
Design for
Maintainability

3/15/2023 EECS 481 (W23) – Design & Maintainability 1

Prof. Kochunas

EECS 481 (W23)

3/15/2023 EECS 481 (W23) – Design & Maintainability 2

• We want to deliver and support a quality software
product
• We understand the stakeholder requirements
• We understand process and design
• We understand quality assurance

• How should we make process and design decisions
the first time …

• … if software maintenance will be the dominant
activity?

The Story so far…

3/15/2023 EECS 481 (W23) – Design & Maintainability 3

• We can invest up-front effort in designing software
to facilitate maintenance activities. This reduces
overall lifecycle costs.

• We will consider designing to improve
comprehension, documentation, change, reuse, and
testability.
• The metrics used for understandability, the category of

information conveyed by documentation, object-oriented
principles and design patterns, and coverage are all
relevant.

One-Slide Summary

3/15/2023 EECS 481 (W23) – Design & Maintainability 4

• Underlying principles for Designing for
Maintainability

• D for
• Reading

• Change

• Testing

Outline (the emotional journey)

3/15/2023 EECS 481 (W23) – Design & Maintainability 5

1. (value) believe that spending more time up front on
designing for maintainability will save you time

2. (knowledge) provide one example of how to improve
your comments and commit messages

3. (knowledge) give a definition of a design pattern

4. (knowledge) suggest a couple ways part of a program
can be designed to facilitate testing

Learning Objectives: by the end of today’s lecture you
should be able to…

6

Motivation and Premise

3/15/2023 EECS 481 (W23) – Design & Maintainability

3/15/2023 EECS 481 (W23) – Design & Maintainability 7

• You are playing “Civilization”

• You want to quickly build the Hagia Sophia

• Do you just build it now (costs 3000 production)?

• Or do you build the Forge
first (costs 100 production,
but then increases your
production by +10%)?

Analogy

3/15/2023 EECS 481 (W23) – Design & Maintainability 8

• “It depends on the state of the world.”

• This is just a math problem: is T1 > T2 ?
• T1 = 3000/production
• T2 = (100/production) + (3000/(production*1.1))

• “To invest is to allocate money (or sometimes another
resource, such as time) in the expectation of some
benefit in the future”

• You almost always want to invest time during design
to produce maintainable software!

Investment

3/15/2023 EECS 481 (W23) – Design & Maintainability 9

• Suppose maintenance is 70% of the lifetime cost of
software and the other 30% is coding and design

• Would you spend 50%
more on design if that
reduced the cost of
maintenance by 50%?

Investment in Maintenance

3/15/2023 EECS 481 (W23) – Design & Maintainability 10

• Suppose maintenance is 70% of the lifetime cost of
software and the other 30% is coding and design

• Would you spend 50% more on design if that reduced
the cost of maintenance by 50%?
• Cost 1 = 30 + 70
• Cost 2 = 30*1.5 + 70*0.5

• We know the 70% number (indeed: 70-90%)

• But can we spend more on design to reduce
maintenance costs? Yes.

Investment in Maintenance

3/15/2023 EECS 481 (W23) – Design & Maintainability 11

• High level plan:
• We now understand key

maintenance tasks (e.g.,
testing, code review, etc.)

• So we should design our
software to make those
activities easier or more
efficient

• Even if that means that
coding will take longer

Design for Maintainability

3/15/2023 EECS 481 (W23) – Design & Maintainability 12

• The first thing to change is you
• Because you likely still think of yourself

as a coder

• Student coder goals: quickly produce throwaway
software that runs efficiently and solves a well-
specified, set-in-stone task
• You feel good if it doesn't take you long, etc.

• You have to change your internal notion of a
“good job”
• You feel good for readable, elegant code, etc.

