10	  
3	  
1	  
	  

Rela&ve	  Performance	  on	  the	  Array	  Benchmarks	  
Enumera8ve	  

Stochas8c	  

Sketch	  

Alchemist	  

Symbolic	  

0	  
1	  
2	  
3	  
4	  
5	  
6	  
7	  
8	  
9	  

	  	  	  h
d-‐0
1-‐d
0-‐p
rog
.sl	  

	  	  	  h
d-‐0
1-‐d
1-‐p
rog
.sl	  

	  	  	  h
d-‐0
1-‐d
5-‐p
rog
.sl	  

	  	  	  h
d-‐0
2-‐d
0-‐p
rog
.sl	  

	  	  	  h
d-‐0
2-‐d
1-‐p
rog
.sl	  

	  	  	  h
d-‐0
2-‐d
5-‐p
rog
.sl	  

	  	  	  h
d-‐0
3-‐d
0-‐p
rog
.sl	  

	  	  	  h
d-‐0
3-‐d
1-‐p
rog
.sl	  

	  	  	  h
d-‐0
3-‐d
5-‐p
rog
.sl	  

	  	  	  h
d-‐0
4-‐d
0-‐p
rog
.sl	  

	  	  	  h
d-‐0
4-‐d
1-‐p
rog
.sl	  

	  	  	  h
d-‐0
4-‐d
5-‐p
rog
.sl	  

	  	  	  h
d-‐0
5-‐d
0-‐p
rog
.sl	  

	  	  	  h
d-‐0
5-‐d
1-‐p
rog
.sl	  

	  	  	  h
d-‐0
5-‐d
5-‐p
rog
.sl	  

	  	  	  h
d-‐0
6-‐d
0-‐p
rog
.sl	  

	  	  	  h
d-‐0
6-‐d
1-‐p
rog
.sl	  

	  	  	  h
d-‐0
6-‐d
5-‐p
rog
.sl	  

	  	  	  h
d-‐0
7-‐d
0-‐p
rog
.sl	  

	  	  	  h
d-‐0
7-‐d
1-‐p
rog
.sl	  

	  	  	  h
d-‐0
7-‐d
5-‐p
rog
.sl	  

	  	  	  h
d-‐0
8-‐d
0-‐p
rog
.sl	  

	  	  	  h
d-‐0
8-‐d
1-‐p
rog
.sl	  

	  	  	  h
d-‐0
8-‐d
5-‐p
rog
.sl	  

	  	  	  h
d-‐0
9-‐d
0-‐p
rog
.sl	  

	  	  	  h
d-‐0
9-‐d
1-‐p
rog
.sl	  

	  	  	  h
d-‐0
9-‐d
5-‐p
rog
.sl	  

	  	  	  h
d-‐1
0-‐d
0-‐p
rog
.sl	  

6meout	  
	  	  3600	  
	  	  	  1000	  
	  	  	  300	  
	  	  	  100	  

30	  
10	  
3	  
1	  
	  

Rela%ve	  Performance	  on	  the	  First	  Half	  of	  the	  Hacker's	  Delight	  Benchmarks	  

