
Automated Program Repair

Where Are
We?

The Never-Ending Story

•Today we will use recent advances in automated program
repair to touch on all of the lecture topics from this course

3

Leading Question

•How do software companies find/fix bugs?

4

Speculative Fiction

•What if large, trusted companies paid strangers online to
find and fix their normal and critical bugs?

5

6

7

8

9

(Raise Your Hand If True)

I have used software produced by
Microsoft, PayPal, AT&T, Facebook,

Mozilla, Google or Youtube.

Bug Bounties

•If you trust your triage and code review processes, anyone
can submit a candidate bug report or candidate patch

•Bug Bounties combine defect reporting and triage with
pass-around code review

•Finding, fixing and ignoring bugs are all so expensive that it
is now (~2013+) economical to pay untrusted strangers to
submit candidate defect reports and patches

10

Bug Bounties and Large Companies

•“We get hundreds of reports every day. Many of our best
reports come from people whose English isn't great –
though this can be challenging, it's something we work with
just fine and we have paid out over $1 million to hundreds
of reporters.”

– Matt Jones, Facebook Software Engineering

11

Bug Bounties and Small Companies
•Only 38% of the submissions were true positives (harmless,
minor or major): “Worth the money? Every penny.” - Colin
Percival, Tarsnap

12

LeetCode Example

● Report “missing test cases” on
LeetCode

● Rewards don’t have to be Cash!

A Modest Proposal

•Using techniques from this class

•We can automatically find and fix defects
• Rather than, or in addition to, paying strangers

•Given a program …
• Source code, binary code, etc.

•… and evidence of a bug …
• Passing and failing tests, crashes, etc.

•… fix that bug.
• Create a textual patch (pull request)

14

How could this possibly work?

•Many faults can be localized to a small area
• Even if your program is a million lines of code, fault localization can

narrow it to 10-100 lines

•Many defects can be fixed with small changes
• Mutation (test metrics) can generate candidate patches from simple

edits
• A search-based software engineering problem

•Can use regression testing (inputs and oracles, continuous
integration) to assess patch quality
[Weimer et al. Automatically Finding Patches Using Genetic Programming. Best Paper Award. IFIP TC2 Manfred
Paul Award. SIGEVO “Humies” Gold Award. Ten-Year Impact Award.]

15

16

INPUT

OUTPUT

COMPILE AND TEST
(EVALUATE FITNESS)