Pride

13

Design for
Comprehension

3/15/2023 EECS 481 (W23) – Design & Maintainability

3/15/2023 EECS 481 (W23) – Design & Maintainability 14

• Code Inspection and Code Review are critical
maintenance activities

• We consider improving readability and documentation
to aid code comprehension

• We distinguish between essential complexity, which
follows from the problem statement
• e.g., sorting requires N log(N) time

• and accidental readability, which can be more directly
controlled by software engineers

Design for Code Comprehension

3/15/2023 EECS 481 (W23) – Design & Maintainability 15

• Readability is a human judgment of how easy a text is
to understand

• Commonly desired and mandated in software
• DOD MIL-M-38784B requires “10th grade reading level or

easier”

• So how can we improve code readability?
• It seems subjective

• Plan: ask many humans, model their average notion of
readability, relate to code features
• Use measurement plus machine learning

Readability

3/15/2023 EECS 481 (W23) – Design & Maintainability 16

• Avoid long lines

• Avoid having many different
identifiers (variables) in the
same region of code

• Do include comments

• Fully blank lines may matter
more than indention

Learning a Metric for
Code Readability

[Buse et al., 2008]

3/15/2023 EECS 481 (W23) – Design & Maintainability 17

• Descriptive modeling is a mathematical process
that describes [current] real-world events and the
relationships between factors correlated with them

• A prescriptive (or normative) model evaluates
alternative solutions to answer the question "What
is going on?" and suggests what ought to be done
or how things should work [in the future] according
to an assumption or standard

Descriptive vs. Prescriptive

3/15/2023 EECS 481 (W23) – Design & Maintainability 18

• We can apply readability metrics automatically to code

• But because they are descriptive, this can lead to
perverse incentives

• It may be true that existing code with a few more blank
lines is more readable

• So what if we just insert a blank line between every line
of code?
• That would maximize the metric, but …

• So use them, but not blindly

Revenge of Perverse Incentive

3/15/2023 EECS 481 (W23) – Design & Maintainability 19

• Appeal from a developer on a
mailing list:
• “Going forward, could I ask you to

be more descriptive in your
commit messages? Ideally should
state what you've changed and
also why (unless it's obvious) … I
know you're busy and this takes
more time, but it will help anyone
who looks through the log ...”

Comments and Documentation

3/15/2023 EECS 481 (W23) – Design & Maintainability 20

• We can make a distinction between documentation that
summarizes what the code does (or what happened in a
commit)
• e.g., “Replaced a warning with an IllegalArgumentException”,

“this loop sorts by task priority”, “added an array bounds
check”

• And documentation that summarizes why the code
does that (or the change was made)
• e.g., “Fixed Bug #14235” or “management is worried about

buffer overruns”

What vs. Why

3/15/2023 EECS 481 (W23) – Design & Maintainability 21

• You should focus on adding why information to your
documentation, comments and commit messages

• Because there is tool and process support for
adding or recovering what information
• For example, code inspection may reveal that a loop sorts

by task priority but will not reveal that this was done
because a customer required it

High-Quality Comments

3/15/2023 EECS 481 (W23) – Design & Maintainability 22

• Documentation for @throws information, such as
@exception IllegalArgument if id is null
or id.equals(“”) can be automatically inferred via
tools
• Same approach as test

input generation
• Gather constraints to reach

the “throw” line
• Then rewrite them in English
• Instead of solving them
• Explains What the code does

Documenting Exceptions

3/15/2023 EECS 481 (W23) – Design & Maintainability 23

• Tools are at least as accurate as humans 85% of the
time, and are better 25% of the time
• Tools can do

What –
so have
humans focus
on Why

“Why” for Exceptions

[Automatic Documentation
Inference for Exceptions]

3/15/2023 EECS 481 (W23) – Design & Maintainability 24

• Appeal from a developer:
• “Sorry to be a pain in the neck

about this, but could we please use
more descriptive commit
messages? I do try to read the
commit emails, but... I can't really
tell what's going on”