Enumera6ve	  

Stochas6c	  

Sketch	  

Alchemist	  

Symbolic	  

0	  
1	  
2	  
3	  
4	  
5	  
6	  
7	  
8	  
9	  

	  	  	  h
d-‐1
0-‐d
1-‐p
rog
.sl	  

	  	  	  h
d-‐1
0-‐d
5-‐p
rog
.sl	  

	  	  	  h
d-‐1
1-‐d
0-‐p
rog
.sl	  

	  	  	  h
d-‐1
1-‐d
1-‐p
rog
.sl	  

	  	  	  h
d-‐1
1-‐d
5-‐p
rog
.sl	  

	  	  	  h
d-‐1
2-‐d
0-‐p
rog
.sl	  

	  	  	  h
d-‐1
2-‐d
1-‐p
rog
.sl	  

	  	  	  h
d-‐1
2-‐d
5-‐p
rog
.sl	  

	  	  	  h
d-‐1
3-‐d
0-‐p
rog
.sl	  

	  	  	  h
d-‐1
3-‐d
1-‐p
rog
.sl	  

	  	  	  h
d-‐1
3-‐d
5-‐p
rog
.sl	  

	  	  	  h
d-‐1
4-‐d
0-‐p
rog
.sl	  

	  	  	  h
d-‐1
4-‐d
1-‐p
rog
.sl	  

	  	  	  h
d-‐1
5-‐d
0-‐p
rog
.sl	  

	  	  	  h
d-‐1
5-‐d
1-‐p
rog
.sl	  

	  	  	  h
d-‐1
7-‐d
0-‐p
rog
.sl	  

	  	  	  h
d-‐1
7-‐d
1-‐p
rog
.sl	  

	  	  	  h
d-‐1
7-‐d
5-‐p
rog
.sl	  

	  	  	  h
d-‐1
8-‐d
0-‐p
rog
.sl	  

	  	  	  h
d-‐1
8-‐d
1-‐p
rog
.sl	  

	  	  	  h
d-‐1
8-‐d
5-‐p
rog
.sl	  

hd
-‐14
-‐d5
-‐pr
og
.sl	  

hd
-‐15
-‐d5
-‐pr
og
.sl	  

hd
-‐19
-‐d0
-‐pr
og
.sl	  

hd
-‐19
-‐d1
-‐pr
og
.sl	  

hd
-‐19
-‐d5
-‐pr
og
.sl	  

hd
-‐20
-‐d0
-‐pr
og
.sl	  

hd
-‐20
-‐d1
-‐pr
og
.sl	  

hd
-‐20
-‐d5
-‐pr
og
.sl	  

6meout	  
	  	  3600	  
	  	  	  1000	  
	  	  	  300	  
	  	  	  100	  

30	  
10	  
3	  
1	  
	  

Rela&ve	  Performance	  on	  the	  Second	  Half	  of	  the	  Hacker's	  Delight	  Benchmarks	  