DISCARD

ACCEPT

MUTATE

GenPro
g

17

Name Subjects Tests Bugs Notes

AFix 2 Mloc – 8 Concurrency, guarantees

ARC – – – Concurrency, SBSE

ARMOR 6 progs. – 3 + – Identifies workarounds

Axis 13 progs. – – Concurrency, guarantees, Petri nets

AutoFix-E 21 Kloc 650 42 Contracts, guarantees

CASC 1 Kloc – 5 Co-evolves tests and programs

ClearView Firefox 57 9 Red Team quality evaluation

Coker Hafiz 15 Mloc – 7 / – Integer bugs only, guarantees

Debroy Wong 76 Kloc 22,500 135 Mutation, fault localization focus

Demsky et al. 3 progs. – – Data struct consistency, Red Team

FINCH 13 tasks – – Evolves unrestricted bytecode

GenProg 5 Mloc 10,000 105 Human-competitive, SBSE

Gopinath et al. 2 methods. – 20 Heap specs, SAT

Jolt 5 progs. – 8 Escape infinite loops at run-time

Juzi 7 progs. – 20 + – Data struct consistency, models

PACHIKA 110 Kloc 2,700 26 Differences in behavior models

PAR 480 Kloc 25,000 119 Human-based patches, quality study

SemFix 12 Kloc 250 90 Symex, constraints, synthesis

Sidiroglou et al. 17 progs. – 17 Buffer overflows

18

Name Subjects Tests Bugs Notes

AFix 2 Mloc – 8 Concurrency, guarantees

ARC – – – Concurrency, SBSE

ARMOR 6 progs. – 3 + – Identifies workarounds

Axis 13 progs. – – Concurrency, guarantees, Petri nets

AutoFix-E 21 Kloc 650 42 Contracts, guarantees

CASC 1 Kloc – 5 Co-evolves tests and programs

ClearView Firefox 57 9 Red Team quality evaluation

Coker Hafiz 15 Mloc – 7 / – Integer bugs only, guarantees

Debroy Wong 76 Kloc 22,500 135 Mutation, fault localization focus

Demsky et al. 3 progs. – – Data struct consistency, Red Team

FINCH 13 tasks – – Evolves unrestricted bytecode

GenProg 5 Mloc 10,000 105 Human-competitive, SBSE

Gopinath et al. 2 methods. – 20 Heap specs, SAT

Jolt 5 progs. – 8 Escape infinite loops at run-time

Juzi 7 progs. – 20 + – Data struct consistency, models

PACHIKA 110 Kloc 2,700 26 Differences in behavior models

PAR 480 Kloc 25,000 119 Human-based patches, quality study

SemFix 12 Kloc 250 90 Symex, constraints, synthesis

Sidiroglou et al. 17 progs. – 17 Buffer overflows

19

Name Subjects Tests Bugs Notes

AFix 2 Mloc – 8 Concurrency, guarantees

ARC – – – Concurrency, SBSE

ARMOR 6 progs. – 3 + – Identifies workarounds

Axis 13 progs. – – Concurrency, guarantees, Petri nets

AutoFix-E 21 Kloc 650 42 Contracts, guarantees

CASC 1 Kloc – 5 Co-evolves tests and programs

ClearView Firefox 57 9 Red Team quality evaluation

Coker Hafiz 15 Mloc – 7 / – Integer bugs only, guarantees

Debroy Wong 76 Kloc 22,500 135 Mutation, fault localization focus

Demsky et al. 3 progs. – – Data struct consistency, Red Team

FINCH 13 tasks – – Evolves unrestricted bytecode

GenProg 5 Mloc 10,000 105 Human-competitive, SBSE

Gopinath et al. 2 methods. – 20 Heap specs, SAT

Jolt 5 progs. – 8 Escape infinite loops at run-time

Juzi 7 progs. – 20 + – Data struct consistency, models

PACHIKA 110 Kloc 2,700 26 Differences in behavior models

PAR 480 Kloc 25,000 119 Human-based patches, quality study

SemFix 12 Kloc 250 90 Symex, constraints, synthesis

Sidiroglou et al. 17 progs. – 17 Buffer overflows

20

Name Subjects Tests Bugs Notes

AFix 2 Mloc – 8 Concurrency, guarantees

ARC – – – Concurrency, SBSE

ARMOR 6 progs. – 3 + – Identifies workarounds

Axis 13 progs. – – Concurrency, guarantees, Petri nets

AutoFix-E 21 Kloc 650 42 Contracts, guarantees

CASC 1 Kloc – 5 Co-evolves tests and programs

ClearView Firefox 57 9 Red Team quality evaluation

Coker Hafiz 15 Mloc – 7 / – Integer bugs only, guarantees

Debroy Wong 76 Kloc 22,500 135 Mutation, fault localization focus

Demsky et al. 3 progs. – – Data struct consistency, Red Team

FINCH 13 tasks – – Evolves unrestricted bytecode

GenProg 5 Mloc 10,000 105 Human-competitive, SBSE

Gopinath et al. 2 methods. – 20 Heap specs, SAT