• Example: revision 3909 of
iText's complete commit
message is “Changing the
producer info”

Documenting Commit Messages

3/15/2023 EECS 481 (W23) – Design & Maintainability 25

• October 2021:
Amazon's Twitch
source code was leaked
in a 125 GB data breach

• the entirety of twitch.tv
with “with commit
history going back to its
early beginnings”

Commit Messages in the Wild (one “case study”)

3/15/2023 EECS 481 (W23) – Design & Maintainability 26

• Average size of a non-empty human written log message: 1.1 lines

• Average size of a textual diff: 37.8 lines

Commit Messages in the Wild

3/15/2023 EECS 481 (W23) – Design & Maintainability 27

• Tools and algorithms have been shown to replace or
provide 89% of the What information in log messages

• It is definitely good to describe what a change is doing

• But you should focus on documenting Why

• Get in the habit of providing two categories of
information for every pull request
• (And method summary, and …)

“Why” for Commit Messages

28

Trivia Break

3/15/2023 EECS 481 (W23) – Design & Maintainability

3/15/2023 EECS 481 (W23) – Design & Maintainability 29

• This associate justice of the Supreme Court was born in
the Bronx, went to Princeton and Yale, and was
appointed by Obama. She has been associated with
concern for the rights of defendants, calls for reform of
the criminal justice system, and dissents on issues of
race, gender and ethnic identity. For example, in
Schuette vs. CDAA (a case about a state ban on race-
and sex-based discrimination in public university
admissions), she dissented that “[a] majority of the
Michigan electorate changed the basic rules of the
political process in that State in a manner that uniquely
disadvantaged racial minorities.”

Trivia: SCOTUS

3/15/2023 EECS 481 (W23) – Design & Maintainability 30

• This associate justice of the Supreme Court was
born in Brooklyn, went to Cornell and Columbia, and
was appointed by Clinton. She has been associated
with gender equality and women's rights. She has
been characterized for making passionate dissents
and a liberal view of the law. Her dissent in
Ledbetter v. Goodyear Tire & Rubber Co. is credited
with leading to the Lilly Ledbetter Fair Pay Act of
2009 that makes it easier to file equal pay lawsuits.
Also: lace jabot collection.

Trivia: SCOTUS 2

3/15/2023 EECS 481 (W23) – Design & Maintainability 31

• This Japanese artist was called “the best animation
filmmaker in history” by Roger Ebert. He co-founded
Studio Ghibli, received international acclaim, and
directed films such as Princess Mononoke (highest-
grossing film in Japan) and Spirited Away (also the
highest-grossing film in Japan, and an Academy Award
winner). He just might like airships.

Trivia: Filmmakers

3/15/2023 EECS 481 (W23) – Design & Maintainability 32

• This single-reed woodwind instrument features a
straight tube with a cylindrical bore and a flared bell.
It is believed to date back to the year 1700 in
Germany. It is commonly used in classical, military,
marching, klezmer and jazz bands. Modern
orchestras use soprano versions of this instrument
in B♭ and A. Benny Goodman helped popularize its
use in big bands for swing. The Beatles song When
I'm Sixty-Four features a trio of these.

Trivia: Music

3/15/2023 EECS 481 (W23) – Design & Maintainability 33

• 85 single males, aged 18-
35, walked over either a
450-long, 5-foot wide
suspension bridge made of
wooden boards and wire
cables over the Capilano
Canyon, or a solid wood
bridge upriver.
• Similar males rated the

bridge a 79 out of 100 on
“How fearful ...”

Psychology: Bridges?

3/15/2023 EECS 481 (W23) – Design & Maintainability 34

• After crossing either the control or experimental bridge,
subjects were approached by a male or female interviewer
• “She explained that she was doing a project for her psychology class

on the effects of exposure to scenic attractions on creative
expression. She then asked potential subjects if they would fill out a
short questionnaire” and then write a story based on a neutral
picture.