Enumera6ve	  

Stochas6c	  

Sketch	  

Alchemist	  

Symbolic	  

0	  
1	  
2	  
3	  
4	  
5	  
6	  
7	  
8	  
9	  

	  in
v_
ge
n_
arr
ay
.sl	  

	  in
v_
ge
n_
cgr
1.s
l	  

	  in
v_
ge
n_
ex
14
.sl	  

	  in
v_
ge
n_
ex
23
.sl	  

	  in
v_
ge
n_
ex
7.s
l	  

	  in
v_
ge
n_
fig
1.s
l	  

	  in
v_
ge
n_
fig
3.s
l	  

	  in
v_
ge
n_
fig
6.s
l	  

	  in
v_
ge
n_
fig
8.s
l	  

	  in
v_
ge
n_
fig
9.s
l	  

	  in
v_
ge
n_
fin
f1.
sl	  

	  in
v_
ge
n_
fin
f2.
sl	  

	  in
v_
ge
n_
n_
c1
1.s
l	  

	  in
v_
ge
n_
su
m3
.sl	  

	  in
v_
ge
n_
su
m4
.sl	  

	  in
v_
ge
n_
ter
m2
.sl	  

	  in
v_
ge
n_
ter
m3
.sl	  

	  in
v_
ge
n_
tre
x1
.sl	  

	  in
v_
ge
n_
tre
x2
.sl	  

	  in
v_
ge
n_
tre
x4
.sl	  

	  in
v_
ge
n_
vm
ail
.sl	  

	  in
v_
ge
n_
w1
.sl	  

	  in
v_
ge
n_
w2
.sl	  

	  in
v_
ge
n_
wi
nf1
.sl	  

	  in
v_
ge
n_
wi
nf2
.sl	  

inv
_g
en
_c
eg
ar2
.sl	  

inv
_g
en
_su
m1
.sl	  

inv
_g
en
_tc
s.s
l	  

@meout	  
	  	  3600	  
	  	  	  1000	  
	  	  	  300	  
	  	  	  100	  

30	  
10	  
3	  
1	  
	  

Rela&ve	  Performance	  on	  the	  Bounded	  Invariant	  Genera&on	  Benchmarks	  

Enumera@ve	  

Stochas@c	  

Sketch	  

Alchemist	  

Symbolic	  

0	  
1	  
2	  
3	  
4	  
5	  
6	  
7	  
8	  
9	  

un
bd
d_
inv
_g
en
_a
rra
y.s
l	  

un
bd
d_
inv
_g
en
_c
gr1
.sl	  

un
bd
d_
inv
_g
en
_e
x1
4.s
l	  

un
bd
d_
inv
_g
en
_e
x2
3.s
l	  

un
bd
d_
inv
_g
en
_e
x7
.sl	  

un
bd
d_
inv
_g
en
_fi
g1
.sl	  

un
bd
d_
inv
_g
en
_fi
g3
.sl	  

un
bd
d_
inv
_g
en
_fi
g6
.sl	  

un
bd
d_
inv
_g
en
_fi
g8
.sl	  

un
bd
d_
inv
_g
en
_fi
g9
.sl	  

un
bd
d_
inv
_g
en
_fi
nf1
.sl	  

un
bd
d_
inv
_g
en
_fi
nf2
.sl	  

un
bd
d_
inv
_g
en
_n
_c
11
.sl	  

un
bd
d_
inv
_g
en
_su
m3
.sl	  

un
bd
d_
inv
_g
en
_su
m4
.sl	  

un
bd
d_
inv
_g
en
_te
rm
2.s
l	  

un
bd
d_
inv
_g
en
_te
rm
3.s
l	  

un
bd
d_
inv
_g
en
_tr
ex
1.s
l	  

un
bd
d_
inv
_g
en
_tr
ex
2.s
l	  

un
bd
d_
inv
_g
en
_tr
ex
4.s
l	  

un
bd
d_
inv
_g
en
_v
ma
il.s
l	  

un
bd
d_
inv
_g
en
_w
1.s
l	  

un
bd
d_
inv
_g
en
_w
2.s
l	  

un
bd
d_
inv
_g
en
_w
inf
1.s
l	  

un
bd
d_
inv
_g
en
_w
inf
2.s
l	  

un
bd
d_
inv
_g
en
_c
eg
ar2
.sl	  

un
bd
d_
inv
_g
en
_su
m1
.sl	  

un
bd
d_
inv
_g
en
_tc
s.s
l	  

Bmeout	  
	  	  3600	  
	  	  	  1000	  
	  	  	  300	  
	  	  	  100	  

30	  
10	  
3	  
1	  
	  

Rela&ve	  Performance	  on	  the	  Unbounded	  Invariant	  Genera&on	  Benchmarks	  
EnumeraBve	  

StochasBc	  

Sketch	  

Alchemist	  

Symbolic	  

Figure 3. Results on number of benchmarks solved per solver per categories: arrays, Hacker’s Delight, invari-
ant generation with bounded integers, and invariant generation with unbounded integers.

efficient implementations. We have some evidence to suggest that the symbolic solver
can discover such constants from the full space of 232 possible constants with relatively
little additional effort. On the other hand, for many of these problems the magic constants
come from a handful of values such as 1, 0, or 0xffffffff, so it is unnecessary for the
enumerative solver to search the space of 232 possible bit-vectors.

Finally, because these benchmarks have different grammars for the same problem,
we can observe the effect of using less restrictive grammars as part of the problem de-
scription. We can see in the data that all solvers were affected by the encoding of the
problem for at least some benchmark; although in some cases, the pruning strategies used
by the solvers were able to mitigate the impact of the larger search space.



Array Benchmarks

This benchmark category comprises synthesis problems that involve synthesizing func-
tions over an integer array of a bounded size. Since we currently only allow for integers,
Boolean, and bitvector primitive types, the integer arrays in these benchmarks are rep-
resented using an ordered sequence of integer variables. One class of the benchmarks is
array-search, which synthesizes a loop-free function that finds the index of an element
in a sorted tuple of size n, for n ranging from 2 to 16. These benchmarks proved to be
quite complex, as no solver was able to synthesize this function for n > 7. Another class
of benchmarks is the array-sum m n problem, which synthesizes a loop-free function
that finds the first two elements of an integer array of size n such that their sum is greater
than m.

Fig. 3 shows the relative performance of the five solvers on these benchmarks. For
the array-search problem, we can see that the Sketch-based solver performs best and
is able to scale up to array problems of size n= 7, whereas the enumerative and stochastic
solvers only scale up to arrays of size n = 3 and n = 2, respectively. We conjecture that
the Sketch-based solver is able to learn the structural constraints of the unknown function
using efficient symbolic encoding. For the array-sum problem, each of the enumerative,
stochastic, and Sketch-based solver solves only a handful of the benchmarks and timed
out on most of them.