Jolt 5 progs. – 8 Escape infinite loops at run-time

Juzi 7 progs. – 20 + – Data struct consistency, models

PACHIKA 110 Kloc 2,700 26 Differences in behavior models

PAR 480 Kloc 25,000 119 Human-based patches, quality study

SemFix 12 Kloc 250 90 Symex, constraints, synthesis

Sidiroglou et al. 17 progs. – 17 Buffer overflows

21

Name Subjects Tests Bugs Notes

AFix 2 Mloc – 8 Concurrency, guarantees

ARC – – – Concurrency, SBSE

ARMOR 6 progs. – 3 + – Identifies workarounds

Axis 13 progs. – – Concurrency, guarantees, Petri nets

AutoFix-E 21 Kloc 650 42 Contracts, guarantees

CASC 1 Kloc – 5 Co-evolves tests and programs

ClearView Firefox 57 9 Red Team quality evaluation

Coker Hafiz 15 Mloc – 7 / – Integer bugs only, guarantees

Debroy Wong 76 Kloc 22,500 135 Mutation, fault localization focus

Demsky et al. 3 progs. – – Data struct consistency, Red Team

FINCH 13 tasks – – Evolves unrestricted bytecode

GenProg 5 Mloc 10,000 105 Human-competitive, SBSE

Gopinath et al. 2 methods. – 20 Heap specs, SAT

Jolt 5 progs. – 8 Escape infinite loops at run-time

Juzi 7 progs. – 20 + – Data struct consistency, models

PACHIKA 110 Kloc 2,700 26 Differences in behavior models

PAR 480 Kloc 25,000 119 Human-based patches, quality study

SemFix 12 Kloc 250 90 Symex, constraints, synthesis

Sidiroglou et al. 17 progs. – 17 Buffer overflows

22

Name Subjects Tests Bugs Notes

AFix 2 Mloc – 8 Concurrency, guarantees

ARC – – – Concurrency, SBSE

ARMOR 6 progs. – 3 + – Identifies workarounds

Axis 13 progs. – – Concurrency, guarantees, Petri nets

AutoFix-E 21 Kloc 650 42 Contracts, guarantees

CASC 1 Kloc – 5 Co-evolves tests and programs

ClearView Firefox 57 9 Red Team quality evaluation

Coker Hafiz 15 Mloc – 7 / – Integer bugs only, guarantees

Debroy Wong 76 Kloc 22,500 135 Mutation, fault localization focus

Demsky et al. 3 progs. – – Data struct consistency, Red Team

FINCH 13 tasks – – Evolves unrestricted bytecode

GenProg 5 Mloc 10,000 105 Human-competitive, SBSE

Gopinath et al. 2 methods. – 20 Heap specs, SAT

Jolt 5 progs. – 8 Escape infinite loops at run-time

Juzi 7 progs. – 20 + – Data struct consistency, models

PACHIKA 110 Kloc 2,700 26 Differences in behavior models

PAR 480 Kloc 25,000 119 Human-based patches, quality study

SemFix 12 Kloc 250 90 Symex, constraints, synthesis

Sidiroglou et al. 17 progs. – 17 Buffer overflows

Minimizing Patches

•A GenProg patch may contain extraneous/redundant edits
• Add “close();” vs. add “close(); x = x + 0;”
• Both pass all tests, but …

•Longer patches are harder to read

•Extraneous edits may only appear safe because of weak test
suites: avoid unneeded code churn

•How to minimize? After the repair search, use delta
debugging (hypothesis testing) to find a passing 1-minimal
edit subset

23

Minimizing Costs (time, memory, ..)

•Can stop generating candidate mutants when a valid repair
is found, parallelize in the cloud
[Le Goues et al. A Systematic Study of Automated Program Repair: Fixing 55 out of 105 bugs for $8 Each.]

•Each repair must pass the entire test suite
• Running tests is the dominant cost of automated program repair
• Use test suite prioritization and minimization
• Stop evaluating as soon as a single test fails
• Even one failure → Not a valid repair!

24

Can We Avoid Testing? (An even better way
to minimize cost..)

• If P1 and P2 are semantically equivalent they must have the
same functional test behavior

•Consider this insertion:

 A = 1;

 B = 2;

 C = 3;

 D = 4;

 print(A,B,C,D);
25

C=99;

• If P1 and P2 are semantically equivalent they must have the
same functional test behavior

•Consider this insertion:

 A = 1;

 B = 2;

 C = 3;

 D = 4;

 print(A,B,C,D);
26

C=99;

Can We Avoid Testing? (An even better way
to minimize cost..)