• Upon completion she thanked them and then tore off a
corner of a sheet of paper and wrote down her name and
phone number, inviting each subject to call if he wanted to
talk further.
• The control group was told her name was Donna and the

experimental group was told her name was Gloria …

Psychology: Bridges

3/15/2023 EECS 481 (W23) – Design & Maintainability 35

• 23/33 filled out the questionnaire on the experimental
bridge, 22/33 on the control bridge

• The stories were scored for sexual imagery using TAT
scoring
• Experimental group: 2.47 for sexual imagery vs. 1.41 in the

control group (p < 0.01)

• In the experiment group, 50% of them called her, while in
the control group, only 12.5% did so (p < 0.02)

Psychology: Misattribution of Arousal

[Dutton and Aron. Some evidence for heightened sexual attraction under conditions of
high anxiety. J. Personal and Social Psychology. 1974.]

3/15/2023 EECS 481 (W23) – Design & Maintainability 36

• The misattribution of arousal is a process whereby people unconsciously
mistake physiological symptoms (e.g., blood pressure, shortness of
breath: symptoms of fear) with arousal. This includes perceiving a
partner as more attractive because of a heightened state of stress.

• Later studies found that confidence can also be affected by
misattribution of arousal. Participants were asked to complete a task
with a noise in the background; some were told the noise might make
them nervous, others were told it would have no effect or that there was
a deadline: “which resulted in those participants [who attributed their
arousal to external noise] feeling more confident that they did well on the
tasks than those that attributed their arousal to the performance anxiety
from the task”. (“We used SE process XYZ during the last stressful push;
coincidentally, I think I like XYZ ...”)

Psychology: Misattribution of Arousal

37

Design for
Change and Reuse

3/15/2023 EECS 481 (W23) – Design & Maintainability

3/15/2023 EECS 481 (W23) – Design & Maintainability 38

• In class, many programs are written once, to a fixed
specification, and thrown away

• In industry, many programs are written once and
then modified as requirements, customers, and
developers change

• Many fundamental tenets of object-oriented design
facilitate subsequent change
• You've seen these before, but now you are in a position to

really appreciate the motivation!

Design for Change and Reuse

3/15/2023 EECS 481 (W23) – Design & Maintainability 39

• Classes are open for extension and modification without
invasive changes

• Subtype polymorphism enables changes behind interfaces

• Classes encapsulate details likely to change behind (small)
stable interfaces

• Internal parts can be developed independently

• Internal details of other classes do not need to be
understood, contract is sufficient

• Class implementations and their contracts can be tested
separately (unit testing)

Design Desiderata

3/15/2023 EECS 481 (W23) – Design & Maintainability 40

• Delegation is when one object relies
on another object for some subset of
its functionality
• e.g., in Java, Sort delegates

functionality to some Comparator

• Judicious delegation enables
code reuse
• Sort can be reused with arbitrary sort

orders
• Comparators can be reused with

arbitrary client code that needs to
compare integers

• Reduce “cut and paste” code and
defects

Design for Reuse: Delegation

3/15/2023 EECS 481 (W23) – Design & Maintainability 41

• Amazon.com processes millions of orders each
year, selling in 75 countries, all 50 states, and
thousands of cities worldwide. These countries,
states, and cities have hundreds of distinct sales tax
policies and, for any order and destination,
Amazon.com must be able to compute the correct
sales tax for the order and destination. Over time:
• Amazon moves into new markets
• Laws and taxes in existing markets change

Design for Change: Motivation

3/15/2023 EECS 481 (W23) – Design & Maintainability 42

• A software design pattern is a
general, reusable solution to a
commonly-occurring problem
within a given context in
software design.
• (Other lectures have more

details.)