Invariant generation w/o unbounded integers

The benchmarks in these two categories are examples from loop invariant synthesis in
program verification. They were studied in [27]; some of them are taken from the bench-
marks of the competition of software verification (SV-COMP) [28] and others from the
literature on invariant synthesis. The first category uses unbounded integers, and the sec-
ond bounds the integers that can be used. The latter is a modification of the former aiming
for synthesis of linear expressions guarded by Boolean combinations of linear guards.

There are 28 benchmarks in each of these categories. Fig. 3 shows that the enu-
merative solver outperformed the others in both (solving 24 and 25 benchmarks, respec-
tively). For the stochastic solver we can see a large difference between these two sets: in
the category where integers were unbounded the stochastic solver solved 22 benchmarks
compared to 13 in the bounded integers category. We conjecture that on harder instances
of invariant synthesis (with unbounded integers) the stochastic solver would outperform
the enumerative.

Integer Arithmetic Benchmarks

These benchmarks are meant to be loosely representative of synthesis problems involving
functions with complex branching structures over linear integer arithmetic expressions.
For instance, the max benchmarks compute the maximum of a tuple of a given size n.
The LinExpr benchmarks return either the maximum or minimum of a set of variables
based on a comparison of the values of two linear expressions over the variables.

Fig. 4 shows the relative performance of the five solvers on these benchmarks. It can
be observed that some of these benchmarks were relatively easy for most of the solvers,
while others were hard for all the solvers. On the max benchmarks, we see that all solvers
but one solved max2, only the stochastic solver was able to solve max3 and none was
able to solve max4 in less than an hour.