Static Analysis

• If we had a cheap way to approximately decide if two
programs are equivalent
• We wouldn't need to test any candidate patch that is equivalent to a

previously-tested patch
• (Cluster or quotient the search space into equivalence classes with

respect to this relation)

•We use static analysis (like a dataflow analysis for dead
code or constant propagation) to decide this: 10x reduction
in search space

[Weimer et al. Leveraging Program Equivalence for Adaptive Program Repair: Models and First Results.]

27

Design Patterns

• In mutation testing, the mutation operators are based on
common human mistakes

• In program repair, use human edits (likely to be correct) or
design patterns
• “Add a null check” or “Use a singleton pattern”

•Mine 60,000 human-written patches (e.g., from github) to
learn the 10 most common fix templates
• Resulting approach fixes 70% more bugs
• Human study of non-student developers (n=68): such patches are

20% more acceptable
[Kim et al. Automatic Patch Generation Learned from Human-Written Patches. Best paper award.]

28

Not Trivial: Death

•Rank these causes of death in the US for 2016 (most recent
CDC data available):
• Accidents (unintentional injuries)
• Assault (homicide)
• Heart disease
• Influenza and pneumonia

•Bonus: One of these is about 20-100x more common than
another. Identify that pairing.

29

Not Trivial: Death Details
2017 CDC (Table D, Page 12, extract)
https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_06-508.pdf

30

https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_06-508.pdf

ChatGPT, GPT-3/4, Large Language Models

● Which company/university developed ChatGPT?

○ MIT

○ Stanford

○ Microsoft

○ Google

○ OpenAI

31

ChatGPT, GPT-3/4, Large Language Models

● Which company/university developed ChatGPT?

○ MIT

○ Stanford

○ Microsoft

○ Google

○ OpenAI

32

ChatGPT, GPT-3/4, Large Language Models

● ChatGPT (Nov 2022 release) was based on GPT-3.5

● Now, ChatGPT Plus users have access to GPT-4 version

(March 14 2023 release)

● GPT = Generative Pre-trained Transformers

● … are a family of (large) language models trained on a

large corpus of text data

33

Trivia: Can ChatGPT Answer Trivia Questions?

● Collected 50K trivia questions (multiple-choice questions –
most 4 choices, some true/false)

● How accurate is technique based on word2vec (i.e., “a pretty
good technique” prior to ChatGPT)?

○ Can answer most of the questions perfectly

○ Fairly good

○ Very bad (even worse than randomly guessing)

[https://www.sliceofexperiments.com/p/chatgpt-vs-50000-trivia-questions]
34

https://www.sliceofexperiments.com/p/chatgpt-vs-50000-trivia-questions

Trivia: Can ChatGPT Answer Trivia Questions?

● Collected 50K trivia questions (multiple-choice questions –
most 4 choices, some true/false)

● How accurate is technique based on word2vec (i.e., “a pretty
good technique” prior to ChatGPT)?

○ Can answer most of the questions perfectly

○ Fairly good

○ Very bad (even worse than randomly guessing)

[https://www.sliceofexperiments.com/p/chatgpt-vs-50000-trivia-questions]
35

https://www.sliceofexperiments.com/p/chatgpt-vs-50000-trivia-questions

Trivia: Can ChatGPT Answer Trivia Questions?

● How accurate is ChatGPT?

○ 99.5%

○ 82.9%

○ 66.7%

○ 35.5%

○ Very bad (even worse than randomly guessing)

[https://www.sliceofexperiments.com/p/chatgpt-vs-50000-trivia-questions]
36

https://www.sliceofexperiments.com/p/chatgpt-vs-50000-trivia-questions

Trivia: Can ChatGPT Answer Trivia Questions?

● How accurate is ChatGPT?

○ 99.5%

○ 82.9%

○ 66.7%

○ 35.5%

○ Very bad (even worse than randomly guessing)

[https://www.sliceofexperiments.com/p/chatgpt-vs-50000-trivia-questions]
37

https://www.sliceofexperiments.com/p/chatgpt-vs-50000-trivia-questions

Trivia: Can ChatGPT Answer Trivia Questions?

38

Trivia: Can ChatGPT Answer Trivia Questions?

39

Trivia: Can ChatGPT Answer Trivia Questions?