Software Design Patterns

3/15/2023 EECS 481 (W23) – Design & Maintainability 43

• Problem: Clients need different variants
of an algorithm

• Solution: Create an interface for the algorithm,
with an implementing class for each variant of the
algorithm

• Consequences:
• Easily extensible for new algorithm implementations
• Separates algorithm from client context
• Introduces extra interfaces and classes: code can be

harder to understand; adds overhead if the strategies
are simple

Strategy Design Pattern

3/15/2023 EECS 481 (W23) – Design & Maintainability 44

• Problem: An algorithm has customizable
and invariant parts

• Solution: Implement the invariant parts of the algorithm in an
abstract class, with abstract (unimplemented) primitive operations
representing the customizable parts of the algorithm. Subclasses
customize the primitive operations.

• Consequences
• Code reuse for the invariant parts of algorithm
• Customization is restricted to the primitive operations

• Inverted (“Hollywood-style”) control for customization: “don’t call
us, we’ll call you” (cf. comparison function in sorting)

• Invariant parts of the algorithm are not changed by subclasses

Template Method Design Pattern

3/15/2023 EECS 481 (W23) – Design & Maintainability 45

• Both support variation in a larger context

• Template method uses inheritance + an overridable
method

• Strategy uses an interface and polymorphism
(via composition)
• Strategy objects are reusable across

multiple classes

• Multiple strategy objects are possible per class

Template Method vs. Strategy

3/15/2023 EECS 481 (W23) – Design & Maintainability 46

• Design by contract prescribes that software designers
should define formal, precise and verifiable interface
specifications for components, which extend the ordinary
definition of abstract data types with preconditions,
postconditions and invariants

• A subclass can only have weaker preconditions
• My super only works on positive numbers, but I work on all numbers

• A subclass can only have stronger postconditions
• My super returns any shape, but I return squares

• This is just the Liskov Substitution Principle!

Design for Extensibility: Contracts and Subtyping

47

Design for
Testing

3/15/2023 EECS 481 (W23) – Design & Maintainability

3/15/2023 EECS 481 (W23) – Design & Maintainability 48

• If the majority cost of software engineering is
maintenance, and the majority cost of maintenance
is QA, and the majority cost of QA is testing

• It behooves us to design our software so that
testing is effective
• Design to admit testing
• Design to admit fault injection
• Design to admit coverage
• Recognize “free test” opportunities

Design for Testability

3/15/2023 EECS 481 (W23) – Design & Maintainability 49

• Consider a library oriented architecture, a variation
of modular programming or service-oriented
architecture with a focus on separation of concerns
and interface design
• “Package logical components of your application

independently - literally as separate gems, eggs, RPMs, or
whatever - and maintain them as internal open-source
projects … This approach combats the tightly-coupled
spaghetti so often lurking in big codebases by giving
everything the Right Place in which to exist.”

Design to Admit Testing

3/15/2023 EECS 481 (W23) – Design & Maintainability 50

• Recall: it is hard to generate test inputs with high
coverage for areas “deep inside” the code
• Must solve the constraints for main(), then for foo(), then for

bar(), etc., all at the same time!

• The farther code is from an entry point,
the harder it is to test
• This is one of the motivations behind Unit Testing

• Solution: design with more entry points for self-
contained functionality (cf. AVL tree, priority queue, etc.)

Unit Testing

3/15/2023 EECS 481 (W23) – Design & Maintainability 51

• Suppose you are designing Angry Birds

• It's a game, and also a simulation, so MVC is a
reasonable choice

• Design so that it can be tested without someone
actually playing the game!
• e.g., have an interface where abstract commands can be

queued up: one way to get them is from the UI, but another is
programmatic

• “If I create a world with blocks X, Y and Z and then we launch
bird A at angle B, does C occur within five timesteps?”

Example: Model View Controller

3/15/2023 EECS 481 (W23) – Design & Maintainability 52

• Microsoft's Driver Verifier sat between a driver and the
operating system and “pretended to fail (some of the
time)” to expose poor driver code

• The CHESS project sat between a program and the
scheduler and “forced strange schedules” to expose
poor concurrency code

• Hardware, OS and Networking errors can occur
infrequently, but you still want to test them
• Must design for it!