0	  
1	  
2	  
3	  
4	  
5	  
6	  
7	  
8	  
9	  

co
mm

uta
2v
e.s
l	  

co
ns
tan
t.s
l	  

ma
x2
.sl	  

ma
x3
.sl	  

ma
x4
.sl	  

s2
.sl	  

s3
.sl	  

f2_
d0
.sl	  

f2_
d1
.sl	  

s0
_d
0.s
l	  

s0
_d
1.s
l	  

s0
_d
2.s
l	  

Lin
Ex
pr_
eq
1.s
l	  

Lin
Ex
pr_
eq
1e
x.s
l	  

Lin
Ex
pr_
eq
2.s
l	  

Lin
Ex
pr_
eq
2e
x.s
l	  

Lin
Ex
pr_
inv
1_
ex
.sl	  

Lin
Ex
pr_
inv
1.s
l	  

	  
2meout	  
	  	  3600	  
	  	  	  1000	  
	  	  	  300	  
	  	  	  100	  

30	  
10	  
3	  
1	  
	  

Rela&ve	  Performance	  on	  Integer	  Benchmarks	  

Enumera2ve	  

Stochas2c	  

Sketch	  

Alchemist	  

Symbolic	  

0	  
1	  
2	  
3	  
4	  
5	  
6	  
7	  
8	  
9	  

VC
_s_
2_
0_
sy.
sl	  

VC
_s_
2_
0_
sy_
gr.
sl	  

VC
_s_
2_
0.s
l	  

VC
_s_
2_
0_
gr.
sl	  

VC
_d
_2
_0
.sl	  

VC
_d
_2
_0
_g
r.s
l	  

VC
_d
_2
_0
_fl
.sl	  

VC
_s_
2_
1_
sy.
sl	  

VC
_s_
2_
1_
sy_
gr.
sl	  

VC
_s_
2_
1_
sy_
fl.s
l	  

VC
_s_
2_
1.s
l	  

VC
_s_
2_
1_
gr.
sl	  

VC
_s_
3_
0_
sy.
sl	  

VC
_s_
3_
0_
sy_
gr.
sl	  

	  
7meout	  
	  	  3600	  
	  	  	  1000	  
	  	  	  300	  
	  	  	  100	  

30	  
10	  
3	  
1	  
	  

Rela&ve	  Performance	  on	  the	  Vehicle	  Control	  Benchmarks	  

Enumera7ve	  

Stochas7c	  

Sketch	  

Alchemist	  

Symbolic	   0	  
1	  
2	  
3	  
4	  
5	  
6	  
7	  
8	  
9	  

pa
rit
y-‐A
IG-‐
d0
.sl	  

pa
rit
y-‐N
AN
D-‐
d0
.sl	  

pa
rit
y-‐A
IG-‐
d1
.sl	  

pa
rit
y-‐N
AN
D-‐
d1
.sl	  

pa
rit
y.s
l	  

zm
ort
on
-‐d4
.sl	  

zm
ort
on
-‐d5
.sl	  

@meout	  
	  	  3600	  
	  	  	  1000	  
	  	  	  300	  
	  	  	  100	  

30	  
10	  
3	  
1	  
	  
	  

Rela&ve	  Performance	  on	  the	  BitVector	  Benchmarks	  
Enumera@ve	  

Stochas@c	  

Sketch	  

Alchemist	  

Symbolic	  

0	  
1	  
2	  
3	  
4	  
5	  
6	  
7	  
8	  
9	  

log
co
un
t-‐d
1.s
l	  

log
co
un
t-‐d
5.s
l	  

log
co
un
t.s
l	  

log
co
un
t2-‐
d1
.sl	  

log
co
un
t2-‐
d5
.sl	  

log
co
un
t2.
sl	  

tw
ole
ts1
.sl	  

tw
ole
ts2
.sl	  

tw
ole
ts3
.sl	  

tw
ole
ts4
.sl	  

tw
ole
ts5
.sl	  

9meout	  
	  	  3600	  
	  	  	  1000	  
	  	  	  300	  
	  	  	  100	  

30	  
10	  
3	  
1	  
	  

Rela&ve	  Performance	  on	  the	  Let	  Benchmarks	  

Enumera9ve	  

Stochas9c	  

Sketch	  

Alchemist	  

Symbolic	   0	  
1	  
2	  
3	  
4	  
5	  
6	  
7	  
8	  
9	  

	  po
lyn
om
ial
.sl	  

	  po
lyn
om
ial
1.s
l	  

	  po
lyn
om
ial
2.s
l	  

	  po
lyn
om
ial
3.s
l	  

	  po
lyn
om
ial
4.s
l	  

s4
.sl	  

s5
.sl	  

fiv
efu
nc
s.s
l	  

six
fun
cs.
sl	  

sev
en
fun
cs.
sl	  

=meout	  
	  	  3600	  
	  	  	  1000	  
	  	  	  300	  
	  	  	  100	  

30	  
10	  
3	  
1	  
	  

Rela&ve	  Perf.	  on	  the	  Mul&ple	  Func&ons	  Benchs.	  
Enumera=ve	  

Stochas=c	  

Sketch	  

Alchemist	  

Symbolic	  

Figure 4. Results on number of benchmarks solved per solver per categories: integers, vehcle-control, bit-vec-
tor, let and multiple functions.

The results on the LinExpr benmarks are quite divergent. Some instances were
solved only by Alchemist, while others by all but Alchemist and Stochastic. The Al-
chemist tool was able to solve the LinExpr problems that involved specifying the cor-
rectness constraints in a symbolic form, whereas for benchmarks in which the specifi-
cation was specified using concrete values for input variables, the Alchemist solver did
not perform that well. The reason for this seems to be that Alchemist’s geometric solver
needs “enough” points to find a plane, so when there are too few points, it can fail.

Vehicle Collision Control Benchmarks

These benchmarks simulate a simplified version of a vehicle control problem. Specifi-
cally, we consider that there is some number of vehicles approaching an intersection and
we would like to synthesize a set of functions (one per vehicle) each mapping the vector
of vehicle positions to some positive velocity such that the vehicles avoid collisions when
following the control velocities prescribed by these functions. If no such set of velocities
is possible from some initial condition, then the functions are expected to return a veloc-
ity of zero. The simplified version assumes discrete positions and velocities. Collisions
are defined by interpolated trajectories, i.e., taking into consideration vehicle positions
at non-integer times as well. 4

We consider two types of problem instances. In the first type of problem instance, all
vehicles travel on the same road, and a crash occurs if two vehicles are within a distance
of δ or less, for some integer parameter δ ≥ 0. For example, if there are two vehicles
which are at positions 1 and 2 at time t = 0, δ = 0, and velocities 3 and 1 are chosen,

4Occurrence of such collisions can be verified with calculations involving only integers.



then the vehicles collide at time t = 0.5, when both occupy position 2.5. The second
type of problem instance considers vehicles on different roads. In this case, a collision
occurs only when a pair of vehicles occupy the position 0 simultaneously (the position 0
represents the center of the intersection along each road).