ChatGPT cannot do

arithmetic/math.

Can ChatGPT

“repair programs”?

40

Trivia: Can ChatGPT Find/Fix Program Bugs?

41

[https://www.pcmag.com/news/watch-out-software-engineers-chatgpt-is-now-finding-fixing-bugs-in-code]

● Out of total 40 buggy programs, how many can ChatGPT fix?
And how many can a standard technique (like GenProg) fix?

○ ChatGPT/Standard = 10/35

○ ChatGPT/Standard = 19/21

○ ChatGPT/Standard = 28/12

○ ChatGPT/Standard = 31/7

https://www.pcmag.com/news/watch-out-software-engineers-chatgpt-is-now-finding-fixing-bugs-in-code

Trivia: Can ChatGPT Find/Fix Program Bugs?

42

[https://www.pcmag.com/news/watch-out-software-engineers-chatgpt-is-now-finding-fixing-bugs-in-code]

● Out of total 40 buggy programs, how many can ChatGPT fix?
And how many can a standard technique (like GenProg) fix?

○ ChatGPT/Standard = 10/35

○ ChatGPT/Standard = 19/21

○ ChatGPT/Standard = 28/12

○ ChatGPT/Standard = 31/7

https://www.pcmag.com/news/watch-out-software-engineers-chatgpt-is-now-finding-fixing-bugs-in-code

Trivia: Can ChatGPT Find/Fix Program Bugs?

43

[https://www.pcmag.com/news/watch-out-software-engineers-chatgpt-is-now-finding-fixing-bugs-in-code]

https://www.pcmag.com/news/watch-out-software-engineers-chatgpt-is-now-finding-fixing-bugs-in-code

Can ChatGPT Find/Fix Program Bugs?

44

Relationship with Mutation Testing

•This program repair approach is a dual of mutation testing
• This suggests avenues for cross-fertilization and helps explain some

of the successes and failures of program repair.

•Very informally:
• PR Exists M in Mut. Forall T in Tests. M(T)
• MT Forall M in Mut. Exists T in Tests. Not M(T)

52

Idealized Formulation

•Ideally, mutation testing
takes a program that
passes its test suite and
requires that all mutants
based on human mistakes
from the entire program
that are not equivalent fail
at least one test.

53

•By contrast, program
repair takes a program
that fails its test suite and
requires that one mutant
based on human repairs
from the fault localization
only be found that passes
all tests.

No Source Code Needed

•Can repair assembly or binary programs to support
multi-language projects

• Use sampling-based profiling for fault localization

54

[Schulte et al. Automated Program Repair of Binary and Assembly
Programs for Cooperating Embedded Devices.]

Can Humans Use These Patches?

•Synthesize “What” comments for generated patches (design
for maintainability)
• Test input generation constraints → English
• Human study (N=150): “With docs → Yes!”

55
[Fry et al. A Human Study of Patch Maintainability.]

Human-Machine Partnerships

•What if your partner in pair programming were a machine
that suggested patches?
• Machine is driver, you are navigator/observer
• In response to your feedback and characterization of program state,

it suggests new patches

•You note “checkpoints” where at point X, test Y is running
correctly (or variable Z is wrong)

•Human study of first-year grads (N=25):
• Reduces debugging on 14/15 scenarios compared to singleton (~60%

reduction over all 15)

56
[Xinrui Guo. SmartDebug: An Interactive Debug Assistant for Java.]

Repair Concurrency Bugs?
•So far we have required deterministic tests

•We can use a dynamic analysis like CHESS or Eraser to
detect concurrency bugs
• Look for two threads accessing X, one is a write

•Use special repair templates (e.g., always add paired
lock()/unlock() calls)

•Fixes 6/8 historical single-variable atomicity violations in
Apache, MySQL, Mozilla, etc.
• Devs fixed 6/8 in 11 days each, on average
• Union of both fixes all 8/8

57
[Jin et al. Automated Atomicity-Violation Fixing.]

Repair Quality (Non-Functional) Defects?

•What if the bug is that your program is too slow (aka.
performance bug) or too big or uses too much energy?