Fault Injection

3/15/2023 EECS 481 (W23) – Design & Maintainability 53

• Old adage: the solution to everything in computer
science is either to add a level of indirection or to add a
cache

• Don't have your code call fopen() or cout or whatever
directly

• Instead, add a very thin level of indirection where you
call my_fopen which then calls fopen

• Later add “if coin_flip() then fail else ...” to that
indirection layer to inject faults

Level Of Indirection

3/15/2023 EECS 481 (W23) – Design & Maintainability 54

• Code coverage has many flaws
• At a high level, simple coverage metrics do not align with

covering requirements (cf. traceability)

• Solutions
• Better test suite adequacy metrics (mutation, etc.)
• Design and write the code so that high code coverage

correlates with high requirements coverage!

Designing for Coverage-based Testing

3/15/2023 EECS 481 (W23) – Design & Maintainability 55

• Line coverage was often inadequate because “visit
line 5 when ptr==null” could be very different from
“visit line 5 when ptr !=null”
• Because “*ptr = 9” is really “if (ptr == null) abort(); else

*ptr = 9;”

• Consider explicit conditionals that check
requirements adherence
• To get coverage points for reaching the true branch, the

test will have to satisfy the requirement

Recall: Implicit Control Flow

3/15/2023 EECS 481 (W23) – Design & Maintainability 56

• Quality requirement: “finish X within Y time”
• Add in “get the time”, “do X”, “get the time”,

“subtract”, “if t2 – t1 < Y then ...”

• You could also encode these in test oracles

• Explicit Conditional Pros
• Testing tools can help you reason about partial progress
• Testing tools can try to falsify claims

• Explicit Conditional Cons
• Muddies meaning of coverage (100% not desired)

Requirement Coverage

3/15/2023 EECS 481 (W23) – Design & Maintainability 57

• Many programs transform data from one format to
another (cf. adapter pattern)

• If the program is implementing a function with similar
domain and range, you can often get high-coverage
tests “for free” by composing the program with itself
• If possible, design your program so that this is possible (cf. as

a library)

Tests for Free

3/15/2023 EECS 481 (W23) – Design & Maintainability 58

• Inversion
• Forall X. unzip(zip(x)) = x
• Forall X. deserialize(serialize(x)) = x
• Forall X. decrypt(encrypt(x)) = x

• Convergence
• Forall X. indent(indent(x)) = indent(x)
• Forall X. stable_sort(stable_sort(x)) = stable_sort(x)
• Forall P1. Forall I. If P2 = compile(decompile(compile(P1)))

then P1(I)=P2(I)
• mp3enc/mp3dec, jpg2png/png2jpg,

Examples

Note: you may need a
non-exact comparator!

3/15/2023 EECS 481 (W23) – Design & Maintainability 59

• Find 5 commit messages and 5 comments on github
and try to write “Why” documentation for them

• Write an Eiffel program that uses pre- and post-
conditions and inheritance

• How would you design the Autograder to support fault
injection?

• How would you design mutate.py as a library that takes
a list of edit operations? When should mutate(p,[e1,e2])
= mutate(p,[e2,e1])?

Hints for Practice

3/15/2023 EECS 481 (W23) – Design & Maintainability 60

• HW5!

Questions?

	Title & Outline
	Slide 1: Design for Maintainability
	Slide 2
	Slide 3
	Slide 4
	Slide 5

	Motivation
	Slide 6: Motivation and Premise
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

	D for reading
	Slide 13: Design for Comprehension
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

	Change-up and Trivia
	Slide 28: Trivia Break
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

	D for Change
	Slide 37: Design for Change and Reuse
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

	D for Testing
	Slide 47: Design for Testing
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

	The Story So Far...
	Slide 60