The benchmarks’ names are of the form VC r i d sy f l gr indicating the param-
eters chosen as follows: r ∈ {s,d} indicate whether vehicles use the same road or dif-
ferent roads, i is the number of vehicles, d is the δ distance, presence of sy indicates
that problem symmetries were exploited to synthesize a single function rather than one
per vehicle, the presence of the f l suffix indicates the problem was further simplified to
provide part of the solution, leaving the solver to synthesize the missing parameters, and
finally the presence of gr indicates that the grammar was richer than necessary.

The results are summarized in Fig. 4. We can observe that relaxing the grammar (by
addition of just one or two operators) made the problem much harder, and the enumera-
tive solver was the only one able to solve such instances. On the other hand, the stochas-
tic solver was the only one able to cope with the problem when the cars were positioned
on different roads.

BitVector Benchmarks

The parity benchmark computes the parity of a set of Boolean values. The different
versions represent different grammars to describe the set of Boolean functions. As with
other benchmarks, the enumerative solver was always faster, whereas the symbolic solver
failed on every instance. These results show the impact that different encodings of the
same space of functions can have on the solution time for both of the solution strategies
that succeeded. Unlike the hd benchmarks where the different grammars for a given
benchmark were strict subsets of each other, in this case the encodings AIG and NAND

correspond to different representations of the same space of functions.
The Morton benchmarks, which involve the synthesis of a function to compute Mor-

ton numbers, are intended as challenge problems, and could not be solved by any of the
solvers.

Let Benchmarks

The benchmarks in this category make use of the let construct, explained in Section 2.
The let construct was supported only by the enumerative and stochastic solvers. The log-
count benchmarks encode the problem of synthesizing a program that counts the num-
ber of ones in a bit-vector in O(log(n)) steps and were not solved by any of the solvers.
The twolets are toy examples using two lets, with varying degrees of flexibility in the
grammars. The enumerative solver was able to tackle all but the most difficult of these.
The stochastic solver could not solve any of them. The treatment of let in the stochastic
solver involves unrolling of the expression to account for the scope of the let-variables
that may be used. We conjecture this makes these problems harder for the stochastic
solver to manage.

Multiple Functions Benchmarks

The benchmarks in this category require the solver to synthesize multiple functions. The
constraints in this set relate a subset of the functions (to be synthesized) by compar-
ing one function to the other or to the addition/subtraction thereof. Most of the bench-



marks were easily solved by all solvers supporting multiple functions. On the harder in-
stances, which included synthesizing five or more functions, the symbolic and Sketch-
based solvers outperform the other solvers. We conjecture that this phenomenon might
be because of the succinct encoding of the huge space of possible function choices in the
symbolic approaches [34].

ICFP Benchmarks

The benchmarks in this category were taken from the 2013 ICFP Programming Com-
petition [35], which was organized on the theme of program synthesis. The competition
rules specified that the participants had to find secret programs in a language called λBV ,
a small language consisting of functions over 64-bit vectors. The language consisted of
the following primitive bitwise operators: negation (not), shift left by one bit (shl1),
shift right by one (shr1), four (shr4), or sixteen bits (shr16), addition (plus), conjunc-
tion (and), disjunction (or), and exclusive or (xor). The language also consisted of a
conditional operator (if0) that would check if the first argument was 0 for branching to
the corresponding expression, and a fold operator to loop over each byte of the bitvector
from right to left. The constant bitvectors were only 0 and 1.

Since we can not provide the secret bitvector function in the specification, we created
three categories of the problems where we generated 10, 100, and 1000 random input-
output 64-bit bitvectors that approximated the functional behavior of the secret function.
For the grammar of the unknown functions, we provided the complete λBV grammar
except the fold operator. These benchmarks proved to be the most challenging for the
solvers, and none of the solvers could solve any of the 50 benchmark problems. We hy-
pothesize the size of secret functions (> 15) and the unconstrained grammar for the un-
known function caused the search space to become inhibitively large. In the ICFP com-
petition, some of these benchmarks were solved by the participants using enormously
large compute clusters. We believe scaling the solvers to handle these benchmarks would
lead to newer insights in program synthesis research.