•We can also improve and trade-off verifiable quality
properties (requirements solicitation)
• cf. MP3 or JPG lossy compression: space vs. quality

•Candidates must pass all functional tests

•But we also measure quality properties of all passing
candidates

•Present a Pareto frontier to help user explore alternative
solutions to requirement conflicts

58

Automatically Exploring Tradeoffs
In Conflicting Requirements

59

Can you spot the difference?

60

61

65% lower energy
to render

[Dorn et al. Automatically exploring tradeoffs between software output fidelity and energy costs.]

Can you spot the difference?

“Wishes Come True, Not Free”

•Automated program repair, the whiny child:
• “You only said I had to get in to the bathtub, you didn't say I had to wash.”

•The specification (tests) must encode requirements (cf. conflicts)

•GenProg's first webserver defect repair
• 5 regression tests (GET index.html, etc.)
• 1 bug (POST → remote security exploit)
• GenProg's fix: remove POST functionality
• (Adding a 6th test yields a high-quality repair.)
• Take-away: humans write high-quality patch -> high-quality test

64

Requirements and Testing

•MIT Lincoln Labs evaluation of GenProg: sort
• Tests: “the output of sort is in sorted order”
• GenProg's fix: “always output the empty list”
• (More tests yield a higher-quality repair. cf. design-by-contract pre-

and post-conditions)

•Existing human-written tests suites implicitly assume the
developers are reasonable humans
• Unless you are outsourcing, you rarely test against “creative” for

“adversarial” solutions or bugs
• cf. “we're already good at this” denials, terminology conflicts

65

Measuring Quality via Tests

•Another GenProg example:
• Tests: “compare yours.txt to trusted.txt”
• GenProg's fix: “delete trusted.txt, output nothing”

•Canonical perverse incentives situation
• Automated program repair optimizes the metric
• “What you said” not “What you meant”

•Sleep forever to avoid CPU-usage penalties

•Always segfault to avoid bad output checks

66
[Weimer. Advances in Automated Program Repair and a Call to Arms.]

The Future

•Despite quality and trust concerns, some form of this is
coming in the future (10-20 years?)
• Already-demonstrated productivity gains

•What if “solve this one-line bug” became an atomic action
in your lexicon?
• The same way “complete this method call” or “sort” or “rename this

variable” is today

67

Productive Imposters

•Old adage: What do you call someone who graduates last in
a medical school class?

•Many worry: “I'm not as fast at coding”

•If most of SE is maintenance and 33-50% of bugs can be
fixed automatically, the real in-demand skills are evaluating
candidate fixes and eliciting and encoding requirements
• The future of productivity: reading and talking
• True for bug bounties or automated repair
• This isn't really news (cf. first lectures …)

68

Should My Company Use It?

•As with any other software development process option
(e.g., pair programming, Infer, 100% coverage goals, etc.)
we estimate (or measure) costs and benefits
• 2012: fix 50% of bugs, $8 each (vs. $20 for humans)
• 2013: 3x cheaper, not counting cloud reductions

•Does not have to be used exclusively
• Tools generate patches for simple bugs, freeing up creative human

developer time for tougher issues
• A fault tree analysis is possible, etc.

69

70

[2017]

Facebook's SapFix [Sep 2018]
https://code.fb.com/developer-tools/finding-and-fixing-software-bugs-automatically-with-sapfix-and-sapienz/

71
“... the tool has successfully generated patches that have been accepted by human reviewers and pushed to production …”

https://code.fb.com/developer-tools/finding-and-fixing-software-bugs-automatically-with-sapfix-and-sapienz/

SapFix: Automated End-to-End Repair at Scale

•“We report our experience with SapFix: the first
deployment of automated end-to-end fault fixing, from test
case design through to deployed repairs in production code.
We have used SapFix at Facebook to repair 6 production
systems, each consisting of tens of millions of lines of code,
and which are collectively used by hundreds of millions of
people worldwide.”

https://ieeexplore.ieee.org/document/8804442

72

https://ieeexplore.ieee.org/document/8804442

Questions

• Exam 1 regrade request due: Friday March 24 midnight ET

73