4.4. Expression Sizes

On most of the benchmarks there was not much variation in the size the expressions
produced by the different solvers. Since the enumerative solver by definition always pro-
duces the minimal result, we can conclude that most of the solved instances expressions
were in the same order of magnitude as their optimal solution.

Most solved benchmarks were solved using expression sizes less than 40, where the
size of an expression is determined by the number of nodes in its parse tree. The biggest
expression, of size 1056, was produced for LinExpr eq1.sl by Alchemist, who was the
only solver which managed to tackle this benchmark. The second biggest expression, of
size 425 was for VC22 c2.sl by Stochastic, which again was the only one able to solve
this instance. Other benchmarks, with interesting divergence in size of expressions, are
listed in Table 4.

4.5. The First Syntax-Guided Synthesis Competition

The first Syntax-Guided Synthesis Competition (SYGUS-COMP 2014) was organized
as a satellite event of SYNT/CAV 2014, and as part of the FLoC Olympic Games 2014 at



Benchmark Enum. Stoch. Sket. Alch. Symb. Fastest Time

array sum 2 5.sl - - 31 139 - Alchemist 9.012
hd-17-d5-prog.sl 8 73 - - 9 Enumerative 5.653
LinExpr eq1.sl - - - 1056 - Alchemist 1128.870
LinExpr eq2.sl - - - 180 - Alchemist 303.780
max4.sl - 39 - - - Stochastic 95.683
VC22 f2.sl 14 118 - - - Enumerative 5.475
VC22 c2.sl - 425 - - - Stochastic 128.635
VC22 a g.sl 6 - - - - Enumerative 0.016
fivefuncs.sl - - 35 - 43 Symbolic 2.540
sixfuncs.sl - - 122 - - Sketch-based 233.447

Table 4. A sample of benchmarks with interesting variations in expression sizes, and the time it took for the
fastest solver to complete (in seconds).

Vienna Summer of Logic (VSL). The competition was organized as part of the NSF Ex-
peditions in Computing project ExCAPE by Rajeev Alur, Dana Fisman, Rishabh Singh,
and Armando Solar-Lezama. The final ranking in SYGUS-COMP 2014 was performed
in the following way. The solvers were ranked relative to each other according to the
following parameters (in order of importance): correctness, solving time, and expression
size. For each benchmark, the best solver was assigned a score of 1, the next best solver
was assigned a score of 2 and so on. If there was a tie between two solvers, the solvers
received the same score. For each benchmark category, these scores were averaged for
each solver. This way we received a relative ranking of each solver for each benchmark
category. The final ranking of the solvers was obtained by adding the relative ranks of
the solvers for each category. With this ranking metric, the Enumerative solver came first
with the score of 12.03, the stochastic solver came second with a score of 22.86, and the
Sketch-based solver came third with a score of 25.18.

For the competition we took into account the absolute solving times rather than the
buckets as presented here. Ranking according to the buckets would have result in the
same set of overall ranking of the solvers. The chosen ranking metric favors solvers
that support many language features, and solvers that can solve many of the simpler
problems quickly (as opposed to solvers that can solve some of the harder problems but
take more time to solve simpler problems). We might revisit the ranking metric in future
competition to address some of these issues.

5. Conclusions

Aimed at formulating the core computational problem common to many recent tools
for program synthesis in a canonical and logical manner, we have formalized the prob-
lem of syntax-guided synthesis. We implemented five prototype tools for the alternative
approaches discussed in Section 3. Around 500 benchmarks were collected as part of
the first SyGuS-Comp competition held in July 2014. The first competition restricted
the background theories to that of quantifier-free bit-vector arithmetic and linear integer
arithmetic. The relative performance of the prototype solvers on 250 benchmarks was



reported and analyzed. We hope that this effort, namely the SyGuS-LIB format, the pub-
licly available prototypes, and the initiation of an annual competition of solvers for Sy-
GuS, will boost research and development of improved solution strategies and generic
solvers for SyGuS.
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